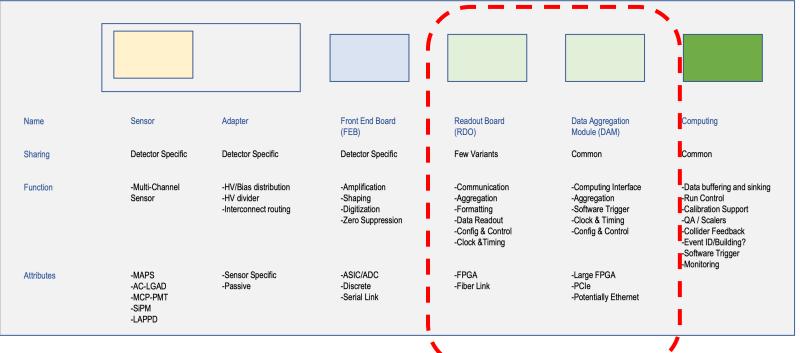


Readout & DAQ

Pietro Antonioli, Davide Falchieri

INFN Bologna


Reminder

EPIC Electronics / DAQ

Standard Component Names and Functions

This talk covers:

- RDO plans for 2024
- Updated RDO/DAQ scheme
- Plans for 2024/2025/2026
- Specs requirements

All for discussions!

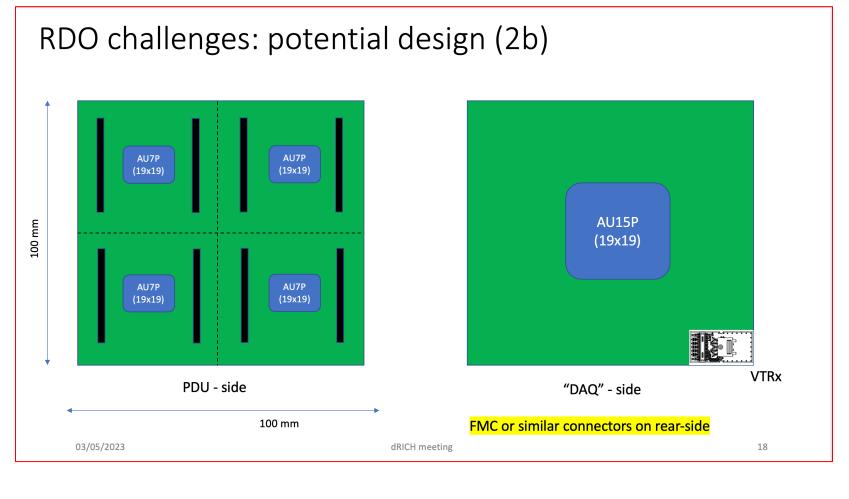
Miscellanea info towards RDO plans

During 2024 we need to build a prototype RDO card ("close to final") where we demonstrate:

- We can fit within space
- We start talking with ePIC DAQ ("FELIX based")
- We are able to serve 2023 electronics (old ALCOR32/old FEB with FireFly connectors)
- We operate test beam 2024 (October) with optical link readout

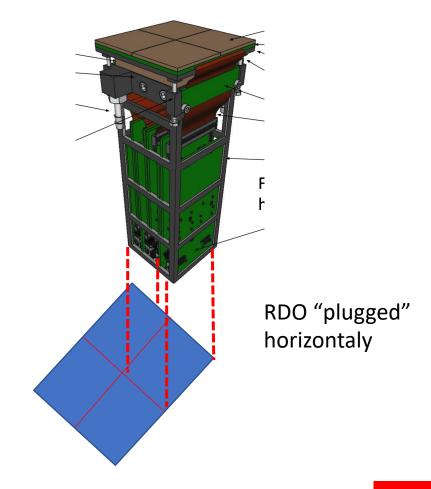
The exercise must aim:

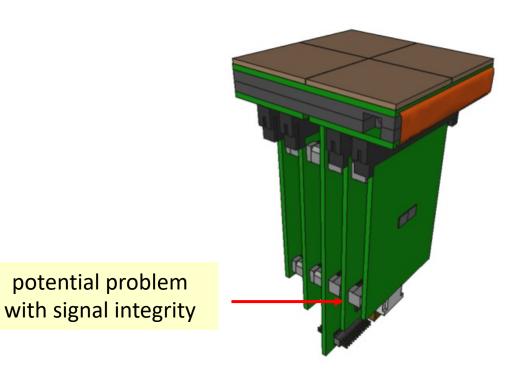
To fully define specs of RDO (possibly by December 2023)


To select FPGA candidate (and it might include some radiation test)

To define ancillary services we need on RDO (LV, watchdog, ...) and communication

About throughput we had a chat with Elke recently that made clear an interaction tagger will be available. This can really save us a lot of complications on data reduction (and help us to correctly select RDO/DAQ resources).


