FIRST MEASUREMENT WITH TROJAN HORSE METHOD USING RADIOACTIVE ION BEAM

$^{18}\text{F} + p \rightarrow ^{15}\text{O} + \alpha \ @ \ CRIB$

MARISA GULINO
INFN,LNS, CATANIA, ITALY
UNIVERSITÀ DI ENNA “KORE”, ENNA, ITALY

DREB 2012 - Direct Reactions with Exotic Beams
Pisa, 26-29 March 2012
Summary

- Astrophysical motivations & State of Art
- Indirect measurement by Trojan Horse Method
- Experimental set-up → new apparatus for RIB application
- Data Analysis and preliminary results
Astrophysical motivations

- Gamma-ray emission of energy 511keV from novae is dominated by the positron annihilation following the β^+ decay of unstable nuclei
- ^{18}F is especially important because
 - It is produced relatively abundantly
 - Its lifetime of ~ 158 min is well matched to the timescale for nova ejecta to become transparent to γ-ray emission
- The $^{18}\text{F}(p,\alpha)^{15}\text{O}$ reaction influence the ^{15}O production considered as a key isotope for the escape from the hot-CNO cycle to the rp-process

\[^{18}\text{F}(p,\alpha)^{15}\text{O} \]

S(E) dominated by several resonances of ^{19}Ne
State of Art

Many experiments performed using 18F beam @ ARGONNE - ATLAS LLN ORNL TRIUMF GANIL- SPIRAL RIKEN – CRIB TAMU

Direct measurements → thick target method
Indirect measurement → (d,p) (d,n) stripping reaction

Most recent references:

D. J. Mountford et al PHYSICAL REVIEW C 85, 022801(R) (2012)
“Resonances in 19Ne with relevance to the astrophysically important 18F(p,α)15O reaction.”

A. S. Adekola et al. PHYSICAL REVIEW C 83, 052801(R) (2011)
“First proton-transfer study of 18F + p resonances relevant for novae”

C. E. Beer et al. PHYSICAL REVIEW C 83, 042801(R) (2011)
“Direct measurement of the 18F(p,α)15O reaction at nova temperatures”
New measurement @ CRIB by using the Trojan Horse Method

\[A \ (x+s) + B \rightarrow C + D + S \]

\[B + x \rightarrow C + D \]

\[E_{BA} > E_C \]

\[E_{BA} = A-B \text{ relative energy} \]

\[E_C = A-B \text{ Coulomb Barrier} \]

\[E_{Bx} = E_{CD} - Q^{2\text{Body}}_{\text{pcp}} \]

\[^{18}F + d \rightarrow ^{15}O + \alpha + n \]

\[^{18}F + p \rightarrow ^{15}O + \alpha \]

DREB 2012 - Direct Reactions with Exotic Beams
TURNING THE IDEA INTO PRACTICE

Assuming the QF mechanism is dominant the process can be represented in Feynman diagrams

Three body reaction \begin{align*}
\begin{array}{c}
A \\
\downarrow \ x \\
\downarrow C \\
B \\
\end{array}
\rightarrow
\begin{array}{c}
S \\
\downarrow \ x \\
\downarrow D \\
C \\
\end{array}
\end{align*}

Virtual decay \begin{align*}
\begin{array}{c}
A \\
\downarrow \\
S \\
\end{array}
\end{align*}

Virtual reaction \begin{align*}
\begin{array}{c}
x \\
\downarrow \\
C \\
\end{array}
\end{align*}

Half off-shell (astrophysical process)

In PWIA:

\[\frac{d^3 \sigma}{d\Omega_C \; d\Omega_B \; dE_C} = K F \cdot |\Phi (P_s)|^2 \times \frac{d\sigma}{d\Omega} \]

Measured at high energy

Calculated e.g. Montecarlo

Deduced

Need direct data for normalization

\[E_{Bx} = E_{CD} - Q^{2\text{body}} \]
“Plus” of the TH methods

1) Typical QF process cross sections (mbarn/sr) though measuring astrophysical ones

2) The TH cross sections is the purely NUCLEAR one: no Coulomb barrier effects

3) No electron screening effects: an INDEPENDENT piece of information can be obtained on the electron screening potential U_e by comparison to direct data

4) Can be extended to use QFR for studying NEUTRON induced reactions (VNM Virtual Neutron Method)

“Minus” of the TH methods

1) Competition between QF and other reaction mechanisms: identification of the convenient kinematical conditions may need more than one experiment run

2) Some dependence on theoretical models

3) Need of direct data at higher energies for normalization

BEAM PRODUCTION

$^1^8$O$(p,n)^{1^8}$F

18O$^+8$ @ 4.5-5 MeV/A from AVF cyclotron

gas target 2H

Double-achromatic magnetic separator

Scattering chamber

Wien filter

CRIB set-up

DREB 2012 - Direct Reactions with Exotic Beams
18F beam development

<table>
<thead>
<tr>
<th>Year</th>
<th>BTU type</th>
<th>Prod. Target type</th>
<th>Peak intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Beam dev</td>
<td>Room temp.</td>
<td>$\sim 10^5$</td>
</tr>
<tr>
<td>2007</td>
<td>Thick target experiment</td>
<td>Liquid N cooled</td>
<td>5×10^5</td>
</tr>
<tr>
<td>2008</td>
<td>Trojan Horse experiment</td>
<td>Liquid N cooled</td>
<td>$> 10^6$</td>
</tr>
</tbody>
</table>

Primary beam: 18O $^{8+}$, 4.5-5 MeVA

Production target: H_2

Production reaction: 18O(p,n)18F

BEAM PURITY > 98%

$E_{\text{beam}} = 48.7$ MeV

$\sigma = 0.8$ MeV
EXPERIMENTAL SETUP

(Other than CRIB.....)

