Neutron sd-shell excitations in exotic nuclei near $N=8$

1Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252, USA
2Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
4Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
5Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
6Department of Physics, University of Manchester
7LANSCE-NS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
8Lawrence Livermore National Laboratory, Livermore, California 94551, USA
Evolution of $1s_{1/2} - 0d_{5/2}$ splitting outside $N=8$

Gross behavior from p-n tensor attraction/repulsion

- ^{17}O: $\pi(p_{1/2})^2$, $S_n=4.144$
- ^{16}N: $\pi(p_{1/2})$, $S_n=2.49$
- ^{15}C: $\pi(p_{3/2})^4$, $S_n=1.22$
- ^{14}B: $\pi(p_{3/2})^3$, $S_n=0.97$
Neutron configurations around N=8

N=8 (13B)
Positive-parity states are $v(p_{1/2})^{-1}(sd) \otimes \pi(p_{3/2})^{-1}$

12B(d,p)13B
12B from 11B(d,p)
At 6 MeV/u

N=9 (14B)
Negative-parity states are $v(sd) \otimes \pi(p_{3/2})^{-1}$

13B(d,p)14B
13B from 14C(9Be,10B)
At 15.7 MeV/u

N=10 (16C)
Positive-parity states are $v(sd)^2 \otimes ^{14}$C

15C(d,p)16C
15C from 14C(d,p)
At 8.5 MeV/u
The HELIOS approach to inverse kinematics

We measure: E_{lab}, z, TOF

We deduce: E_{CM}, θ_{CM}

We deduce:

1. $E_{lab} = E_{CM} - A + Bz$
2. $\Delta E_{lab} = \Delta E_{CM}$

For a given state

For two states at fixed z
HELICAL ORBIT SPECTROMETER - HELIOS

$B_{\text{MAX}} = 2.85\ T$

2.35 m

0.9 m

BEAM

X-Y-\(\theta\) POSITIONING STAGE

SILICON ARRAY

TARGET

LASER RANGEFINDER

J. C. Lighthall et al, NIMPRA 622, 97 (2010)
Producing secondary beams: “In-flight” production at ANL*

Gas cell: D_2
1.4 Atm.

Primary 11B, 14C beam
1 X 10^{11} particles/sec

Focusing solenoid

Re/De-bunching resonator

Magnetic separator

Secondary beam to experiment

12B intensity ~ 6×10^5 /sec at 6.25 MeV/u
15C intensity ~ 1.5×10^6 /sec at 8.2 MeV/u

Producing secondary beams: “In-flight” production at ANL*

- Be foil 15 mg/cm²
- Primary ¹⁴C beam 1 x 10¹¹ particles/sec
- Focusing solenoid
- Re/De-bunching resonator
- Magnetic separator
- Secondary beam to experiment

¹³B intensity ~ 4 x 10⁴ /sec at 15.7 MeV/u

Physics of 13B

Lowest $l = 0, 2$

$\nu(p)^{-1}(sd)^{1}$ states in some $N=8$ nuclei

Study with 12B(d,p)13B

Increasing N/Z
First HELIOS RIB results with $^{12}\text{B}(d,p)^{13}\text{B}$

H. Y. Lee et al., PRC 81, 015802 (2010)

B. B. Back et al., PRL 104, 132501 (2010)
$^{11,12}\text{B}(d,p)^{12,13}\text{B}$ angular distributions

B. B. Back et al., PRL 104, 132501 (2010)
Theory versus experiment for 13B

Blue: L=0
Red: L=2

$5/2^+$ L=2 is reduced, no nearby $3/2^+$ is observed

B. B. Back et al., PRL 104, 132501 (2010)
Exotic behavior in 16C?

Valence neutrons

Core 16C

Study with 15C(d,p)16C

No hindrance, and no exotic behavior.
$^{15}\text{C}(d,p)^{16}\text{C}$ with HELIOS

Proton energy-position correlation

(d,p) samples the $\gamma(1s_{1/2})$ content of the wave functions for positive-parity states

^{16}C Excitation-energy spectrum

PRL 105, 132501 (2010)
$^{15}\text{C}(d,p)^{16}\text{C}$ angular distributions

Curves are DWBA calculations with various optical-model potentials.

Spectroscopic factors obtained from the average over four sets of OMP.

