L’avventura dei Next-to-Leading (NLO)

Pomeriggio in ricordo di Enrico

Guido Martinelli INFN Sezione di Roma Università La Sapienza

UNIVERSITÀ DI ROMA
Roma May $23^{\text {th }} 2023$

Enrico \& Guido

Varenna School 1984 Enrico was a Student (Barbara Mele, Giovanni Ridolfi, ...), Guido Scientific Secretary, Cabibbo Director

```
    MIXING COEFFICIENTS OF THE LATTICE
    WEAK HAMILTONIAN WITH DIMENSION FIVE OPERATORS *)
    G. CURCI
    Dipartimento di Fisica Università di Pisa, I-56100 Pisa, Italy
    E. FRANCO
    INFN, Sezione di Roma, Rome, Italy
    L. MAIANI
    Dipartimento di Fisica, Università di Roma, Rome, Italy
    and INFN Sezione di Roma, Rome, Italy
    and

First paper together:
    It is already a NLO
calculation
namely the finite
term of the
coefficient of the
chromomagnetic operator

\section*{Enrico \& Guido}


Fig. 3. Two loop diagrams for the calculation of \(A^{( \pm)}\).

\section*{First paper together: our common scientific journey started with a two loop calculation!}

Necessary to get rid of infrared and ultraviolet singularities appearing in the intermediate steps, technically very complex, contribution by Enrico fundamental

\title{
MATRIX ELEMENTS OF LEFT-RIGHT FOUR-FERMION OPERATORS \\ AND THE ELECTROPENGUIN CONTRIBUTION TO \(\varepsilon^{\prime} / \varepsilon\) \\ IN LATTICE QCD WITH WILSON FERMIONS*
}


\section*{Chromomagnetic operator, Penguin Operators, What is all this about?}

\section*{the Standard Model and beyond}
\[
\begin{gathered}
\begin{array}{c}
\begin{array}{l}
\text { Vacuum } \\
\text { Energy }
\end{array} \\
\mathcal{L}=\Lambda^{4}+\Lambda^{2} H^{2}+\lambda H^{4}+ \\
\left(D_{\mu} H\right)^{2}+\bar{\psi} \not D \psi+F_{\mu \nu}^{2}+F_{\mu \nu} \tilde{F}_{\mu \nu} \text { Strong Cp } \\
\text { Stability }
\end{array} \\
Y H \bar{\psi} \psi+\frac{1}{\Lambda}(\bar{L} H)^{2}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} O_{i}+\ldots \\
\begin{array}{l}
\text { Flavor } \\
\text { puzzle }
\end{array} \\
\begin{array}{l}
\text { Neutrino } \\
\text { Masses }
\end{array} \\
\begin{array}{l}
\text { New Physics } \\
\text { Possible breaking of } \\
\text { accidental } \\
\text { symmetries }
\end{array} \\
\hline \text { Stat }
\end{gathered}
\]

\section*{The Effective Hamiltonian}

\[
\begin{aligned}
& q \sim m_{K} \ll M_{W} \\
& \mathcal{H}_{e f f}=-\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left(\bar{s}_{\mu}\left(1-\gamma_{5}\right) u\right)\left(\bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right)
\end{aligned}
\]

\section*{GENERAL FRAMEWORK:} THE OPE
\(A_{F I}\left(2 \pi^{4}\right) \delta^{4}\left(p_{F}-p_{I}\right)=\int d^{4} x d^{4} y D_{\mu v}\left(x, M_{W}\right)\langle F| T\left[J_{\mu}(y+x / 2) J_{v}^{\dagger}(y-x / 2)\right]|I\rangle\)

\(\langle\mathrm{F}| \mathrm{H}^{\Delta \mathrm{S}=1}|\mathrm{I}\rangle=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{us}} \Sigma_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu) \frac{\langle\mathrm{F}| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{I}\rangle}{\left(\mathrm{M}_{\mathrm{W}}\right)^{\mathrm{di}-6}}\)
\(d \mathrm{~d}=\) dimension of the operator \(\mathrm{Q}_{\mathrm{i}}(\mu)\)
\(C_{i}(\mu)\) Wilson coefficient: it depends on \(\mathrm{M}_{\mathrm{W}} / \mu\) and \(\alpha_{\mathrm{W}}(\mu)\)
\(\mathrm{Q}_{\mathrm{i}}(\mu)\) local operator renormalized at the scale \(\mu\)

New local four-fermion operators are generated
\(\mathrm{Q}_{1}=\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{u}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\left(\overline{\mathrm{u}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\)
Current-Current
\(\mathrm{Q}_{2}=\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{u}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{u}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\)
