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SU(N) QCD (with N_f massless quarks, for simplicity):

4 N .
Z~ [ 545085 exp(——5 [ TrF?+ 36 1Daty)
Ny

s a theory of gluons and quarks massless to every order of
perturbation theory, which are weakly coupled in the UV
but strongly coupled in the Infrared (IR) because of the
asymptotic freedom
[ts solution must unavoidably be nonperturbative.
Indeed, every physical mass scale of the theory must be
proportional to the RG-invariant scale:
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that vanishes to every order of perturbation theory




Thus, the solution for the physical mass spectrum -
and a fortiori for the S matrix -
s equivalent to solving a nonperturbative weak-coupling
broblem - for Are in terms of g -
of the finest asymptotic accuracy,
as g vanishes while the cutoff Lambda
diverges In order for Arc 1o stay finite.

In relation to the problem above,
a considerable simplification occurs
in 't Hooft large-N limit with N_{f fixed.




massless quarks):
N

ficiecd, the large-N 't Hooft Iimrt of SU(N) QCID (Wit asi N

= /51452#515 exp(—g—2 TrF* + lef’YaDawf)
Ny

s a free theory of glueballs and mesons to leading

| /N order, which become weakly coupled at all e
scales to the next order, with couplings O(1/N)

nergy
and

O(l/sgrt N) respectively (G.‘t Hooft 1974)

In the glueball sector:

s Ol ($1)02($2) Z e On(xn) > conn ™ N2_n
In the meson sector:

< Ml(ajl)MQ(xZ) W Mk(xk) > conn™ Nl_%

In the meson/glueball sector:

< O1(21)02(x2) -+ - Op(xp) M1(x1) Mo(3) - - - Mp(2k) >conn~ N1-n—%



In fact, to the leading |/N order (i€,
t Hooft planar theory), because of
the vanishing of the interaction
assoclated to 3 and multi-point

correlators,
the connected two-point correlators, by assuming

confinement, are an Infinite sum of free propagators

satistying the the Kallen-Lehmann representation
(Migdal, 1977):

| <0]0™(0)|p, n, s > |

(s) (s) —ip-x 74 (S)
/<0 ()0 (0))onme ™" dx_ZP (S))

p2 i m(3)2

<00 (0)lp,n, 5,5 >= € (°2) < 0|0V (0)]p, n, s >




Hence, the large-N non

perturbative solution would replace
@@B

viewed as a theory of

oluons and quarks that

s strongly coupled in the infrared In

perturbation theory,

with a theory of glueballs and mesons
that I1s weakly coupled at all energy scales in the large-IN

expansion

Moreover, the large-N 't Hooft expansion may lead to a

solution circumventing -

the problem of the nonperturbative

nature of Arc
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Perturbatively, topological interpretation of X is the Euler characteristic
Feynman diagrams in 't Hooft double-line

representation (1974):
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Nonperturbatively, in the effective theory of mesons and glueballs the planar theory corresponds to tree
diagrams (Migdal 1977, Witten 1979):

&

@
"~ mmwmi + T ey, 3-point vertices may have triple or double poles
(Witten 1977)



The planar nonperturbative S matrix is not unitary, since it only contains tree diagrams: We need to
include loops

In the large-N expansion loops are given by nonplanar diagrams

~ Glueball loops are given by handles

. 4

Meson loops are given by holes

In general, the N dependence of correlators is given by the Euler characteristic of a surface with genus
g (handles) and h holes and n punctures in the interior and m punctures on the boundary:

X:2—29—h—n—% <g1gnM1,/\/lm>NNX



Physically, this 1s the standard picture of confinement
where
mesons are bound states of quarks linked by a

ghiemo=clectric i ttlioeine

olueballs are rings of chromo-electric flux

with the string world-sheet identified with the flux tube

Yet, this physical interpretation Is not necessary In the
canonical string framework. VWe may consider an arbitrary
string background (higher dimensions, curvature, D-branes,
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Some years ago (circa 201 3) we (M.B.) started the
program of answering the above questions.

Eventually, this program merged into GAGRA (circa 2021)

We skip about |0 years to immediately discuss question (3)

and GAGRA

(some key previous results about questions (1) and (2) are
in the backup slides .. .)