Relative uncertainties in SF dominated by OMP variations

Absolute uncertainty (~30%) from beam-integration uncertainty

PRL 105, 132501 (2010)
$^{15}\text{C}(d,p)^{16}\text{C}$

Spectroscopic factors

Excitation energies and relative spectroscopic factors from the shell model

Blue: $L=0$
Red: $L=2$

Agreement for SF is excellent!
No need for exotica

PRL 105, 132501 (2010)
Preliminary excitation-energy spectrum

\[^{13}\text{B}(d,p)^{14}\text{B} \]

- \(S_n = 0.969 \)
- \(3^- (1.38) \Gamma \leq 150 \text{ keV} \)
- \(4^- (2.08) \Gamma \sim 200 \text{ keV} \)
- Broad \(l=0 \) and 2 states expected with \(J^n=(0,1,2,3)^- \)

Red – \(^{14}\text{B}\)

Blue – \(^{13}\text{B}\)
Preliminary

13B($d,p)^{14}$B angular distributions

Blue: $L=0$
Red: $L=2$
Violet: $L=0 + L=2$

$2^-(0.00)$: $S_0=0.71$ $S_2=0.17$
$1^-(0.65)$: $S_0=0.96$ $S_2=0.06$
$3^-(1.38)$: $S_2=1.00$ (fixed)
$4^-(2.08)$: $S_2=1.00$

OMPs fit 30 MeV $d+^{12}$C, $p+^{12,13}$C elastic scattering
$^{13}\text{B}(d,p)^{14}\text{B}$

Spectroscopic factors

Excitation energies and relative spectroscopic factors from the shell model

Blue: $L=0, 1s_{1/2}$
Red: $L=2, 0d_{5/2}$

Reasonable agreement
But caveaet emptor!
Summary

• HELIOS provides a new approach to studying reactions in inverse kinematics
• Alleviates problems with light particle identification and gives improved excitation-energy resolution and straightforward determination of CM quantities
• Around N=8, \((d,p)\) nicely probes the evolution of the \(1s_{1/2}-0d_{5/2}\) orbitals and the p-n/n-n residual interactions
• \(^{14}\text{B}(1^-)\) \((S_n = .319\ \text{MeV})\) is mostly s-wave, so is as good or better a halo state than \(^{11}\text{Li}_{\text{g.s.}}\) or \(^{11}\text{Be}_{\text{g.s.}}\).
• Structure aspects seem reasonably well in hand, BUT: we still worry about DWBA and weakly (or un-) bound s states.
Acknowledgements

The HELIOS Collaboration

S. Bedoor, J. C. Lighthall, S. T. Marley, D. Shetty, J. R. Winkelbauer (SULI student), A. H. Wuosmaa

Western Michigan University

Argonne National Laboratory

S. J. Freeman

University of Manchester

Work supported by the U. S. Department of Energy, Office of Nuclear Physics, under contract numbers DE-FG02-04ER41320 (WMU) and DE-AC02-06CH11357 (ANL)

Also, special thanks to:

Advantages to the HELIOS approach for \((d,p)\)
Empirical $v(sd')^2$ residual interaction for O^+

$$|0_i^+\rangle = \alpha |(1s_{1/2})^2\rangle + \beta |(0d_{5/2})^2\rangle$$

$$|0_2^+\rangle = -\beta |(1s_{1/2})^2\rangle + \alpha |(0d_{5/2})^2\rangle$$

$$\alpha = \sqrt{S(0^+_i)\times[J_f]/[J_i]} = 0.55$$

$$\beta = \sqrt{S(0^+_2)\times[J_f]/[J_i]} = 0.84$$

$$\begin{pmatrix}
E^0_{1/2} + \delta_{1/2;1/2} & \delta_{1/2;3/2} \\
\delta_{1/2;5/2} & E^0_{5/2} + \delta_{5/2;3/2}
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix} = E_x
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}$$

Single-particle energies E^0 from 15C.

| $<j_1 j_2 |\nu |j'_1 j'_2>$ | $(1/2 \ 1/2, 1/2 \ 1/2)$ | $(5/2 \ 5/2, 5/2 \ 5/2)$ | $(1/2 \ 1/2, 5/2 \ 5/2)$ |
|----------------|------------------|------------------|------------------|
| Exp | -0.92(28) | -3.60(28) | -1.39(12) |
| LSF | -1.54 | -2.78 | -1.72 |
| WBP | -2.12 | -2.82 | -1.32 |

PRL 105, 132501 (2010)
^{13}B and friends... from $^{14}\text{C} + ^{9}\text{Be}$
\(^{13}\text{B}\) beam quality

From \(d(^{14}\text{C}, ^{13}\text{B})^{3}\text{He}\)

\(2 \times 10^4\) pps

From \(^{9}\text{Be}(^{14}\text{C}, ^{13}\text{B})^{10}\text{B}\)

\(4 \times 10^4\) pps
Recoil particle identification

\[E(\text{Residual}) \text{ (channels)} \]

\[\Delta E \text{ (channels)} \]

- ^{13}B
- ^{14}B
- ^{10}Be
- ^{11}Be
1s\textsubscript{1/2} and 0d\textsubscript{5/2} neutron form factors

Woods-Saxon potential, \(r_0 = 1.35 \), \(a = 0.6 \), \(V_0 \) adjusted for BE

s-wave tail may cause problems for DWBA!

