Dynamical limits of nucleon knockout at intermediate energy.

F. Flavigny1,2

1CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, Gif sur Yvette, France.

2Instituut voor Kernen Stralingsfysica, K. U. Leuven, Belgium.

DREB conference, 25-29th March 2012, Pisa
Shell occupancies in stable nuclei

(e,e’p) reactions
- electromagnetic probe
- 30-40% reduction
- Beyond mean-field correlations

No binding energy dependance
- Deeply bound orbitals, \(0.78 \pm 0.02 \pm 0.08\).

Agreement between (d, \(^3\)He) and (e,e’p)

Reminder : Shell occupancies are not observables / SF are model dependent (R. J. Furnstahl, H. W. Hammer, PLB 531 203 (2002)).
Deeply-bound nucleon knockout from exotic nuclei

Intermediate energy knockout

Disagreement between theory and experiment:

Possible sources:

⇒ The calculated shell occupancies $C^2 S$.
⇒ The single particle cross section σ_{sp}.

$$\sigma_{th} \propto C^2 S_{th} \cdot \sigma_{sp}^{th}$$
Deeply-bound nucleon knockout from exotic nuclei

Intermediate energy knockout

Disagreement between theory and experiment:
Possible sources:
⇒ The calculated shell occupancies $C^2 S$.
⇒ The single particle cross section σ_{sp}.

$$\sigma_{th} \propto C^2 S_{th} \cdot \sigma_{sp}^{sp}$$

Low energy transfer (d,p)
⇒ Constant reduction $\simeq 30\%$
⇒ Limited ΔS range up to $\simeq 12$ MeV
Outline

Question

What are the limits of standard eikonal + sudden approaches?
Outline

Question

What are the limits of standard eikonal+sudden approaches?

Experimental investigation

- One-nucleon knockout from ^{16}C and ^{14}O, NSCL

- One-nucleon transfer from ^{14}O at SPIRAL, GANIL
Outline

Question

What are the limits of standard eikonal+sudden approaches?

Experimental investigation

- One-nucleon knockout from 16C and 14O, NSCL

- One-nucleon transfer from 14O at SPIRAL, GANIL
Outline

Question

What are the limits of standard eikonal+sudden approaches?

Experimental investigation

- One-nucleon knockout from 16C and 14O, NSCL

- One-nucleon transfer from 14O at SPIRAL, GANIL

Interpretation

- Beyond the ”sudden approximation” dynamics.

- Core-target excitations in deeply-bound nucleon removal
 C. Louchart, A. Obertelli, A. Boudard, and F. Flavigny, PRC 83 011601 (2011)
Primary beam: \(^{18}\text{O}\) (120 MeV/nucleon)

Secondary beams:

- \(^{16}\text{C}\) beam at 70 MeV/nucleon
- \(^{14}\text{O}\) beam at 53 MeV/nucleon

Cocktail beam from A1900

\(<I> \approx 5.10^5\) pps
Inclusive parallel momentum distributions and cross sections

Loosely-bound nucleon

\[\frac{d\sigma}{dp_{\parallel}} \left(\text{mb} \times (20 \text{ MeV/c}) \right) \]

\[16\text{C} (-1n) \]

\[14\text{O} (-1p) \]

Deeply-bound nucleon

\[E = 75 \text{ MeV/u} \]

\[E = 53 \text{ MeV/u} \]
Inclusive parallel momentum distributions and cross sections

Loosely-bound nucleon

\[\sigma(16\text{C} -1n) = 80(7)^* \text{ mb} \]
\[\sigma(14\text{O} -1p) = 64(6) \text{ mb} \]

Deeply-bound nucleon

\[\sigma(16\text{C} -1p) = 15(1) \text{ mb} \]
\[\sigma(14\text{O} -1n) = 14(1) \text{ mb} \]

*\[\sigma(16\text{C} -1n) = 77(9) \text{ mb at 62 MeV/u} \]