In relation to question (3), for deep reasons t

we cannot explain in detall here, one of our ai

nat

MS

s to get information on the sum of the glueball

one-loop diagrams In large-N Y M.

We pointed out (M.B. HADRONZ2015) that the leading non-planar glueball effective action should have
the structure of the logarithm of a functional determinant that sums the glueball 1-loop diagrams:

1 Il
Fflueball 1—loop — o log det (—A 1= N * g*)

In the 't Hooft expansion (and In the string solution - If it
exists) they are the leading-order nonplanar contribution,
summing diagrams with the topology of a punctured torus:

: & B

v



The above follows from the existence of an unknown
olueball effective action. Schematically:

1 1 1 1
F(:Eanonicalz§/d4mTrg(_A+m2)g+N/d4xg*g*g+§logdet <_A+m2+ﬁ*g*>_|_

In fact, what we may actually compute asymptotically in the UV is the generating functional of
the connected correlators (essentially the inverse of the Legendre transform of the effective
action):

E E
Fgluxzball 1—loop ; ngueball 1—loop

Physically, the difference is that the effective action is the sum of the 1Pl diagrams with amputated
external lines, while the generating functional above involves connected correlators with non-
amputated external lines.



Finally, the UV asymptotics of the aforementioned
senerating functional should inherit the very same structure
of the log of a functional determinant as well.
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In the light-cone gauge the above twist-2 operators read:

Gy T R ]
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5
with Cs—2 the Gegenbauer polynomials, which are a special case of the Jacobi polynomials

Vo + V3
i
it V2
V:V1—|—’i%
V2
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3 steps In 3 papers
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Remarkably, the generating functional of the conformal correlators computed after step (1) admits
the structure of the log of a functional determinant:

Wconf[j@aj@ajgajg]
N? -1
= g log Det {H +D Yo+ D_lj@}

N2 L] ¥
e log Det _]I D e D_lj@}

N? -1 ' o
—~ ——— logDet [[ -2 (]I D g — D—lj@) D™ 'js (11 + D™ jo + D—lj@)

1
D_ljS]

where | are the sources dual to the corresponding operators, with:

. 5141 F(B)F(S1 + 3) S1 S9
D 1 S = [ A, 81—]€1—|—]€2 —1 P
saba saky (0 V) 2 T(5)(s1+1) (kl) (7@ A 2)( ) el

i 7251 F(S)F(81+3> S1 S9 (—8 )81—/€1+k2 1
82 T(5)(s1 + 1) \k1/ \ ko + 2 2 |z — y|2 — ie




may

ater FS. has discovered that the calculation

e performed by functional-integral methods and

provides directly the generating functional as a logDet,
since In the light-cone gauge the above twist-2 operators
are quadratic In the fundamental fields and the functional

integral to the lowest order reduced to a Gaussian one

1 SN Sl 2 =
Zconf[‘]@a J@7 Js, JS] = E /DADA e_Zfd4xA o 2% (/ d4xz J@SQS n J@S(O)S ol JSSSS S0 JSSSS>



In order to perform the functional integral it is convenient to write more explicitly:

1 e 7 5) —<5
0, = 5A%2)84(i8 4 +104)°CL, [ =+ | F,4%(2)
G
i %Aa(x)yf (3. 5.)4%2) AL o
1 = 5} —<5 =
e Dl SR | = | § A%(x)
2 Bl b e
= A 5(F 1, 5)A @) s=3,5,7,
1 = 3 % =
Se = —=A%(z) 0 4 id —1—28 Il R T
S5 040, +i9.) 2(3++3+> +A(2)
i I R o
= 2\—fA (x)V2 (0 4, 04)A%(x) s=2,4,6,... Even spin:
« = - S e ERE ST N O
Ss:—A% IR (GERE 0D )2 ( Lo +> 8. A%z) B
2\1/7 e § 5)+ + 5+ ys2—2(5>+’<5+) = <5+(i3+ 5 Z'%Jr)S_QCSQ—z (ﬁ) G
B Rt 9laTF AR (o = TR AL L T'(3)I'(s RS
2\/7 A%(z) 2( 0+, 0 +)A%(z) :FE5§ 5 22( )(k+2> 1) k%+k 1gii+1
Odd spin:




— 2Pt (A“(a:) A“(a:))M“b< Ab(z)