Gluon
\(\mathrm{Q}_{3,5}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right) \sum_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{B}}\right)\)
\(\mathrm{Q}_{4,6}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \sum_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{A}}\right) \quad\) Penguins
\(\mathrm{Q}_{7,9}=3 / 2\left(\overline{\mathrm{~s}}_{\underline{\underline{R}}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right) \sum_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\underline{\underline{R}, \mathrm{~L}}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{B}}\right)\) Electroweak \(\mathrm{Q}_{8,10}=3 / 2\left(\mathrm{~s}_{\mathrm{R}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \sum_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}\left(\mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{A}}\right) \quad\) Penguins
+ Chromomagnetic end electromagnetic operators
\[
\mathcal{A}(K \rightarrow \pi \pi)=\sum_{i} C_{W}^{i}(\mu)\langle\pi \pi| O_{i}(\mu)|K\rangle
\]

\section*{GENERAL FRAMEWORK}
\[
\begin{array}{r}
\mathrm{H}^{\Delta \mathrm{S}=1}=\mathrm{G}_{\mathrm{F}} / \mathrm{V}_{2} \mathrm{~V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{us}}^{*}\left[(1-\tau) \Sigma_{\mathrm{i}=1,2} \mathrm{z}_{\mathrm{i}}\left(\mathrm{Q}_{\mathrm{i}}-\mathrm{Q}_{\mathrm{i}}^{\mathrm{c}}\right)+\right. \\
\left.\tau \Sigma_{\mathrm{i}=1,10}\left(\mathrm{z}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}\right) \mathrm{Q}_{\mathrm{i}}\right]
\end{array}
\]

Where \(y_{i}\) and \(z_{i}\) are short distance coefficients, which are known in perturbation theory at the NLO (Buras et al.
+ Marco Ciuchini, Enrico Franco, Guido Martinelli, Laura Reina)
\[
\tau=-\mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}
\]
 with a non perturbative technique (lattice, QCD sum rules, \(1 / \mathrm{N}\) expansion etc.)
\[
\mathrm{A}_{0}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\langle(\pi \pi)| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{K}\rangle_{\mathrm{I}=0}\left(1-\Omega_{\mathrm{IB}}\right)
\]
\(\mu=\) renormalization scale \(\mu\)-dependence cancels if operator

BREAKING
\[
\mathrm{A}_{\mathbf{2}}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\langle(\pi \pi)| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{K}\rangle_{\mathrm{I}=\mathbf{2}}
\]
\(\Omega_{\mathrm{IB}}=0.25 \pm 0.08\) (Munich from Buras \& Gerard) \(0.25 \pm 0.15\) (Rome Group) \(\quad 0.16 \pm 0.03\) (Ecker et al.) \(0.10 \pm 0.20\) Gardner \& Valencia, Maltman \& Wolf, Cirigliano \& al.
\[
\begin{aligned}
& \mathrm{A}_{0}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\langle(\pi \pi)| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{K}\rangle_{\mathrm{I}=0} \\
& \mathrm{~A}_{2}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\langle(\pi \pi)| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{K}\rangle_{\mathrm{I}=2}
\end{aligned}
\]
```

\mu= renormalization scale
\mu-dependence cancels if operator
matrix elements are consistently
computed

```

NLO \& Lattice Calculations of the Matrix Elements essential for a quantitative prediction of the physical amplitude
NNLO even better
Enrico was a pillar
of all the progresses we made
\[
\begin{aligned}
\mathrm{A}^{\mathrm{I}=0,2}{ }_{\mathrm{i}}(\mu) & =\left\langle(\pi \pi)_{\mathrm{I}=0,2}\right| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{K}\rangle \\
\quad= & \mathrm{Z}_{\mathrm{ik}}(\mu \mathrm{a})\left\langle(\pi \pi)_{\mathrm{I}=0,2}\right| \mathrm{Q}_{\mathrm{k}}(\mathrm{a})|\mathrm{K}\rangle
\end{aligned}
\]

Where \(\mathrm{Q}_{\mathbf{i}}(a)\) is the bare lattice operator And \(a\) the lattice spacing.