V. Maddalena et al., PRC 63 (2001) 024613
Inclusive parallel momentum distributions and cross sections

Loosely-bound nucleon

- $^{16}\text{C} (-1n)$
- $^{14}\text{O} (-1p)$

<table>
<thead>
<tr>
<th>p_{\parallel} (MeV/c)</th>
<th>$d\sigma / dp_{\parallel}$ (mb*(20 MeV/c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>5400</td>
</tr>
<tr>
<td>0,5</td>
<td>5600</td>
</tr>
<tr>
<td>1,0</td>
<td>5800</td>
</tr>
<tr>
<td>1,5</td>
<td>6000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{\parallel} (MeV/c)</th>
<th>$d\sigma / dp_{\parallel}$ (mb*(20 MeV/c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>3600</td>
</tr>
<tr>
<td>0,5</td>
<td>3800</td>
</tr>
<tr>
<td>1,0</td>
<td>4000</td>
</tr>
<tr>
<td>1,5</td>
<td>4200</td>
</tr>
</tbody>
</table>

Deeply-bound nucleon

- $E = 75\text{ MeV/u}$
- $E = 53\text{ MeV/u}$

$\sigma^{(16}\text{C} -1n) = 80(7)^*\text{ mb}$
$\sigma^{(14}\text{O} -1p) = 64(6)\text{ mb}$

$\sigma^{(16}\text{C} -1p) = 15(1)\text{ mb}$
$\sigma^{(14}\text{O} -1n) = 14(1)\text{ mb}$

$^*\sigma^{(16}\text{C} -1n) = 77(9)\text{ mb at 62 MeV/u}$

V. Maddalena et al., PRC 63 (2001) 024613
High-momentum cutoff

Parallel momentum of the residue ^{A-1}X

$$P_{//} = \sqrt{(T_p - S_n - \epsilon_f)^2 + 2M_r(T_p - S_n - \epsilon_f)}$$

T_p : initial kinetic energy of the projectile (beam)
S_n : separation energy of the removed nucleon
ϵ_f : final energy of the nucleon with respect to the target

→ Momentum threshold p_{max} for $\epsilon_f = 0$

A. Bonnacorso, PRC 60, 054604 (1999)
High-momentum cutoff

Parallel momentum of the residue ^{A-1}X

$$P_{\parallel} = \sqrt{(T_p - S_n - \epsilon_f)^2 + 2M_r(T_p - S_n - \epsilon_f)}$$

- T_p: initial kinetic energy of the projectile (beam)
- S_n: separation energy of the removed nucleon
- ϵ_f: final energy of the nucleon with respect to the target

\rightarrow Momentum threshold p_{max} for $\epsilon_f = 0$

A. Bonnacorso, PRC 60, 054604 (1999)

Comparison to experimental data

$T_p = 75$ MeV/u
$S_n = 22.6$ MeV
$p_{\text{max}} = 5804$ MeV/c

16C (-1p)
14O (-1n)

$T_p = 53$ MeV/u
$S_n = 23.2$ MeV
$p_{\text{max}} = 4042$ MeV/c
High momentum cutoff: existing data

A. Gade et al. PRC 71 (2005) 051301.

E(46Ar) = 70 MeV/u

E(28S) = 81 MeV/u

E(24Si) = 85 MeV/u

E(10C) = 120 MeV/u

"Barely visible" effect in published data
High momentum cutoff: existing data

$E^{(14}\text{O}) = 53 \text{ MeV/u}$

![Graph of $^{14}\text{O} (-1n)$](image)

$E^{(46}\text{Ar}) = 70 \text{ MeV/u}$

![Graph of ^{46}Ar](image)

$E^{(16}\text{C}) = 75 \text{ MeV/u}$

![Graph of $^{16}\text{C} (-1n)$](image)

$E^{(28}\text{S}) = 81 \text{ MeV/u}$

![Graph of $^{28}\text{S} (-1n)$](image)

$E^{(24}\text{Si}) = 85 \text{ MeV/u}$

![Graph of $^{24}\text{Si} (-1n)$](image)

$E^{(10}\text{C}) = 120 \text{ MeV/u}$

![Graph of $^{10}\text{C} (-1p)$](image)