Where we were (few weeks ago)

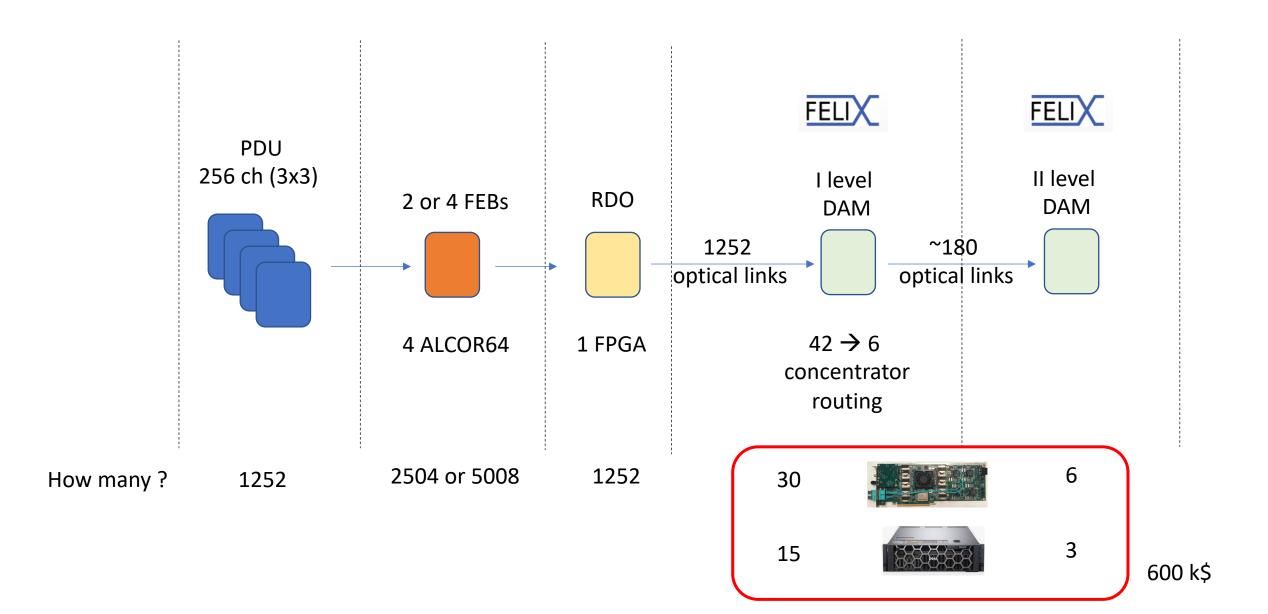

RDO made with two cards:

- slave RDO (for 1 FPU)
- a master RDO (aggregating 4 slave RDO)

Where we are now (checking dimensions)

