Some history on FRIB and us

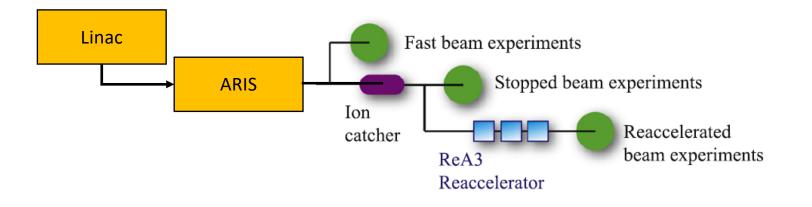
- Late November 2022, visiting WMU and MSU
 - Discussions with EoS group: build up a (long-term, including FRIB400) collaboration on EoS topics with radioactive beams at E/A>100 MeV (and maybe even below...)
 - Meeting with directors (T. Glasmacher, G. Bollen, B.Sherrill): strong interest in reinforcing physics case; availability to use US resources
- December 2022 and January 2023
 - Started discussions within the FAZIA collaboration
 - News about the FRIB-IN2P3 agreement (Betty)
 - Signature of White Paper US LRP document at NSAC for EoS with heavy-ion collisions at FRIB

History of ideas on FRIB projects

- Proposal 23058 by K. Brown et al. @ PAC3 FRIB
 - signed by a number of FAZIAns in Italy and France (G. Verde, T. Marchi, I. Lombardo, D. Dell'Aquila, A. Chbihi, D. Gruyer, C. Ciampi, J.-E. Ducret, Q. Fable)
 - Approved in February 2023
- February 2022
 - FAZIA collaborations meeting with talk by Zbigniew from WMU
- April 2022
 - Institution of a FAZIA Panel for FRIB perspectives inside the FAZIA collaboration

FAZIA panel and plans

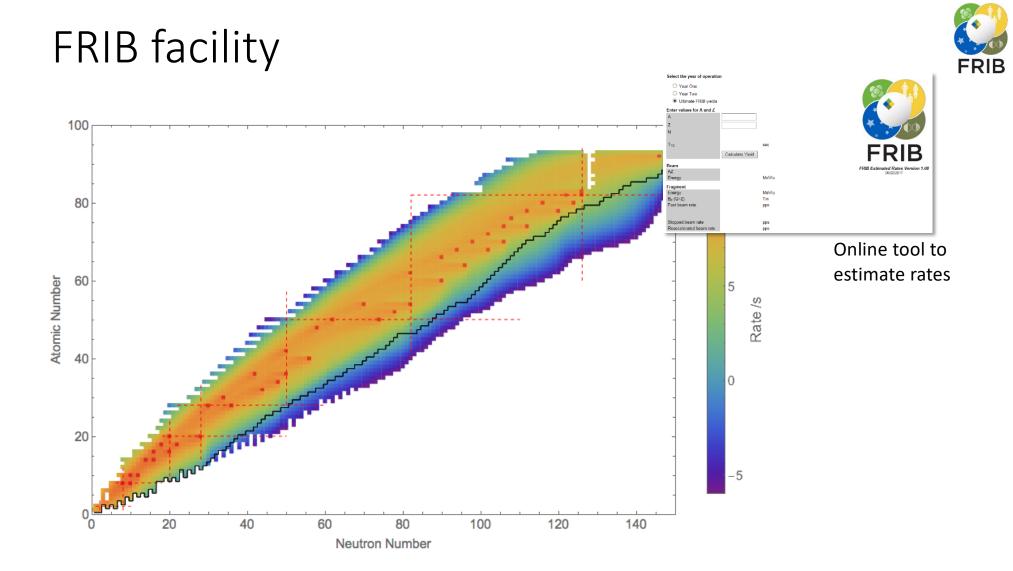
• Panel (see Giovanni's presentation)


- ✓ G. Casini, G. Verde (Italy), D. Gruyer, N. Le Neindre (France), Byungsik Hong (S. Korea)
- ✓ Mostly brain storming and preparation of FAZIA Days (today)
- ✓ New detectors of modifications of existing ones?
- ✓ Coupling to already existing and operating detectors at FRIB (HiRA, LANA, ...)
- Other informal discussions (Giuseppe, Simone, Diego, Kyle Brown)
- Some exchanges (G.V.) with Department of Energy contacts (mostly discussing possible INFN policies)

Where are we?

- FRIB Facility: FRIB200 (now) → FRIB400 (>2028)
- Physics cases at supra-saturation densities
- Physics cases @ FRIB (and FRIB400)
- Proposal 23058 @ PAC3 Participation
- Transport model simulation organization
- Proposed strategy: Lol + Proposal

FRIB facility



- Fast beams: Furthest reach towards neutron-rich nuclei exploit variety of direct reactions, neutron, charged-particle and γ-ray spectroscopy, time-of-flight mass measurements, *HIC*
- **"Stopped"** beams: Precision decay measurements (β, βn, βp, α, isomer, p, 2p ...), high-precision mass spectrometry, laser spectroscopy, tests of fundamental symmetries
- **Reaccelerated beams**: Direct reactions, fusion, capture reactions, Coulomb excitation around the Coulomb barrier (no chemistry limitation unlike with ISOL)

Fast Beam Area Reaccelerator N2 vault Fragment Separator LANA (Large Area Neutron Array) Production Target System HiRA (High Resolution ٠ Array) 50 m BDS Folding Segment 2 Linac Segment 3 **EoS experiments** Folding Segment 1 Linac Segment 2

FRIB facility