A. Gade et al. PRC 71 (2005) 051301.

"Barely visible" effect in published data
Dynamical limit for nucleon knockout

\[P_{/\parallel} = \sqrt{(T_p - S_n - \varepsilon_f)^2 + 2M_r(T_p - S_n - \varepsilon_f)} \]

\[p_{\text{max}} = P_{/\parallel}(\varepsilon_f = 0) \]

\[\delta p(E_p, S_n) = p_{\text{max}} - p_0 \]

F. Flavigny et al., in preparation (2012)
Transfer to the continuum model

Intrinsic momentum of the removed neutron + Energy dependent \((n+^9\text{Be})\) potential

Properties

- Transfer from initial neutron bound state to continuum neutron-target state.
- Generalization of a semi-classical method.
- Contain energy and momentum conservation

Inputs

- Neutron bound-state \(\text{wf} \) (HF constraint)
- Core-target \(S\)-matrix (same as model 1)
- \(n+^9\text{Be}\) pot. (fitted on cross section data)
Transfer to the continuum model

Intrinsic momentum of the removed neutron + Energy dependent (n+^9 Be) potential

Properties
- Transfer from initial neutron bound state to continuum neutron-target state.
- Generalization of a semi-classical method.
- Contain energy and momentum conservation

Inputs
- Neutron bound-state wf (HF constraint)
- Core-target S-matrix (same as model 1)
- n+^9 Be pot. (fitted on cross section data)

Limits
- Restricted to neutron removal
- No breakup of ^9 Be target
- No final state interactions

A. Bonnacorso and D Brink, PRC 43 299 (1991)
A. Bonnacorso and G. M. Bertsch, PRC 63 04604 (2001)
\(\gamma \)-ray spectroscopy of \(^{15}\)B : dissipative processes

\[\begin{align*}
\sigma_{gs}(-1p) &= 18.3 \pm 2.2 \text{ mb} \\
\sigma_{5/2^-}(-1p) &= 1.3(2) \text{ mb} \\
\sigma_{7/2^-}(-1p) &= 0.8(1) \text{ mb} \\
\sigma(-1p) &= 20.4 \pm 2.2 \text{ mb}
\end{align*} \]
Questioning the "inert core" approximation

Intra Nuclear Cascade model (INC)

\[\sigma_{th} = \sigma_{casc} + \sigma_{evap} \]

Structure inputs:
- HF neutron and proton densities.
- Spectroscopic factors.

C. Louchart, A. Obertelli, A. Boudard, and F. Flavigny, PRC 83 011601 (2011)

Deeply-bound nucleon removal:
- **Core excitations** deplete the one-nucleon removal channel.
- Call for **exclusive measurements**, along the line of D. Bazin *et al.*, PRL 102 232501 (2009).
Summary and Conclusion

Loosely-bound nucleon knockout

- Good agreement between th. and exp.
 - $R_s \simeq 0.8-0.9$.
 - Mom. distributions in agreement with eikonal predictions.

Deeply-bound nucleon knockout

- Strong deviations from eikonal/sudden picture
 - $R_s \simeq 0.2-0.3$.
 - High-momentum cutoff \rightarrow Kinematical effect (E,S_n)
 - Important low-energy tail \rightarrow Hypothesis: Dissipation, core-target int.
 - Indirect population of excited states.

Determination of dynamical limits for nucleon knockout

Role of indirect processes in the mechanism questioned
Outlook

Comparison with transfer results on 14O in GANIL

See A. Gillibert’s talk tomorrow!

Exclusive measurement at RCNP (2013)

- 12C(14O,13O+X)
 - Population of unbound states in 13O (proton detection)
- 1H(14O,13O) and 1H(14O,13N)
 - Proton induced nucleon breakup

Spokespersons: J. Lee, A. Obertelli, Y. Ye.
Co-authors:

A. Obertelli, C. Louchart, L. Nalpas (CEA-Saclay, SPhN)
A. Bonnacorso (INFN, Pisa)

Many thanks for support in data taking and fruitful discussions to:

D. Bazin, T. Baugher, B. A. Brown, A. Gade, T. Ginter, G. F. Grinyer, A. Ratkiewicz, S. Mc Daniel, D. Wheisshar (NSCL) and J. A. Tostevin (University of Surrey)