
Gauge Theories

and

Non-Commutative Geometry

A Review

SAPIENZA - Università di ROMA

June 21, 2023

John Iliopoulos

ENS Paris



Historical Introduction

Motivation I. : Short distance singularities

▶ The two classical forces, electromagnetism and gravitation, are
both described by the 1/r potential.
⇒ No ground state.

▶ Quantum Mechanics solves this problem
By solving the Schrödinger equation we find a ground state for
both electrostatic and gravitostatic forces.

▶ We can attribute the solution to the Heisenberg commutation
relations which introduce non-commutative geometry in phase
space.

▶ This solution is partial : It applies only to the static
approximation and only to the 1/r potential.

▶ Not surprisingly, it was Heisenberg who, in 1930
(Heisenberg → Peierls → Pauli → Oppenheimer)
suggested non-commutativity in x-space as a “solution” to all
short distance singularities.
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Historical Introduction

▶ It is plausible that Oppenheimer discussed it with his student
Snyder who, in 1947, published a paper with a strange set of
commutation relations of the form

[x , y ] = (ia2/ℏ)Lz [x , px ] = iℏ[1 + (a/ℏ)2p2
x ]

▶ Pauli (letter to N. Bohr, 1947) did not think much of the idea:
“....it seems to be a failure for reasons of physics.”

▶ In fact, as history evolved, Pauli was probably right. The
motivation based on short distance singularities did not prove
fruitful for elementary particle physics. With the development
of the renormalisation program the problem of ultraviolet
divergences took a completely different turn. It is not finiteness
but rather absence of sensitivity to unknown physics at very
short distances that turned out to be the important criterion.
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Historical Introduction

Motivation II. : External fluxes.

▶ Landau (1930) Electron in an external magnetic field

[vx , vy ] = i(eℏ/m2c)B xc =
cpy
eB + x yc = − cpx

eB

▶ Peierls (1933)

The energy levels of a free electron in a space with
non-commuting coordinates:
[x , y ] = −i(ℏc/eB)
reproduce the (lowest) Landau level.

▶ Since the presence of non-vanishing magnetic-type external
fields is a common feature in many modern supergravity and
string models, the study of field theories formulated on spaces
with non-commutative geometry has become quite fashionable.
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▶ Seiberg-Witten map

▶ SU(N) gauge theories at large N and matrix models.

▶ The construction of gauge theories using the techniques of
non-commutative geometry.

▶ Gauge theories and quantum gravity
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▶ [xµ, xν ] = iθµν
simplest case: θ is constant (canonical, or Heisenberg case).

▶ [xµ, xν ] = iF ρ
µνxρ (Lie algebra case)

▶ xµxν = q−1Rρσ
µν xρxσ (quantum space case)

▶ Definition of the derivative:
∂µxν = δµν [xµ, f (x)] = iθµν∂ν f (x)

▶ Define a * product

f ∗ g = e
i
2

∂
xµ

θµν
∂
yν f (x)g(y)|x=y
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All computations can be viewed as expansions in θ
expansions in the external field

More efficient ways?

Quantum field theory in a space with non-commutative geometry?



Large N field theories

▶ ϕi (x) i = 1, ...,N ; N → ∞

ϕi (x) → ϕ(σ, x) 0 ≤ σ ≤ 2π

∑∞
i=1 ϕ

i (x)ϕi (x) →
∫ 2π
0 dσ(ϕ(σ, x))2

but

ϕ4 → (
∫
)2

▶ For a Yang-Mills theory, the resulting expression is local
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Gauge theories on surfaces

▶ A simple algebraic result: J. Hoppe

At large N :

The SU(N) algebra → The algebra of the area preserving
diffeomorphisms of a closed surface.

▶ The structure constants of [SDiff (S2)] are the limits for large
N of those of SU(N).
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Alternatively: For the sphere
E. G. Floratos, J.I. and G. Tiktopoulos

x1 = cosϕ sin θ, x2 = sinϕ sin θ, x3 = cos θ

Yl ,m(θ, ϕ) =
∑

ik=1,2,3
k=1,...,l

α
(m)
i1...il

xi1 ...xil

where α
(m)
i1...il

is a symmetric and traceless tensor.

For fixed l there are 2l + 1 linearly independent tensors α
(m)
i1...il

,
m = −l , ..., l .



Choose, inside SU(N), an SU(2) subgroup.

[Si , Sj ] = iϵijkSk

A basis for SU(N):

S
(N)
l ,m =

∑
ik=1,2,3
k=1,...,l

α
(m)
i1...il

Si1 ...Sil

[S
(N)
l ,m , S

(N)
l ′,m′ ] = if (N)l ′′,m′′

l ,m; l ′,m′ S
(N)
l ′′,m′′



The three SU(2) generators Si , rescaled by a factor proportional to
1/N, will have well-defined limits as N goes to infinity.