As a consequence the functional integral reads

Zeont[J0, Jg, Js, Jg) = / DADAe

where the block matrix is valued in the operators

3

; 5 g
|:|+%ZSJ@S®J}S2_2_%ZSJ©S®,H82_2
5

Mab 5y 5ab
% Zs JSS ® y82—2

\/_Z ‘]S ®y522
04 2 ZJ@ ®y;2+ ZJ ®7—[§

The tensor product symbol means
that the differential operators do not

act on the sources

Then:

i
Wconf[J@, J@, Js, Jg] = log Zconf[J@, J@, Js, Jg] = —5 log Det(./\/l)



The result Is;

il
N2 _1 Wconf[J@’p J@/, JS/, Jg/] —
s—2
1 1 S S = GG M 0 S =
=5 log Det (I‘f' N 2 (k) <k i 2) (20 +) Sl o[ 1(']@’5 ar J@;)(28+)k+1>
1 1 it S S Foe a5y
s—k—1.—1 5 k+1
— 5 log Det <I+N;)<k> <k+2>(28+) 07 (Jo, — J5, )68 +) )
1 s—2 p —1
S S gL i L
B oeenl — — <I+N <k> <k+2>( i) k=1, l(J@; J@g)(16’+)k+1>
k=0
81—2
il 51 Bt e s AT kq41
1 1 D ’ 1
3 <k1> (kl +2> (10+) (R )
k1=0
82—2 —1
1 52 52 el = ]
I+ — O )52 F2 ] ! - ey
( +Nk§:: (k2> <k2+2>(2 ) i~ (Ja,, + Jg;, Hid+)
83—2
53 53 Walh A p e hotity
gEN)ieRers = H] 3
k:zzo <’f3> (’fs - 2> G0 s L)

We have verified (nontrivially) that this object coincides with our previously computed generating functional
reconstructed form the correlators



Moreover, after rescaling the operators so that their 2-point correlators are of order 1 for large N,
in a certain renormalization scheme where the twist-2 operators become multiplicatively renormalizable,
the leading-order nonplanar generating functional of the Euclidean asymptotic correlators, as all the coordinates

are rescaled by A\ — 0, after step (3) is
W’léjorus asym[J@’E7 J@'E7 ‘]S/E7 JS/E7 )‘] x>
s—2
1 Zo (N T e = oY
5 logDet (I—I— Z (Z) ( & )(_3z)s—k—1 A_l( ( ) 0.F s( 08 )(_32)16—%1

il k+2 N )\2+s
s—2
1 S S 7= L | 1 (Z®’ (A)J@;E s, Z@'S()‘)J@VSE) ey
+210gDet (I—I— 5_0 (k:) <k+2>( 0 ) AT, N N2Es (—0.)

= ol 1(Z (A J 'E _Z~/S<)\)J~;E) : —1
_Z(I—I_Z)( )<k+2>( 5:)8 By - ©N)\2+s@ . (—5),2)“)

o Zs (A)
S1 S1 S e R S L = \ki+1
U (9 A . . A J_/E =g a 7z -
kzzo <k1> <k1 + 2>( ) N \2+s1 754 ( )

2t 3 IS A_l (Z@/S2 ()\)J@;]Qg oo Z@/S2 ()\)J@’SIQE) 5} | %
Z:O < ) <k2 o 2)( z) N/\Z—I-Sz (_ Z)

83 2 )
)53*3‘1&1—2833@) Il
k K k3+2 e N \2tss “Seg ' —F

1
+ 5 log Det

( ) v%o@- 92(§) =1 = (1 , ) ok gé lolglo(g(Az;{%?)
: 9 Og\ 32 A2 0 108522
i zo.0) = | 22 , a Y
) and (1 5t )

Bo log(5%) Goilo=Eey






The generating functional of the RG-improved nonplanar correlators of twist-2 operators
has indeed the structure of the log of a functional determinant, as predicted on the basis of the existence of the glueball

effective action (M.B. HADRON 2015)

Moreover, the above asymptotics provides us with very specific quantitative information on the large-N limit of Yang-Mills
theory, and it is a constraint that any candidate nonperturbative solution has to satisfy.

Besides, it may be a powerful guide in the search for such a solution.