from Roberto's drawings

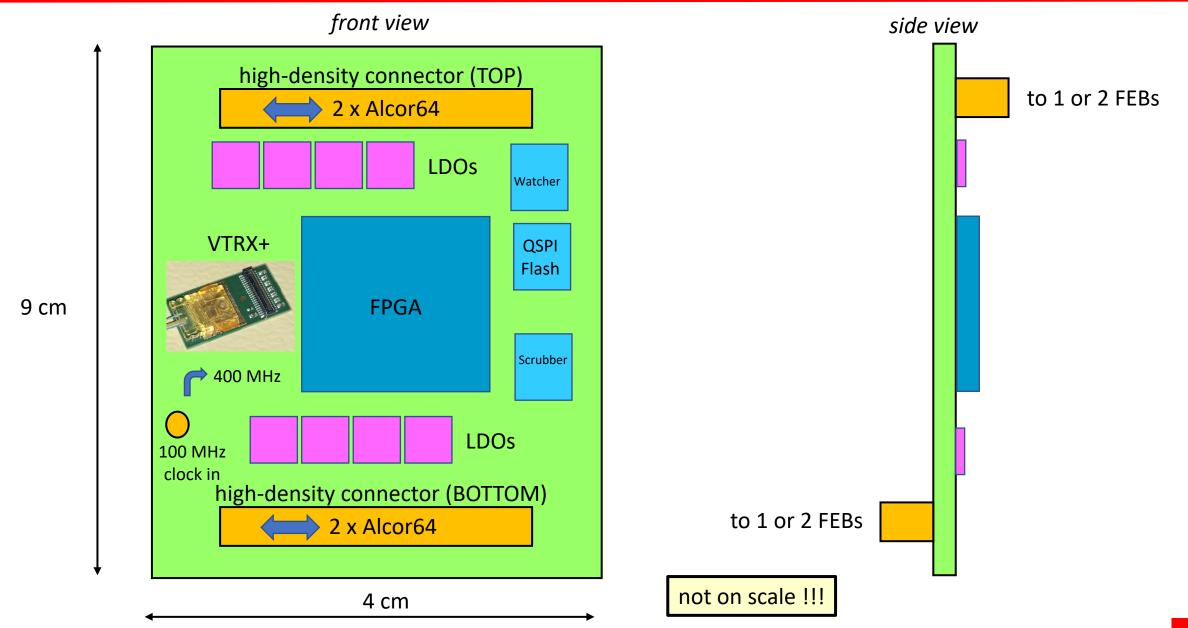
1 RDO + 4 FEBs (each FEB hosts 1 Alcor64)


potential problem

1 RDO and 2 FEBs (each FEB hosts 2 Alcor64)

RDO in the middle of FEB increases area! We desperately need area. In this way RDO is 4 x 9 cm

Where we are now (checking dimensions...)

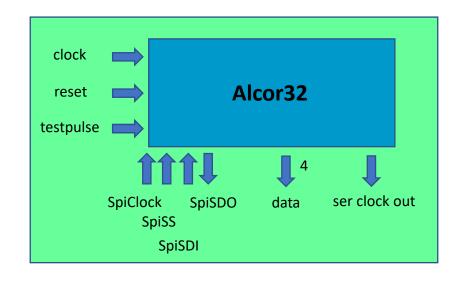


- We get rid of any hardware development for intermediate DAM ("more firmware, less hardware" approach)
- Space is a big challenge!
- Cost → to be done full assessment, but scenario with 312 links is not for free (and it entails, however 6-7 DAMs, 312 FPGA medium size, etc.)
- PDU very modular
- Less power consumption inside readout box
- We add cables, materials inside readout box

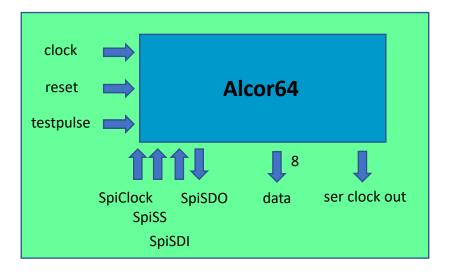
What to put on such RDO?

24/05/2023 Alcor Day RDO & DAQ

Missing specifications (to be worked out/discussed!)


- FEB-RDO "bus" (see next slide for ALCOR64) and connectors
- LV towards FEB: LDO only on RDO?
- Control of MOSFET for annealing
- Connectors for DAQ
- Connectors for LV
- Connectors for HV
- LV control bus → power supply?
- **FPGA**: we are targeting Artix Ultrascale+ or PolarFire. There are pros/cons to be explored. Xilinx generally better on performance (including on link data out) and development tools. PolarFire likely better on rad tol. Not for today discussion.
- Bologna will have soon a "development board" with PolarFire (ALICE/TRM2 project + ALICE3/SiPM readout)