Si → Ti =
2
N Si

[Ti ,Tj ] =
2i
N ϵijkTk

T 2 = T 2
1 + T 2

2 + T 2
3 = 1 − 1

N2

In other words: under the norm ∥x∥2 = Trx2, the limits as N goes
to infinity of the generators Ti are three objects xi which commute
and are constrained by

x2
1 + x2

2 + x2
3 = 1



N
2i [f , g ] → ϵijk xi

∂f
∂xj

∂g
∂xk

N
2i [T

(N)
l ,m ,T

(N)
l ′,m′ ] → {Yl ,m,Yl ′,m′}

N[Aµ,Aν ] → {Aµ(x , θ, ϕ),Aν(x , θ, ϕ)}

⇒ The classical d-dim. SU(N) Yang-Mills theory for N → ∞
≡
A classical theory on a d + 2-dim space with the extra two
dimensions forming a closed surface. The gauge invariance is
mapped into area preserving diffeomorphisms of the surface.



The classical Y-M action

SYM ∼
∫

d4xTrFµνFµν ⇒
∫
S2 dΩ

∫
d4xFµν(x , θ, ϕ)F

µν(x , θ, ϕ)

with

Fµν(x , θ, ϕ) =
∂µAν(x , θ, ϕ)− ∂νAµ(x , θ, ϕ) + {Aµ(x , θ, ϕ),Aν(x , θ, ϕ)}

The quantum theory ??



Gauge theories on surfaces - Finite N

E.G. Floratos and J.I.

▶ Given an SU(N) Yang-Mills theory in a d−dimensional space

Aµ(x) = Aa
µ(x) ta

▶ there exists a reformulation in d+2 dimensions

Aµ(x) → Aµ(x , z1, z2) Fµν(x) → Fµν(x , z1, z2)

with [z1, z2] =
2i
N
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[Aµ(x),Aν(x)] → {Aµ(x , z1, z2),Aν(x , z1, z2)}Moyal

[Aµ(x),Ω(x)] → {Aµ(x , z1, z2),Ω(x , z1, z2)}Moyal

∫
d4x Tr (Fµν(x)F

µν(x)) →
∫
d4xdz1dz2 Fµν(x , z1, z2) ∗

Fµν(x , z1, z2)

These expressions are defined for all N

Not necessarily integer ???



We can parametrise the Ti ’s in terms of two operators, z1 and z2.

T+ = T1 + iT2 = e
iz1
2 (1 − z2

2 )
1
2 e

iz1
2

T− = T1 − iT2 = e−
iz1
2 (1 − z2

2 )
1
2 e−

iz1
2

T3 = z2



If we assume that z1 and z2 satisfy:

[z1, z2] =
2i
N

The Ti ’s satisfy the SU(2) algebra.

If we assume that the Ti ’s satisfy the SU(2) algebra, the zi ’s
satisfy the Heisenberg algebra



For the torus

Choose, inside SU(N), a quantum U(1)× U(1)

(N odd), ω=e4πi/N

gN = hN = 1 ; hg = ωgh



For the torus

We can use the integer modN powers of these matrices to express
the SU(N) generators:

Sm1,m2 = ωm1m2/2gm1hm2 ; S†
m1,m2

= S−m1,−m2

[Sm,Sn] = 2i sin
(

2π
N

m × n
)
Sm+n

n = (n1, n2) and n × m = n1m2 −m1n2

SU(N)|N→∞ = SDiff(T 2)

z1 , z2 the two angular variables:

h = eiz1 g = e−2iπz2 ⇒ [z1, z2] =
2i
N

→ hg = ωgh



For the torus

The generators of the Heisenberg algebra z1 and z2,
as well as the group elements h = eiz1 and g = e−2iπz2

are infinite dimensional operators

but we can represent the SU(N) algebra by the finite dimensional
matrices g , h and Sm1,m2

They form a discrete subgroup of the Heisenberg group
⇒
quantum mechanics on a discrete phase space

We can define two new operators
q̂ ("position" in the discrete space) and p̂ (its FFT):
They are represented by finite matrices but, obviously, they do not
satisfy the Heisenberg algebra.



The topology of the 2-dim. surface and the form of the
matrices.

I only state the result:

A. Sphere

For given N, we define N2 − 1 matrix spherical harmonics as
polynomials in the SU(2) generators Ti as follows: Let z+ and z−
be two independent complex variables,

(−z2
+S+ + z2

−S− + 2z+z−S3)
l

2l l!
=

√
4π

2l + 1

l∑
m=−l

z l+m
+ z l−m

−√
(l +m)!(l −m)!

