Test Beam preliminary results

F.Fiori

Introduction

- In December 2010 we had a Test-Beam with doublet prototypes
- 3 different modules tested:
- Module A, 80 um (strips connected to adiacent FE channels)
- Module B 80um and 120 um (strip connected to same FE channel)
- 4 different angular orientations w.r.t beam direction ($0^{\circ}, 5^{\circ}, 10^{\circ}, 20^{\circ}$)
- The CW and the distance of clusters in the two sensors studied as a function of the incidence angle

Transverse view

Y global going into the screen

Apparatus

Pisa detector

- 8 reference planes (SiStrip detectors 50 um pitch)
- Trigger made by coincidence of two scintillators
- Alignment and cluster (track) reconstruction on references provided by Finnish collegues
- Only tracks with all the 8 hits in the references and no more than 13 hits are reconstructed
- We have to align our module to their reference frame ...

To align the global X is rotated to find the minimum of the residulas, all the sensors seem to be aligned for the same angle

Alignment

Global impact point given in a plain perpendiculat to
the beam

Alignment (II)

This is the case ModB 80 um at 10°, the distance of the two peaks is about 0.4 mm This can be calculated simply as:
$2.3 / \tan \left(80^{\circ}\right)=0.4 \mathrm{~mm}$
The positions of the peaks is an handle to control the real inclination of the doublet.

If the doublet is inclined enough to have always 2 reconstructed clusters, there is an ambiguity (we have only one reference point and two different cluster positions), so I get two peaks in the residuals.

Incidence angle

Given the unity vector of the track direction: ($V x, V y, V z$), the x and z coordinate are rotated by the alignment angle to obtain the new unity vector ($V^{\prime} x, V_{y}, V^{\prime} z$). The incidence angle, in the direction ortogonal to the strips is then defined as:

$$
\theta_{i n c}=\operatorname{atan}\left(V_{x}^{\prime} / V_{y}\right)
$$

Where V'x is:

$$
V_{x}^{\prime}=V_{x} \cos \left(\theta_{\text {align }}\right)-V_{z} \sin \left(\theta_{\text {align }}\right)
$$

It is also possible to define an angle along the strip direction:

$$
\theta_{i n c}=\operatorname{atan}\left(V_{z}^{\prime} / V_{y}\right)
$$

Mod B 0° Distributions

This is puzzling, we expect events only single clusters with double charge, the first peak should be invisible. however this doublet has the two sensors shifted of about 2 mm to permit bonding, for the particular configuration of the 0° setup the beam hits this transition region, so there are many traks that hits only one sensor (it doesn't happen for angles different from 0°)

10° Distributions

20° Distributions

Mod A 0° Distributions

Tutto piccato a 0 con un picchetto a 1 (ci piace)

10° Distributions

Il picco a 6 sappiamo che è dovuto ai clusters di una sola strip

20° Distributions

Distance and Width Vs Angle CW
 Distance

Conclusions and to do

- After a long fight with finnish software we managed to analyze test beam data
- Preliminary studies seems to be consistent with expectations
- We have to solve some minor software but to analyze the 120 um sensor
- Still missing the point at 5°
- Some work still to do on Module A
- No quality cuts applied so far, there is room to improve much ...