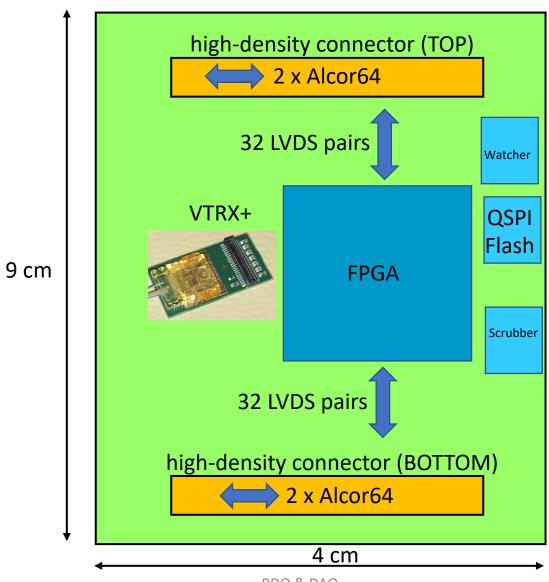
The ALCOR64 bus



What can we share on a ALCOR64?

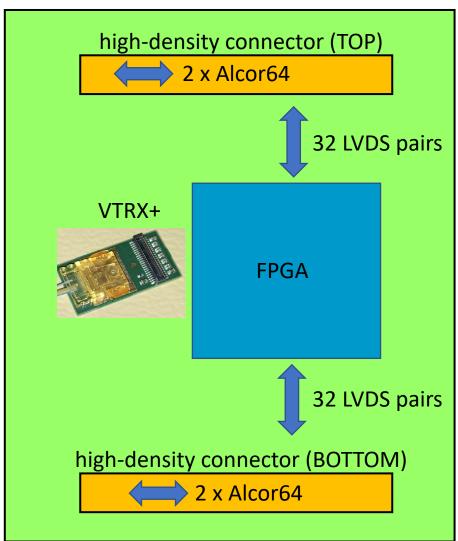
Signal	1/0
DBUS – CO	0
DBUS – C1	0
DBUS – C2	0
DBUS – C3	0
CLKIN	1
CLKOUT	0
TP / SHUTTER	1
SPI DOUT	0
SPI DIN	1
SPI CLK	1
SPI ENA	ı
RESET	1
Total I/O	24 <mark>(8)</mark>

12 LVDS pairs per chip

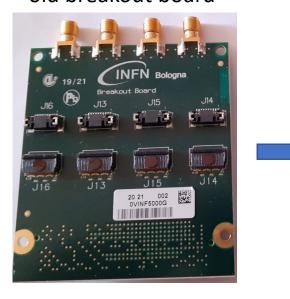

16 LVDS pairs per chip ???

The FEB-RDO bus: remember we will need other lines!

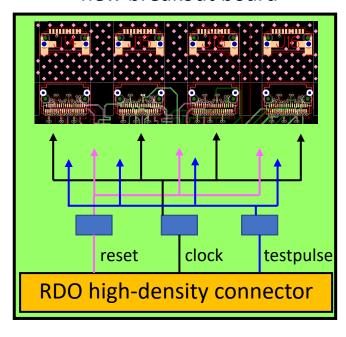
11


The FPGA interfaces to 4 Alcor64 chips: 4 x 16 LVDS pairs = 64 LVDS pairs (for back-compatibility 96 pairs)

The new break-out boards



RDO



The plan is to use the RDO also to readout 8 Alcor32 chips: this requires the design of a new breakout board

old breakout board

new breakout board

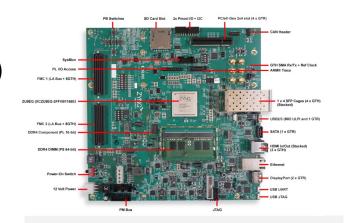
data lines: 16
clock in lines: 4
SPI (ck, SDI, SDO): 3
SPI SS: 4
reset, clock, testpulse: 3

30

12

Building a plan

ePl


dRICH World

- With this group: define FEB-RDO specs!!! → by December 2023 at the latest
- Production RDO + breakout-boards → in 2024 "preventivi" --> 25000
- @test-beam 2024: read 8 PDU using CONET IPCORE and 2 PCIe CARD A3818 from CAEN
 (all hardware + know-how available from ALICE) [Buy a server housing two A3818 →
 in 2024 "preventivi" → 2000]
- Some radiation tests of key component @TIFPA

ePIC World

Test/Development of ePIC DAQ link on a pair of Zynq ZCU102 (1 available, 1 from project)
 Davide/Pietro part of a small sub-DAQ WG to define specs of DAQ link
 These cards will be used to define specs. We might play already with RDO when
 existing (clock transmission etc).