Ŷlm

The matrices Ŷlm, appropriately rescaled, go to the spherical
harmonics Ym

l . Two results:



1) Ŷl ,m with negative m have non-vanishing elements in the
lower diagonals.

2) Ŷl ,m with positive m have non-vanishing elements in the
upper diagonals.



The topology of the 2-dim. surface and the form of the
matrices.

B. Torus

The matrices which form a fuzzy torus have non-vanishing elements
in the k-upper and the N − k-lower diagonals.

C. Higher genus surfaces

The corresponding matrices have non-vanishing elements in upper
and lower diagonals with appropriate symmetry properties.



The techniques of non-com. geometry

▶ Gauge transformations are:

▶ Diffeomorphisms space-time

▶ Internal symmetries

▶ Question: Is there a space on which internal symmetry
transformations act as diffeomorphisms?

▶ Answer: Yes, but it is a space with non-commutative geometry.
A space defined by an algebra of matrix-valued functions
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The techniques of non-com. geometry
Ali H. Chamseddine, Alain Connes, Viatcheslav Mukhanov et al.

The construction involves A fundamental spectral triplet :

Given a spin manifold M, the triplet consists of:

1. A Hilbert space H

2. An algebra of functions A which are C∞(M)

3. The Dirac operator D

(If we ignore gravity, D can be replaced by the chirality operator)



▶ The Hilbert space is obvious

▶ The algebra of functions replaces the "space"

▶ The Dirac operator plays the role of the inverse of distance

▶ Decorations: Chirality, CPT

▶ ⇒ Gauge theories emerge naturally with General Relativity



▶ The Hilbert space is obvious

▶ The algebra of functions replaces the "space"

▶ The Dirac operator plays the role of the inverse of distance

▶ Decorations: Chirality, CPT

▶ ⇒ Gauge theories emerge naturally with General Relativity



▶ The Hilbert space is obvious

▶ The algebra of functions replaces the "space"

▶ The Dirac operator plays the role of the inverse of distance

▶ Decorations: Chirality, CPT

▶ ⇒ Gauge theories emerge naturally with General Relativity



▶ The Hilbert space is obvious

▶ The algebra of functions replaces the "space"

▶ The Dirac operator plays the role of the inverse of distance

▶ Decorations: Chirality, CPT

▶ ⇒ Gauge theories emerge naturally with General Relativity



▶ The Hilbert space is obvious

▶ The algebra of functions replaces the "space"

▶ The Dirac operator plays the role of the inverse of distance

▶ Decorations: Chirality, CPT

▶ ⇒ Gauge theories emerge naturally with General Relativity



▶ SO WHAT?

▶ A possible way to unify gauge theories and Gravity???

▶ A possible connection between gauge fields and scalar fields.

▶ The actual implementation brings us back to flat space
calculations.

▶ New predictions for the Standard Model parameters?
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▶ The Standard Model has 17 arbitrary parameters. They are all
masses and coupling constants.

▶ All of them have been determined experimentally.

▶ Could this number be reduced?

For example, can we “predict” the value of the Higgs mass?

m2
Z/m

2
H = C =

g2
1 + g2

2
8λ

▶ Such a relation should correspond to a fixed point of the RG

▶ Answer: Compute the corresponding β-function.
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16π2βg1 = g3
1

1
10

16π2βg2 = −g3
2
43
6

16π2βλ = 12λ2 − 9
5
g2
1λ− 9g2

2λ+
27
100

g4
1 +

9
10

g2
1 g

2
2 +

9
4
g4
2



βz = βη1 + βη2 =

=
−λw

16π2ρz

[(
27
100

ρ2 +
9
10

ρ+
9
4

)
z2 −

(
2ρ2 +

54
5
ρ− 16

3

)
z

+12(ρ+ 1)2
]

η1 =
g2
1
λ

; η2 =
g2
2
λ

; z = η1 + η2 ; ρ =
η1

η2
; w = η1η2

• βz has no zeroes! ⇒ The Standard Model is irreducible.

Related question: Is there a B.R.S. symmetry for the model on
non-com. geometry?



The spectacular accuracy reached by experiments, as well as
theoretical calculations, made particle physics a precision
science

Example: mW = 80.385 ± 0.015GeV
⇒ "Approximate" theories are no more sufficient!

A discrepancy by a few percent implies that we do not have the
right theory!



▶ The completion of the Standard Model strongly indicates
that new and exciting Physics is around the corner

▶ But, for the moment, we see no corner!
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Conclusions

▶ Non-Commutative Geometry has come to stay!

▶ Whether it will turn out to be convenient for us to use, is still
questionable.

▶ It will depend on our ability to simplify the mathematics
sufficiently, or to master them deeply, in order to get new
insights

▶ In the meantime, it is fun. to play with matrices.
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