The effective Hamiltonian can then be read as:
\(\langle\mathrm{F}| \mathrm{H}^{\Delta \mathrm{S}=1}|\mathrm{I}\rangle=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{\Sigma}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(1 / \mathrm{a})\langle\mathrm{F}| \mathrm{Q}_{\mathrm{i}}(\mathrm{a})|\mathrm{I}\rangle\)

In practice the renormalization scale (or \(1 / a\) ) are the scales which separate short and long distance dynamics

\section*{GENERAL FRAMEWORK}
\[
\left\langle\mathrm{H}^{\Delta \mathrm{S}=1}\right\rangle=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{us}}^{*} \ldots \Sigma_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mathrm{a})\left\langle\mathrm{Q}_{\mathrm{i}}(\mathrm{a})\right\rangle
\]

Effective Theory - quark \& gluons
\[
\mathrm{M}_{\mathrm{W}}=100 \mathrm{GeV}
\]
\[
\mathrm{a}^{-1}=2-5 \mathrm{GeV}
\]

Hadronic non-perturbative region
\[
\Lambda_{\mathrm{QCD}}, \mathrm{M}_{\mathrm{K}}=0.2-0.5 \mathrm{GeV}
\]

100 GeV


Large mass scale: heavy degrees of freedom \(\left(m_{t}, M_{w}, M_{s}\right)\) are removed and their effect included in the Wilson coefficients
renormalizazion scale \(\mu\) (inverse lattice spacing 1/a); this is the scale where the quark theory is matched to the effective hadronic theory

Scale of the low energy process \(\Lambda \sim M_{w}\)

THE SCALE PROBLEM: Effective theories prefer low scales, Perturbation Theory prefers large scales

\section*{if the scale \(\mu\) is too low problems from higher dimensional operators}
(Cirigliano, Donoghue, Golowich)
- it is illusory to think that the problem is solved by using dimensional regularization

\section*{on the lattice this problem is called DISCRETIZATION ERRORS}
(reduced by using improved actions and/or scales \(\mu>2-4 \mathrm{GeV}\)

\section*{The True Story of NLO Calculations in Weak Decays}
1) G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, "Weak Nonleptonic Decays Beyond Leading Logarithms In QCD," Phys. Lett. B 99 (1981) 141;
2) G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, "QCD Nonleading Corrections To Weak Decays As An Application of Regularization By Dimensional Reduction"
Nucl.Phys. B 187 (1981) 461.
Improvement for neutral meson mixing, DI \(=3 / 2\) transitions and charm decays
No penguin diagrams, however, which were considered fundamental for DI=1/2 decays

\section*{The story according to Andrzej Buras (with my comments)}

During the last supper of the Ringberg workshop Guido Martinelli and me realized that it would be important to calculate NLO QCD corrections to the Wilson coefficients of penguin operators relevant for \(K \rightarrow \pi \pi\) decays.


This calculation done in collaboration with Guido Altarelli, Curci and Petrarca has been unfortunately performed in the dimensional reduction scheme (DRED) that was not familiar to most phenomenologists (so what?)and its complicated structure discussed in detail by these authors most probably scared many from checking their results.

Moreover it was known that the treatment of \(\gamma 5\) in the DRED scheme, similarly to the dimensional regularization scheme with anticommunicating \(\gamma 5\) (known presently as the NDR scheme), may lead to mathematically inconsistent results. Consequently it was not clear in 1988 whether the result of Altarelli et al. was really correct. To us it was clear that it was correct

Indeed Andrzej and Peter Weisz repeated the calculation for \(\mathrm{K}^{0}-\overline{\mathrm{K}^{0}}\) mixing in NDR and HV And found perfect agreement with Altarelli et al.

At this last supper of the Ringberg 1988 workshop Guido told me that he will put some of his PhD students to look into NLO QCD corrections to Wilson coefficients of QCD penguin operators relevant for \(K \rightarrow \pi \pi\) decays


Laura Reina
M. Ciuchini et al. / \(\Delta S=1\) effective hamiltonian


Fig. 10. Current-current diagrams at two loops.
M. Ciuchini et al. / \(\Delta S=1\) effective hamiltonian


Fig. 11. Penguin diagrams at two loops.

\section*{Anomalous \\ Dimension Matrix}
\begin{tabular}{|c|c|c|}
\hline ( \(i, j\) ) & HV & NDR \\
\hline \((1,1)\) & \(\frac{44 N^{2}}{3}-\frac{110}{3}-\frac{57}{2 N^{2}}-\frac{8 N}{3} f+\frac{14}{3 N} f\) & \[
-\frac{22}{3}-\frac{57}{2 N^{2}}-\frac{2}{3 N} f
\] \\
\hline \((1,2)\) & \[
\frac{23 N}{2}+\frac{39}{N}-2 f
\] & \[
-\frac{19 N}{6}+\frac{39}{N}+\frac{2}{3} f
\] \\
\hline \((1,3)\) & \[
3 N-\frac{4}{N}
\] & \[
3 N-\frac{2}{3 N}
\] \\
\hline \((1,4)\) & 1 & \(-\frac{7}{3}\) \\
\hline \((1,5)\) & \[