But: Don’t forget history- $^{10}\text{Be}(d,p)^{11}\text{Be}$

L=0

$S_n = 0.503 \text{ MeV}$
No problem?!

L=1

$S_n = 0.183 \text{ MeV}$
No problem?!

Zwieglinski, Benenson, Robertson, Coker – NP A315, 124 (1979)
But: Don’t forget history-

\[S_n = 0.503 \text{ MeV} \]

No problem?!

\[S_n = 0.183 \text{ MeV} \]

No problem?!
(d,p) momentum mismatch at 0°

$(A_{tgt}=13)$

$\Delta q(1\hbar) \sim 65$ MeV/c
(d, p) momentum mismatch at 0°

\(A_{\text{tgt}} = 132 \)

\[\Delta q(1\hbar) \sim 30 \text{ MeV/c} \]
Single-particle widths for 13B+n
Spectrometer completed in August 2008
$^{28}\text{Si}(d,p)^{29}\text{Si}$: Seems to work!

J. C. Lighthall et al, NIMPRA 622, 97 (2010)
$^{28}\text{Si}(d,p)^{29}\text{Si}$ Excitation-energy spectrum

Typical resolution ~ 120 keV FWHM
Best resolution ~ 80 keV FWHM

J. C. Lighthall et al, NIMPRA 622, 97 (2010)
Towards $^{132}\text{Sn}(d,p)^{133}\text{Sn}$ with CARIBU

B. P. Kay et al, PRC in press
$^{19}\text{O}(d,p)^{20}\text{O}$: Further into the sd shell

C. R. Hoffman, Submitted to PRC
ν(sd) + ν(d_{5/2})^3_{5/2+} states in 20O
Proton beam impurity: p-d elastics
E vs Z, data and Monte-Carlo

Red: n bound, p14B
Green: n-unbound p13B

13B(d,p)14B in HELIOS
Ab initio nuclear structure simulations: The speculative 14F nucleus

P. Maris, 1 A. M. Shirokov, 1,2,* and J. P. Vary 1

FIG. 3. (Color online) Negative-parity 14B spectrum obtained with JISP16 at fixed $\hbar \Omega = 25$ MeV in successive basis spaces and extrapolated to infinite basis space using extrapolation B. Experimental (exp.) data are taken from Ref. [13].
Simple considerations for $^{12}\text{B}(d,p)^{13}\text{B}$

+ parity states are p-h excitations out of the p shell
Simple considerations for 15C($d,p)^{16}$C

(d,p) samples $\nu(1s_{1/2})$ content of states in 16C
Simple considerations for $^{13}\text{B}(d,p)^{14}\text{B}$

(d,p) populates single-neutron states in ^{14}B
HELIcal Orbit Spectrometer - HELIOS

$B_{\text{MAX}} = 2.85 \text{T}$

J. C. Lighthall et al, NIMPRA 622, 97 (2010)
This you have seen...
But maybe not this...
Lowest $l=0,2$ $\nu(sd)^1$ states in some $N=7$ nuclei

Physics of 13B

Increasing N/Z

Descent of the sd shell
Energy vs Position Boron gated
$^{13}\text{B}(d,p)^{14}\text{B}$

Spectroscopic factors

Excitation energies and relative spectroscopic factors from the shell model

Blue: $L=0, 1s_{1/2}$
Red: $L=2, 0d_{5/2}$

2$^-$ mixed $L=0+2$,
1$^-$ pure $L=0$

Reasonable agreement
But caveat emptor!
$^{13}\text{B}(d,p)^{14}\text{B}$

Spectroscopic factors

Excitation energies and relative spectroscopic factors from the shell model

Blue: $L=0, 1s_{1/2}$
Red: $L=2, 0d_{5/2}$

Reasonable agreement
But *caveat emptor*!
What's in your beam?

$^{15}\text{N} \sim 9 \times 10^3 / \text{s}$

$^{15}\text{C} \sim 1.5 \times 10^6 / \text{s}$