Time-dependent and eikonal approximations to analyse breakup of halo nuclei

Pierre Capel
ULB, Belgium
Breakup reaction

Breakup used to study exotic nuclear structures e.g. halo nuclei: halo dissociates from core by interaction with target.

Coulomb breakup used to infer radiative-capture rates of astrophysical interest \([^7\text{Be}(p,\gamma)^8\text{B}, ^{14}\text{C}(n,\gamma)^{15}\text{C}, \ldots]\)

Outline

- Description of breakup models: CDCC, time-dependent (TD), eikonal (DEA)
- Comparison.
 - When and why chose a particular model?
Framework

Projectile \((P) \) modelled as a two-body system: core \((c) \)+loosely bound **neutron** \((n) \) described by

\[
H_0 = T_r + V_{cn}(r)
\]

\(V_{cn} \) adjusted to reproduce bound state \(\Phi_0 \) and resonances

Target \(T \) seen as structureless particle

\(P-T \) interaction simulated by optical potentials

⇒ breakup reduces to **three-body** scattering problem:

\[
\left[T_R + H_0 + V_{cT} + V_{nT} \right] \Psi(R, r) = E_T \Psi(R, r)
\]

with initial condition \(\Psi(r, R) \xrightarrow{Z \to -\infty} e^{ikZ} + \ldots \Phi_0(r) \)
Solve the three-body scattering problem:

\[
[T_R + H_0 + V_{cT} + V_{nT}] \Psi(r, R) = E_T \Psi(r, R)
\]

by expanding \(\Psi \) on eigenstates of \(H_0 \):

\[\Psi(r, R) = \sum_i \chi_i(R) \Phi_i(r) \quad \text{with} \quad H_0 \Phi_i = \epsilon_i \Phi_i\]

Leads to set of coupled-channel equations (hence CC)

\[
[T_R + \epsilon_i + V_{ii}] \chi_i + \sum_{j \neq i} V_{ij} \chi_j = E_T \chi_i,
\]

with \(V_{ij} = \langle \Phi_i | V_{cT} + V_{nT} | \Phi_j \rangle \)

The continuum has to be discretised (hence CD)

[Tostevin, Nunes, Thompson, PRC 63, 024617 (2001)]

Fully quantal approximation

No approx. on \(P-T \) motion, no restriction on energy

But expensive computationally (at high energies)
Time-dependent model

$P-T$ motion described by classical trajectory $R(t)$

[Esbensen, Bertsch and Bertulani, NPA 581, 107 (1995)]

P structure described quantum-mechanically by H_0

Time-dependent potentials simulate $P-T$ interaction

Leads to the resolution of time-dependent Schrödinger equation (TD)

$$i\hbar \frac{\partial}{\partial t} \Psi(r, b, t) = [H_0 + V_{cT}(t) + V_{nT}(t)]\Psi(r, b, t)$$

Solved for each b with initial condition $\Psi \rightarrow \Phi_0$

Many programs have been written to solve TD

Lacks quantum interferences between trajectories
Dynamical Eikonal Approximation

Three-body scattering problem:

\[[T_R + H_0 + V_{cT} + V_{nT}] \Psi(\mathbf{r}, \mathbf{R}) = E_T \Psi(\mathbf{r}, \mathbf{R}) \]

with condition \(\Psi \xrightarrow{Z \to -\infty} e^{iKZ} \Phi_0 \)

Eikonal approximation: factorise \(\Psi = e^{iKZ} \hat{\Psi} \)

\(T_R \Psi = e^{iKZ} [T_R + vP_Z + \frac{\mu PT}{2} v^2] \hat{\Psi} \)

Neglecting \(T_R \) vs \(P_Z \) and using \(E_T = \frac{1}{2} \mu PT v^2 + \epsilon_0 \)

\[i\hbar v \frac{\partial}{\partial Z} \hat{\Psi}(\mathbf{r}, \mathbf{b}, Z) = [H_0 - \epsilon_0 + V_{cT} + V_{nT}] \hat{\Psi}(\mathbf{r}, \mathbf{b}, Z) \]

solved for each \(\mathbf{b} \) with condition \(\hat{\Psi} \xrightarrow{Z \to -\infty} \Phi_0(\mathbf{r}) \)

This is the dynamical eikonal approximation (DEA)

[Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

Same equation as TD with straight line trajectories
Comparison of CDCC, TD, and DEA

[PC, Esbensen, and Nunes, accepted in PRC]

dσ_{bu}/dE

d$\sigma_{bu}/d\Omega$

All models agree
Data: [Nakamura et al.
PRC 79, 035805 (2009)]

DEA agrees with CDCC
TD reproduces trend
but lacks oscillations
$^{15}\text{C} + \text{Pb} \ @ \ 20\text{AMeV}$

$d\sigma_{\text{bu}}/dE$

$d\sigma_{\text{bu}}/d\Omega$

TD \equiv **CDCC**

DEA too high

TD gives trend of **CDCC**

(lacks oscillations)

DEA peaks too early

DEA\neqCDCC due to Coulomb deflection

(TD straight lines)
Comparison

<table>
<thead>
<tr>
<th></th>
<th>CDCC</th>
<th>TD</th>
<th>DEA</th>
<th>Eikonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coulomb bu</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>diverges</td>
</tr>
<tr>
<td>nuclear bu</td>
<td>ok</td>
<td>no</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>Energy</td>
<td>all</td>
<td>all(?)</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Observables</td>
<td>all</td>
<td>$\int d\theta$</td>
<td>all</td>
<td>all</td>
</tr>
<tr>
<td>CPU time (for this test)</td>
<td>long</td>
<td>short</td>
<td>short</td>
<td>very short</td>
</tr>
<tr>
<td>RAM</td>
<td>64 GB</td>
<td>desktop</td>
<td>400 MB</td>
<td>desktop</td>
</tr>
</tbody>
</table>

Other reactions

<table>
<thead>
<tr>
<th>Other reactions</th>
<th>CDCC</th>
<th>TD</th>
<th>DEA</th>
<th>Eikonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>stripping</td>
<td>maybe</td>
<td>no</td>
<td>maybe</td>
<td>ok</td>
</tr>
<tr>
<td>transfer</td>
<td>maybe</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Conclusion and outlook

Good understanding of reaction process
Next step: improving projectile description
CDCC is by no means the only one reaction model
TD and DEA (and eikonal) are reliable (within their range of validity) AND are faster
⇒ use them to improve description of the projectile:
- core excitation
- two-neutron haloes (cf. E. C. Pinilla Beltran’s poster)
- microscopic description

Range of validity can be extended
- describe stripping with CDCC (cf. K. Minomo’s talk)
- low-E Coulomb breakup within DEA
Thanks to my collaborators

Filomena Nunes
Daniel Baye
Mahir Hussein
Ron Johnson
Henning Esbensen
Ian Thompson