-3 N+\frac{2}{N}
\] & \[
-3 N+\frac{16}{3 N}
\] \\
\hline \((1,6)\) & 1 & \[
-\frac{7}{3}
\] \\
\hline \((2,1)\) & \(\frac{23 N}{2}+\frac{39}{N}-2 f\) & \[
-\frac{19 N}{6}+\frac{39}{N}+\frac{2}{3} f
\] \\
\hline \((2,2)\) & \(\frac{44 N^{2}}{3}-\frac{110}{3}-\frac{57}{2 N^{2}}-\frac{8 N}{3} f+\frac{14}{3 N} f\) & \[
-\frac{22}{3}-\frac{57}{2 N^{2}}-\frac{2}{3 N} f
\] \\
\hline \((2,3)\) & \[
-\frac{56}{27}+\frac{86}{27 N^{2}}
\] & \[
-\frac{32}{27}+\frac{86}{27 N^{2}}
\] \\
\hline \((2,4)\) & \(\underline{110 N}-\frac{140}{27 N}\) & \(\underline{176 N}-\frac{230}{27 N}\) \\
\hline \((2,4)\) & \[
\begin{aligned}
& \hline 27 \\
& 128
\end{aligned} \quad \begin{gathered}
27 N \\
58
\end{gathered}
\] & \[
\begin{array}{lc}
27 & 27 N \\
122 & 94
\end{array}
\] \\
\hline \((2,5)\) & \(-\frac{127}{27}-\frac{58 N^{2}}{}\) & \(-\frac{17}{27}-\frac{}{27 N^{2}}\) \\
\hline \((2,6)\) & \[
\frac{38 N}{27}+\frac{148}{27 N}
\] & \[
\frac{86 N}{27}+\frac{130}{27 N}
\] \\
\hline \((3,3)\) & \(\frac{44 N^{2}}{3}-\frac{1102}{27}-\frac{1195}{54 N^{2}}+\frac{N}{3} f+\frac{2}{3 N} f\) & \[
-\frac{262}{27}-\frac{1195}{54 N^{2}}+3 N f-\frac{10}{3 N} f
\] \\
\hline \((3,4)\) & \[
\frac{1061 N}{54}+\frac{773}{27 N}-f
\] & \[
\frac{533 N}{54}+\frac{593}{27 N}+\frac{1}{3} f
\] \\
\hline \((3,5)\) & \[
-\frac{256}{27}-\frac{116}{27 N^{2}}-3 N f+\frac{2}{N} f
\] & \[
-\frac{244}{27}-\frac{188}{27 N^{2}}-3 N f+\frac{10}{3 N} f
\] \\
\hline \((3,6)\) & \[
\frac{76 N}{27}+\frac{296}{27 N}+f
\] & \[
\frac{172 N}{27}+\frac{260}{27 N}-\frac{1}{3} f
\] \\
\hline \((4,3)\) & \(\frac{35 N}{2}+\frac{31}{N}-\frac{110}{27} f+\frac{86}{27 N^{2}} f\) & \(\frac{17 N}{6}+\frac{113}{3 N}-\frac{2}{27} f+\frac{74}{27 N^{2}} f\) \\
\hline \((4,4)\) & \(\frac{44 N^{2}}{3}-\frac{104}{3}-\frac{57}{2 N^{2}}+\frac{38 N}{27} f-\frac{14}{27 N} f\) & \[
-12-\frac{57}{2 N^{2}}+\frac{110 N}{27} f-\frac{182}{27 N} f
\] \\
\hline \((4,5)\) & \[
-6 N+\frac{4}{N}-\frac{128}{27} f-\frac{58}{27 N^{2}} f
\] & \[
-6 N+\frac{32}{3 N}-\frac{56}{27} f+\frac{2}{27 N^{2}} f
\] \\
\hline \((4,6)\) & \[
2+\frac{38 N}{27} f+\frac{148}{27 N} f
\] & \[
-\frac{14}{3}+\frac{74 N}{27} f-\frac{20}{27 N} f
\] \\
\hline \((5,3)\) & \[
-3 N f+\frac{8}{3 N} f
\] & \(-3 N f+\frac{20}{3 N} \mathrm{f}\) \\
\hline
\end{tabular}

\section*{\(\epsilon^{\prime} / \epsilon\) at the next-to-leading order in QCD and QED}

\author{
M. Ciuchini \({ }^{\text {a,b }}\), E. Franco \({ }^{\text {b }}\), G. Martinelli \({ }^{\text {b }}\) and L. Reina \({ }^{\text {c.d }}\)
}
- INFN, Seztone Sanità, V le Regina Elena 299, I-00161 Rome, Italy
- Dıparımento dı Fisıca "G Marcont", Unıversıtà deglı Studı dı Roma "La Sapıenza" and INFN, Sezıone dı Roma, P le A Moro 2, I-00185 Rome, Italy
c SISSA-ISAS, Via Beirut 2, I-34014 Trieste, Italy
\({ }^{d}\) INFN, Sezione di Trieste, Via Valerio 2, I-34 100 Trieste, Italy

Received 2 December 1992

\section*{Enrico gave extraordinary contributions to all the NLO calculations of the Rome group}

Nuclear Physics B415 (1994) 403-459 North-Holland

The \(\Delta S=1\) effective hamiltonian including next-to-leading order QCD and QED corrections

\footnotetext{
M. Ciuchini \({ }^{\text {a,b }}\), E. Franco \({ }^{\text {b }}\), G. Martinelli \({ }^{\text {b,c }}\) and L. Reina \({ }^{\text {d }}\)
\({ }^{\text {a }}\) INFN, Sezione Sanità, V. le Regina Elena 299, I-00161 Rome, Italy
\({ }^{b}\) Dipartimento di Fisica, Università degli Studi di Roma "La Sapienza" Dipartimento di Fisica, Universita deglt Studi di Roma La Sapienza
and INFN, Sezione di Roma, P. le A. Moro 2, I-00185 Rome, Italy
\({ }^{c}\) Laboratoire de Physique Théorique de l'École Normale Supérieure \({ }^{1}, 24\) rue Lhomond, F-75231 Paris Cedex 05, France
\({ }^{\text {d }}\) Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP 225, B-1050 Brussels, Belgium
}

\section*{The story according to some gossips}


The equations of motions in NDR and HV

Lattice from
K- \(\pi\)
Pioneering LQCD attempts to compute the matrix elements by Gavela, Maiani, Martinelli, Pene, Petrarca - Bernard and Soni - Gupta, Kilcup, Sharpe

Non-leptonic
\[
B->\pi \pi, K \pi, \text { etc. No ! }
\]
but only below the inelastic threshold
(may be also
3 body decays)



Figure 3: Recent theoretical calculations of \(\varepsilon^{\prime} / \varepsilon\) are compared with the combined 1- \(\sigma\) average of the NA31, E731, KTeV and NA48 results \(\left(\varepsilon^{\prime} / \varepsilon=\right.\) \(\left.17.2 \pm 1.8 \times 10^{-4}\right)\), depicted by the \(\square\) horizontal band.