- No FELIX available from ATLAS/BO: buy a VC709 as main "FELIX" development platform?
 - → 8000 EU
 - → ATLAS provide FW for VC709 operating it as a "mini-FELIX"

→ we need to collect more information about FELIX....

24/05/2023 Alcor Day RDO & DAQ

Backup

15

First FPGA candidate: Xilinx Artix Ultrascale+ family

	AU7P	AU10P	AU15P	AU20P	AU25P
System Logic Cells	81,900	96,250	170,100	238,437	308,437
CLB Flip-Flops	74,880	88,000	155,520	218,000	282,000
CLB LUTs	37,440	44,000	77,760	109,000	141,000
Max. Distributed RAM (Mb)	1.1	1.0	2.5	3.2	4.7
Block RAM Blocks	108	100	144	200	300
Block RAM (Mb)	3.8	3.5	5.1	7.0	10.5
UltraRAM Blocks	-	-	_	-	-
UltraRAM (Mb)	-	-	-	-	-
CMTs (1 MMCM and 2 PLLs)	2	3	3	3	4
Max. HP I/O ⁽¹⁾	104	156	156	156	208
Max. HD I/O ⁽²⁾	144	72	72	72	96
DSP Slices	216	400	576	900	1,200
System Monitor	1	1	1	1	1
GTH Transceiver ⁽³⁾	4	12	12	-	-

Package (1)(2)(3)	Package Dimensions	AU7P	AU10P	AU15P	AU20P	AU25P		
(1)(2)(3)	(mm)	HD I/O, HP I/O, GTH, GTY						
UBVA292	10.5x8.5	72, 58, 4, 0						
UBVA368	11.5x9.5		24, 104, 8, 0	24, 104, 8, 0				
SBVB484	19x19		48, 156, 12, 0	48, 156, 12, 0				
SBVC484	19x19	144, 104, 4, 0						
SFVB784	23x23				72, 156, 0, 12	96, 208, 0, 12		
FFVB676	27x27		72, 156, 12, 0	72, 156, 12, 0	72, 156, 0, 12	72, 208, 0, 12		

24/05/2023 Alcor Day RDO & DAQ

Xilinx Artix Ultrascale+ family

16

VCCINT = 0.850 V

VCCAUX = 1.800 V

VCCO = 1.140 - 3.400 V for HD I/O banks

VCCO = 0.500 - 1.900 V for HP I/O banks

HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.

GTH and GTY transceiver line rates are package limited: SFVB784, SBVB484, UBVA368, and UBVA292 to 12.5Gb/s

LVDS DC specifications (**HP** I/O banks)

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO} ¹	Supply voltage		1.710	1.800	1.890	V
V _{ODIFF} ²	Differential output voltage: $(Q - \overline{Q}), \ Q = High$ $(\overline{Q} - Q), \ \overline{Q} = High$	R_T = 100 Ω across Q and \overline{Q} signals	247	350	454	mV
V _{OCM} ²	Output common-mode voltage	$R_T = 100\Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF} ³	Differential input voltage: $(Q - \overline{Q}), \ Q = High$ $(\overline{Q} - Q), \ \overline{Q} = High$		100	350	600 ³	mV
V _{ICM_DC} ⁴	Input common-mode voltage (DC coupli	ng)	0.300	1.200	1.425	V

On-scale drawings (scale factor = 1.5)

19 mm 19 **FPGA** mm SBVB484

RDO & DAQ

27 mm

FPGA

FFVB676

27 mm

Choosing a Xilinx Artix Ultrascale+ requires both:

- a QSPI Flash
- a Microchip FPGA performing scrubbing

24/05/2023 Alcor Day

Second FPGA candidate: Microchip Polarfire family

	MPF050	MPF100	MPF200	MPF300	MPF500
Logic Elements (4LUT + DFF)	48K	109K	192K	300K	481K
Math Blocks (18 × 18 MACC)	150	336	588	924	1480
LSRAM Blocks (20 Kb)	160	352	616)	952	1520
uSRAM Blocks (64 × 12)	450	1008	1764	2772	4440
Total RAM (Mb)	3.6	7.6	13.3	20.6	33
uPROM (Kb)	216	297	297	459	513
User DLLs/PLLs	8	8 each	8 each	8 each	8 each
250 Mbps-12.7 Gbps Transceiver Lanes	4	8	16	16	24
PCIe® Gen 2 Endpoints/Root Ports	2	2	2	2	2
Total User I/O	176	296	364	512	584

Microchip Polarfire packages

VCCINT = 1.0 V

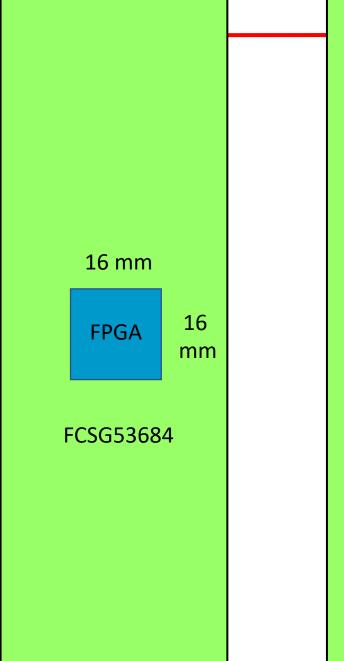
HSIO DC IO supply: 1.2V, 1.35V, 1.5V, 1.8V

GPIO DC IO supply: 1.2V, 1.5V, 1.8V, 2.5V, 3.3V

	MPF050	MPF100	MPF200	MPF300	MPF500
Type/Size/Pitch	Tot	al User I/O (I	HSIO/GPIO) GP	IO CDRs/XCVRs	
FCSG325 (11 × 11, 11 × 14.5 0.5 mm)	164 (84/80) 6/4	170 (84/86) 8/4	170 (84/86) 8/4		
FCSG536 (16 × 16, 0.5 mm)			300 (120/180) 15/4	300 (120/180) 15/4	
FCVG484 (19 × 19, 0.8 mm)	176 (96/92) 7/4	284 (120/164) 14/4	284 (120/164)14/4	284 (120/164) 14/4	
FCG484 (23 × 23, 1.0 mm)		244 (96/148) 13/8	244 (96/148) 13/8	244 (96/148) 13/8	
FCG784 (29 × 29, 1.0 mm)			364 (132/232) 20/16	(156/232) (15	388 6/232) 0/16
FCG1152 (35 × 35, 1.0 mm)				(276/236) (32	584 4/260) 4/24

24/05/2023 Alcor Day

Differential DC input levels


I/O Standard	Bank Type	V _{ICM_RANGE} Libero Setting	V _{ICM} 1,3	V _{ICM} 1,3		V _{ID} ²	V _{ID}	V _{ID}
			Min (V)	Typ (V)	Max (V)	Min (V)	Typ (V)	Max (V)
LVDS33	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.35	0.6
		Low	0.05	0.4	8.0	0.1	0.35	0.6
LVDS25 ⁷ GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.35	0.6	
	Low	0.05	0.4	8.0	0.1	0.35	0.6	
LVDS18G ⁴ GPIO	Mid (default)	0.6	1.25	1.65	0.1	0.35	0.6	
	Low	0.05	0.4	8.0	0.1	0.35	0.6	
LVDS18 ⁷ HSIO	HSIO	Mid (default)	0.6	1.25	1.65	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6

Differential DC output levels

I/O Standard	Bank Type	V _{OCM} ¹ Min (V)	V _{OCM} Typ (V)	V _{OCM} Max (V)	V _{OD} ² Min (V)	V _{OD} ² Typ (V)	V _{OD} ² Max (V)
LVDS33	GPIO	1.125	1.2	1.375	0.25	0.35	0.45
LVDS25 ⁴	GPIO	1.125	1.2	1.375	0.25	0.35	0.45
LVDS18G ⁴	GPIO	1.125	1.2	1.375	0.25	0.35	0.45