ASTRHO: Array of Silicons for TRojan HOrse

Beam @PPAC
2.4 \(\cdot 10^6 \) pps
48.7 ± 0.8 MeV

Beam track reconstruction
event by event

PPAC MCP CD2
In order to allow for the optimization of the two experiments ASTRHO and the DSSSD were hosted in a mechanical system that allowed for easy movement of the detector holder plates.
EXPERIMENTAL SETUP

How ASTRHO looks like in reality
(before PPAC explosion...)

DREB 2012 - Direct Reactions with Exotic Beams
Beam track reconstruction event by event

xppc1

yppc1

xppc2

yppc2

xt

yt

y

θ_1

θ_2

BEAM TRACKER

PPAC

MCP

target

DSSiSD

DPSSD

BEAM TRACKER

x

y

z

DREB 2012 - Direct Reactions with Exotic Beams
CUTS:

- Event multiplicity = 2
- $|T_2 - T_1| \leq 0$
- $E1 > 20$ MeV

Q-VALUE SPECTRUM

$^{18}F+d \rightarrow ^{15}N + \alpha + p \ @ \ q = 4.194$ MeV

$^{18}F+d \rightarrow ^{15}O + \alpha + n \ @ \ q = 0.658$ MeV

$^{18}F+d \rightarrow ^{18}O + p + p \ @ \ q = 0.213$ MeV

$^{18}F+d \rightarrow ^{18}F + p + n \ @ \ q = -2.225$ MeV
EVENT SELECTION

Red: $^{18}F + d \rightarrow ^{15}N + \alpha + p$
Black: $^{18}F + d \rightarrow ^{15}O + \alpha + n$
Blue: $^{18}F + d \rightarrow ^{18}F + p + n$
Green: $^{18}F + d \rightarrow ^{18}O + p + p$

“1”+“2”+“3”
CUTS:

- Event multiplicity = 2
- $|T_2 - T_1| \approx 0$
- $E_1 > 20$ MeV
- Correlation $E_{13} - E_{12}$
- Correlation $E_1 - \theta_1$

GOOD AGREEMENT with

- q-value expected position (0.658 MeV)
- and beam profile (exp. Sigma 0.8 MeV)
HINTS FOR QF MECHANISM

If the quasi-free mechanism is predominant

\[
\frac{d^3\sigma}{d\Omega_{^1S_0} d\Omega_{\alpha} dE_{\alpha}} \propto K F \left| \Phi(p_s) \right|^2 \cdot \frac{d\sigma^N}{d\Omega}
\]

Minimum of \(p_s \)

Counts

10<\(p_s <40 \) (MeV/c)

40<\(p_s <70 \) (MeV/c)

70<\(p_s <100 \) (MeV/c)

\(E_{^{15}O} \) (MeV)

Hulten function

DREB 2012 - Direct Reactions with Exotic Beams
BARE NUCLEUS CROSS SECTION

FIRST TROJAN HORSE experiment with RIB !!!

DREB 2012 - Direct Reactions with Exotic Beams
Conclusions and Perspective

- THM was successfully applied to radioactive ion beam induced reaction

- The beam is tracked event by event and the kinematical variables were consequently reconstructed

- The preliminary results showed the possibility to study the cross section of the $^{18}\text{F}(p,a)^{15}\text{O}$ reaction and extract complementary information on $S(E)$ factor → (work in progress)

- Increase statistic and confirm the results with a second experimental run

- Possibility to measure the $^{18}\text{F}(n,a)^{15}\text{N}$ reaction
BARE NUCLEUS CROSS SECTION

DREB 2012 - Direct Reactions with Exotic Beams
Trojan Horse for Resonance Reactions

HALF OFF-SHELL

\[
\frac{d^2\sigma^{TH}}{d\Omega_{k_F} dE_{CC}} = \frac{1}{2\pi} \frac{\Gamma_{cc}(E_{cc})}{(E_{cc} - E_{Re_c})^2 + \frac{1}{4}\Gamma^2(E_{cc})} \times \frac{d\sigma_{(a+A\rightarrow s+F)}}{d\Omega_{k_F}},
\]

ON-SHELL

\[
\sigma_{(x+A\rightarrow c+C)}^{R} = \frac{\pi}{k_{xA}^2} \frac{\hat{j}_F}{\hat{j}_A \hat{j}_a} \frac{\Gamma_{cc}(E_{cc}) \Gamma_{xA}(E_{xA})}{(E_{cc} - E_{Re_c})^2 + \frac{1}{4}\Gamma^2(E_{cc})}.
\]

\[
\Gamma_{xA}(E_{xA}) = 2 P_l(E_{xA}, r_0) \gamma_{xA}^2,
\]

Penetrability

Independent from spectroscopic factor value
Collaborators

A. Coc, F. Hammache, N. de Sereville

S. Kubono, H. Yamaguchi, S. Hayakawa, Y. Wakabayashi

T. Komatsubara, N. Iwata, T. Teranishini
CUTS

DREB 2012 - Direct Reactions with Exotic Beams