\[
\varepsilon^{\prime} / \varepsilon=(1.4 \pm 7.0) \cdot 10^{-4}
\]

\section*{\(\left(\frac{\operatorname{Re} \mathrm{A}_{0}}{\operatorname{Re} \mathrm{~A}_{2}}\right)=31.0 \pm 6.6\)}
\[
\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {exp }}=(16.6 \pm 2.3) \cdot 10^{-4}
\]
\[
=22.4
\]

Courtesy by A. Buras 2015

\section*{Four dominant contributions to \(\varepsilon^{\prime} / \varepsilon\) in the SM}

AJB, Jamin, Lautenbacher (1993); AJB, Gorbahn, Jäger, Jamin (2015)


Assumes that ReA \({ }_{0}\) and \(\operatorname{ReA}_{2}\) ( \(\Delta I=1 / 2\) Rule) fully described by SM (includes isospin breaking corrections)
\(\varepsilon^{\prime} / \varepsilon\) from RBC-UKQCD

Calculate all contributions directly (no isospin breaking corrections)
\[
\left[-(6.5 \pm 3.2)+25.3 \cdot B_{6}^{(1 / 2)}+(1.2 \pm 0.8)-10.2 \cdot B_{8}^{(3 / 2)}\right]
\]

\section*{\(\Delta I=\mathbf{1} / \mathbf{2} K \rightarrow \pi \pi\) (Qi Liu)}
- Code 50 different contractions
- For each of 400 configurations invert with source at each of 32 times.
- Use Ran Zhou's deflation code


\section*{Anatomy of \(\varepsilon^{\prime} / \varepsilon-\mathbf{A}\) new flavour anomaly?}

AJB, Gorbahn, Jäger, Jamin,, 1507.xxxx

\section*{RBC-UKQCD}
\[
\varepsilon^{\prime} / \varepsilon=(1.4 \pm 7.0) \cdot 10^{-4}
\]
\((3.2 \sigma) \quad \varepsilon^{\prime} / \varepsilon=(2.2 \pm 3.8) \cdot 10^{-4}\)
\[
\varepsilon^{\prime} / \varepsilon=(6.3 \pm 2.5) \cdot 10^{-4}
\]

RBC-QCD values
\[
\begin{aligned}
& B_{6}^{(1 / 2)}=0.57 \pm 0.15 \\
& B_{8}^{(3 / 2)}=0.76 \pm 0.05
\end{aligned}
\]
large \(N\) bounds (AJB, Gérard) \(B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=0.76\)
\[
\varepsilon^{\prime} / \varepsilon=(9.1 \pm 3.3) \cdot 10^{-4}
\]
large \(N\) bounds (AJB, Gérard) \(B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=1.0\)
exp: \(\quad \varepsilon^{\prime} / \varepsilon=(16.6 \pm 3.3) \cdot 10^{-4}\)

\section*{Final result for \(\varepsilon^{\prime}\)}
- Combining our new result for \(\operatorname{Im}\left(\mathrm{A}_{0}\right)\) and our 2015 result for Im \(\left(A_{2}\right)\), and again using expt. for the real parts, we find
\[
\begin{array}{r}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{ReA} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
=0.00217(26)(62)(50)>\mathrm{IB}+\mathrm{EM}
\end{array}
\]

Consistent with experimental result:
\[
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)_{\operatorname{expt}}=0.00166(23)
\]
e'/e from RBC ( \(16.7 \times 10^{-4}\) )
now in Utfit: \(e^{\prime} / e=15.2(4.7) \times 10^{-4}\)


A second group should do this calculation!!