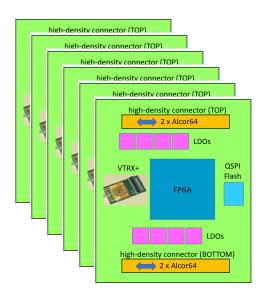
On-scale drawings (scale factor = 1.5)

RDO & DAQ

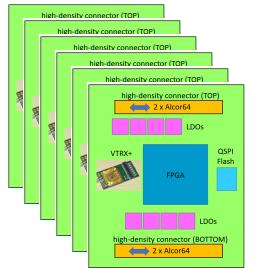
19 mm **FPGA** FCVG484

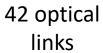
19 mm

it would also allow to save on the QSPI Flash (not needed)

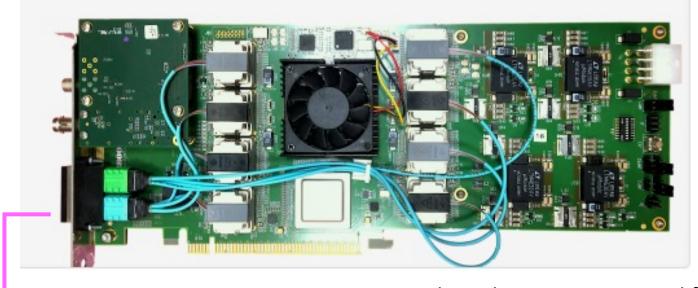

24/05/2023 Alcor Day

21

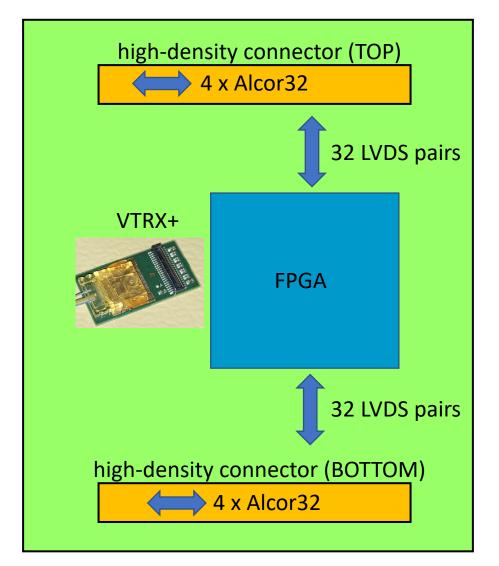

I level DAM: 42 to 6 concentrator/routing



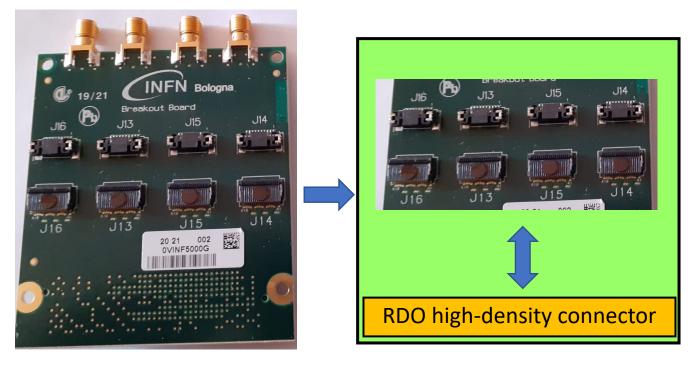
42 RDOs



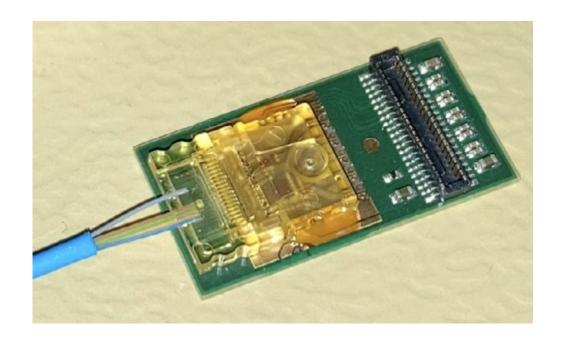
Felix board



6 optical links towards II level DAM this solution requires modifications to the standard Felix firmware


Intermediate steps

RDO


The plan is to use the RDO also to readout the Alcor32 chips: this requires the design of a new breakout board

old new

VTRX+: 20 x 10 x 2.5 mm³