The pitfall of the equations of motions Or Again with Enrico at NLO
+ Marco, Laura and a newcomer


The pitfall of the equations of motions Or Again with Enrico at NLO
+ Marco, Laura
and a newcomer
Luca Silvestrini


Scheme independence of the effective Hamiltonian for \(b \rightarrow s \gamma\) and \(b \rightarrow s g\) decays
M. Ciuchini \({ }^{\text {a,b }}\), E. Franco \({ }^{\text {b }}\), G. Martinelli \({ }^{\text {b,c }}\), L. Reina \({ }^{\text {d }}\) and L. Silvestrini \({ }^{\text {b }}\)
\({ }^{\text {a }}\) INFN, Sezione Sanità, V.le Regina Elena 299, 00161 Roma, Italy
\({ }^{\text {b }}\) Dip. di Fisica, Università degli Studi di Roma "La Sapienza" and INFN, Sezione di Roma, P.le A. Moro 2, 00185 Roma, Italy
\({ }^{\text {c }}\) Laboratoire de Physique Théorique de l'Ecole Normale Supérieurel, 24 rue Lhomond, 75231 Paris CEDEX 05, France
\({ }^{\text {d }}\) Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP 225 B-1050 Brussels, Belgium \({ }^{2}\)

Received 4 August 1993
Editor: R. Gatto
Different groups found different (two-loops) \(O\left(\alpha_{s}\right)\) anomalous dimensions working with different regularisation/renormalisation schemes. The thesis of Luca was to check these calculation and tell us which one was correct.
The answer was in the scheme dependence of the one-loop \(O\left(\alpha_{s}^{0}\right)\) coefficient functions which changed, insome cases, the equation of motion.

\section*{Neutral Meson Mixing \(\quad B^{0}-\overline{B^{0}}\)}

\[
H=\left(\begin{array}{ll}
\mathrm{H}_{11} & \mathrm{H}_{12} \\
\mathrm{H}_{21} & \mathrm{H}_{22}
\end{array}\right)
\]

\(\mathrm{H}_{\text {eff }}{ }^{\mathrm{BB}=2} \propto \quad\left(\overline{\mathrm{~d}} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{b}\right)^{2}\)
CKM
\(\Delta \mathrm{m}_{\mathrm{d}, \mathrm{s}}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{M}_{\mathrm{W}}^{2}}{16 \pi^{2}} \mathrm{~A}^{2} \lambda^{6} \mathrm{~F}_{\mathrm{tt}}\left(\frac{\mathrm{m}_{\mathrm{t}}^{2}}{\mathrm{M}^{2}{ }_{\mathrm{W}}}\right)<\mathrm{O}>\)

In general the mixing mass matrix of the SQuarks (SMM) is not diagonal in flavour space analogously to the quark case We may either Diagonalize the SMM
FCNC \(\underbrace{z, \tilde{\gamma}, \tilde{g}^{j}}\)
or Rotate by the same matrices

the SUSY partners of the u- and d- like quarks
\(\left(Q_{L}\right)^{\prime}=U^{i j}{ }_{L} Q^{j}{ }_{L}\)


In the latter case the Squark Mass Matrix is not diagonal

a)

b)

c)

d)
\[
\left(m^{2} Q_{i j}=m_{\text {average }}^{2} 1_{i j}+\Delta m_{i j}{ }^{2} \quad \delta_{i j}=\Delta m_{i j}{ }^{2} / m_{\text {average }}^{2}\right.
\]

\section*{TESTING THE NEW PHYSICS SCALE} Effective Theory Analysis \(\boldsymbol{\Delta F}=\mathbf{2}\)

\section*{Effective Hamiltonian in the mixing amplitudes}
\[
C_{j}(\Lambda)=\frac{L F_{j}}{\Lambda^{2}} \Rightarrow \Lambda=\sqrt{\frac{L F_{j}}{C_{j}(\Lambda)}}
\]
\[
\begin{array}{cc}
H_{e f f}^{\Delta B=2}=\sum_{i=1}^{5} C_{i}(\mu) Q_{i}(\mu)+\sum_{i=1}^{3} \widetilde{C}_{i}(\mu) \widetilde{Q}_{i}(\mu) \\
Q_{1}=\bar{q}_{L}^{\alpha} \gamma_{\mu} b_{L}^{\alpha} \bar{q}_{L}^{\beta} \gamma^{\mu} b_{L}^{\beta} & (\mathrm{SM} / \mathrm{MFV}) \\
Q_{2}=\bar{q}_{R}^{\alpha} b_{L}^{\alpha} \bar{q}_{R}^{\beta} b_{L}^{\beta} & Q_{3}=\bar{q}_{R}^{\alpha} b_{L}^{\beta} \bar{q}_{R}^{\beta} b_{L}^{\beta} \\
Q_{4}=\bar{q}_{R}^{\alpha} b_{L}^{\alpha} \bar{q}_{L}^{\beta} b_{R}^{\beta} & Q_{5}=\bar{q}_{R}^{\alpha} b_{L}^{\beta} \bar{q}_{L}^{\beta} b_{R}^{\beta} \\
\widetilde{Q}_{1}=\bar{q}_{R}^{\alpha} y_{1}^{\alpha} b_{R}^{\alpha} \bar{q}_{R}^{\beta} \gamma^{\mu} b_{R}^{\beta} & \\
\widetilde{Q}_{2}=\bar{q}_{L}^{\alpha} b_{R}^{\alpha} \bar{q}_{L}^{\beta} b_{R}^{\beta} & \widetilde{Q}_{3}=\bar{q}_{L}^{\alpha} b_{R}^{\beta} \bar{q}_{L}^{\beta} b_{R}^{\beta}
\end{array}
\]
\(C(\Lambda)\) coefficients are extracted from data
\(L\) is loop factor and should be :
\(L=1\) tree/strong int. NP
\(L=\alpha^{2}{ }_{s}\) or \(\alpha^{2}{ }_{w}\) for strong/weak perturb. NP
\[
\begin{aligned}
& \mathbf{F}_{1}=\mathbf{F}_{\mathbf{S M}}=\left(\mathbf{V}_{\mathrm{tq}} \mathbf{V}_{\mathrm{tb}} *\right)^{2} \\
& \mathbf{F}_{\mathrm{j}=1}=\mathbf{0}
\end{aligned}
\]
\[
\left|\mathbf{F}_{\mathbf{j}}\right|=\mathbf{F}_{\mathbf{S M}}
\]
arbitrary phases
\(\left|F_{j}\right|=\mathbf{1}\)
arbitrary phases

\title{
Next-to-leading order QCD corrections to \(\Delta F=2\) effective hamiltonians
}

\author{
M. Ciuchini \({ }^{\text {a }}\), E. Franco \({ }^{\text {b }}\), V. Lubicz \({ }^{\text {c }}\), G. Martinelli \({ }^{\text {b }}\), I. Scimemi \({ }^{\text {b }}\), L. Silvestrini \({ }^{\text {d }}\) \\ \({ }^{\text {a }}\) INFN, Sezione Sanità, Vle Regina Elena 299, 1-00161 Rome, Italy \\ \({ }^{\text {b }}\) Dip. di Fisica, Università degli Studi di Roma "La Sapienza" and INFN, Sezione di Roma, P.le A. Moro 2, I-00185 Rome, Italy \\ \({ }^{\text {c }}\) Dip. di Fisica, Univ. di Roma Tre and INFN, Sezione di Roma, Via della Vasca Navale 84, I-00146 Rome, Italy \\ d Physik Department, Technische Universität München, D-85748 Garching, Germany
}
(2) The \(B_{s}-\bar{B}_{s}\) width difference \(\Delta \Gamma_{B_{s}}\).

At lowest order in \(1 / m_{b}\), by using the OPE, the width difference \(\Delta \Gamma_{B_{s}}\) can be written in terms of two \(\Delta B=2\) operators [4]
\[
\begin{align*}
Q & =\bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) s \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) s, \\
Q_{s} & =\bar{b}\left(1-\gamma_{5}\right) s \bar{b}\left(1-\gamma_{5}\right) s . \tag{3}
\end{align*}
\]
(3) Heavy-hadrons lifetimes \(\left(\tau_{B}, \tau_{B_{s}}, \tau_{\Lambda_{b}}\right)\).

In this case, the \(1 / m_{b}^{3}\) corrections to the lifetime, due to Pauli interference and \(W\) exchange, can be written in terms of four operators [5]
\[
\begin{align*}
& O_{V-A}^{4}=\bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q \bar{q} \gamma^{\mu}\left(1-\gamma_{5}\right) b, \\
& O_{S-P}^{4}=\bar{b}\left(1-\gamma_{5}\right) q \bar{q}\left(1+\gamma_{5}\right) b, \\
& T_{V-A}^{q}=\bar{b} t^{A} \gamma_{\mu}\left(1-\gamma_{5}\right) q \bar{q} t^{A} \gamma^{\mu}\left(1-\gamma_{5}\right) b, \\
& T_{S-P}^{q}=\bar{b} t^{A}\left(1-\gamma_{5}\right) q \bar{q} t^{A}\left(1+\gamma_{5}\right) b, \tag{4}
\end{align*}
\]

\title{
\(\Delta M_{K}\) and \(\varepsilon_{K}\) in SUSY at the Next-to-Leading order
}

\section*{M. Ciuchini and V. Lubicz}

Dip. di Fisica, Università di Roma Tre and
INFN, Sezione di Roma III, Via della Vasca Navale 84, I-00146 Roma, Italy
L. Conti and A. Vladikas

INFN, Sezione di Roma II, and Dip. di Fisica, Univ. di Roma"Tor Vergata"
Via della Ricerca Scientifica 1, I-00133 Roma, Italy
A. Donini

Dep. de Fisica Teorica, Univ. Autonoma Madrid, Fac. de Ciencias, C-XI, Cantoblanco, E-28049 Madrid, Spain

\section*{E. Franco, G. Martinelli and I. Scimemi}

Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN, Sezione di Roma, P.le A. Moro, I-00185 Roma, Italy

\section*{V. Gimenez}

Dep. de Fisica Teorica and IFIC, Univ. de Valencia,
Dr. Moliner 50, E-46100, Burjassot, Valencia, Spain
L. Giusti

Scuola Normale Superiore, P.zza dei Cavalieri 7 and INFN, Sezione di Pisa, 56100 Pisa, Italy
A. Masiero

SISSA-ISAS, Via Beirut 2-4, I-34013 Trieste, Italy and
INFN, Sezione di Trieste, Trieste, Italy
L. Silvestrini

Physik Department, Technische Universität München, D-85748 Garching, Germany
M. Talevi

Department of Physics \& Astronomy, University of Edinburgh,
The King's Buildings, Edinburgh EH9 3JZ, UK

\section*{Beyond the SM}

\section*{results from the Wilson coefficients}


NMFV: \(C(\Lambda)=\alpha \times \mid F_{S M} / / \Lambda^{2}\),
\(\mathrm{F}_{\mathrm{i}} \sim\left|\mathrm{F}_{\text {sw }}\right|\), arbitrary phase


Lower bounds on NP scale (at 95\% prob.)
\(\Lambda>95 \mathrm{TeV}\)
\(\alpha \sim \alpha_{w}\) in case of loop coupling through weak interactions
\(\Lambda>2.9 \mathrm{TeV}\)
for lower bound for loop-mediated contributions, simply multiply by \(\alpha_{s}(\sim 0.1)\) or by \(\alpha_{w}(\sim 0.03)\).

\section*{Enrico \＆Guido（questo lo leggete voi perché io mi commuovo troppo）：}

\section*{Caro Enrico il nostro è stato un lungo viaggio insieme}

1）Abbiamo collaborato per 35 anni
2）Scritto 71 pubblicazioni di cui 39 su riviste internazionali con referee
3）Ottenuto una media di 166，7 citazioni per pubblicazione

Model－independent constraints on \(\Delta F=2\) operators and the scale of new physics
UTfit Collaboration • M．Bona（Annecy，LAPP）et al．（Jul，2007）
Published in：JHEP 03 （2008） 049 • e－Print： 0707.0636 ［hep－ph］
（ a pdf
（e）DOI
区 cite
Fob claim
园 reference search
\(\rightleftharpoons 624\) citations

The Delta S＝ 1 effective Hamiltonian including next－to－leading order QCD and QED corrections Marco Ciuchini（Rome，ISS and Rome U．and INFN，Rome），E．Franco（Rome U．and INFN，Rome），G．Martinelli（Rome U．and INFN， Rome and Ecole Normale Superieure），L．Reina（Brussels U．）（Apr，1993）
Published in：Nucl．Phys．B 415 （1994）403－462 • e－Print：hep－ph／9304257［hep－ph］
（ pdf
（2）DOI
区 cite
Eo claim
居 reference search

The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD：A
Reappraisal after the Measurements of Delta m（s）and BR（B－－－＞tau nu（tau））
UTfit Collaboration－M．Bona（Annecy，LAPP）et al．（Jun，2006）
Published in：JHEP 10 （2006） 081 • e－Print：hep－ph／0606167［hep－ph］
［ pdf
© DOI
巨 cite
屏 claim
居 reference search
\(\rightleftharpoons 462\) citations

2000 CKM triangle analysis：A Critical review with updated experimental inputs and theoretical \＃4 parameters
Marco Ciuchini（Rome III U．and INFN，Rome3），G．D＇Agostini（Rome U．and INFN，Rome），E．Franco（Rome U．and INFN，Rome），V． Lubicz（Rome III U．and INFN，Rome3），G．Martinelli（Rome U．and INFN，Rome）et al．（Dec，2000）

Published in：JHEP 07 （2001） 013 • e－Print：hep－ph／0012308［hep－ph］
［ pdf © DOI
E cite
因 claim
居 reference search
\(\rightleftharpoons 451\) citations

The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model


Ma più che il successo scientifico ci manca e ci mancherà:
La tua vivace intelligenza
La tua curiosità scientifica e il pronto interesse per qualunque problema discutessimo

La tua serena ironia e senso dell'umorismo

Il tuo garbo, educazione, gentilezza e umanità nei riguardi di tutti, ed in particolare dei tuoi colleghi

> Grazie per tutto quanto ci hai dato e che porteremo per sempre con noi```