Indeed, in M.B. HADRONZ2015 1t was introducead
a certain class of (noncanonical) string models
where the candidate glueball effective action

arises from the coupling to D-branes

e @I e
log of a functional determinant

and - again - has the structL
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Step( 1)
~S. has computed all the n-point (conformal) correlators of

all the twist-2 operators with maximal spin
components along the p_+ direction (the restriction to
maximal spin is a actually a simplification) to the lowest
order of perturbation theory by Feynman diagrams




Some correlators are:

(Os,(21) ... Os, (xn)©5n+1 (Tnt1) -- ’©Sn+2m (Zn+2m)) conn
1 N2 —_ 1 22n+2m 74 _—|—2m s F(B)F(Sl ‘I— 3) F(B)F(3n+2m + 3)

a3 = ! 1=1
(472)n+2m 2n+2m 0 TG = D) T (5nram = 1)
S1—2 Sn42m —
) G ()
k1=0  kni2m=0 ki +2 et AR e =
(_1)n—l—2m

(80(1) & ka(l) & ka(Q))! U (80(n+2m) i ka(n—|—2m) T ka(l))!

n + 2m
oc€EPntom
) So(1)—ko(1)tko(2)

e To(2) o et T G

) So(n+2m) _ko(n-{—Zm) +k0'(1)

) SN o) )l

(|%(1) = x0(2)| (|5Ua(n+2m) o %(1)|

<Ssl (l’l) e, Ssn (xn)gsll (yl) Ssn (yn)> = ( 2)271 N;2; . 221 1 SH—Sfizzlzl si+si
I'(3)I'(s1 +3 L'(3)I(sy, + 3) F3)I'(st +3) TIT(3)I(s, +3)
L(5)(s1+1) " "T'(5)T (s, L(5)'(sf +1)  T'(5)(sh +1)

V)
=

SRR
L E @0 B

> Z (so(1) = ko) + ko)) (Sp1) — ko) + Ko (2))!

- (Bo(n) — ka(n>+’fp(n>) (85(n) = Koy + Koa))!

>Sa<1) ko (1) tHkp) )p(l) kp1)tko(2)

(Zo(1) = Yp(1) (Yp(1) — To(2)

(|ZC0<1) — Yp(1) |

) Sq(1) —ko(1)tkp1)+1 ( ) 5p(1) —kp(1) Tho(2)+1

Y1) — Zo(2)|?
) So(n) Ko (n)Tkp(n) ) $p(n) —kp(n) Tko(1)

(xa(n) Yp(n) (yp(n) Lo (1)

)Sa<n>—’€a<n>+k?)<n>+1 ( ) Sp(n) ~kp(n)tko(1)+1

(|xa(n) = yp(n)| |yp(n) e xo(l)‘

) So(n+2m) —Ko(nt2m)tke)+1
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In case of mixing the Callan-Symanzik equation implies:

n -y " . n M
Ghr) 1, O01, o M, g(0) = D Ziay (V) - Zagu W) AT P0G | (i g(5)

with:
B 0. (2.)) =Gp 4 (21, Zas 1, (1))

By the asymptotic freedom, RG-improved correlators must be asymptotic as A — 0 to the
corresponding (presently unknown) nonperturbative correlators:

The corresponding UV asymptotics for A — 0 reads:

Glg?..k:n()‘xla ooy AT, g (1)) ~ Z Ziyjs(A) -+ Zinjin (A) A™ 2= Do Ggol?)zfjl...jn (Z1, s Tn)

jl...jn
provided that Géﬁ},&fjlmjn (z1,...,2,) — which can be computed to the lowest order of perturbation theory — does
not vanish
9(%)

/
Z(\) = Pexp (/ gig,; dg' is the renormalized mixing matrix that in the general case involves the
g(p) PAY calculation of a path-ordered exponential



Hence, the evaluation of the asymptotic correlators involves the computation of sums of products of
Ggolzzfjl...jn (331, R ,:L’n) and Zij ()\)

These computations are technically challenging, even in the special case where the anomalous-dimension

matrix is triangular, as it occurs for twist-2 operators (so that the expansion of the path-ordered exponential

terminates to a finite order)

Therefore, it is of the outmost importance to establish whether a renormalization scheme exists where Z is
diagonalizable to all perturbative orders

In such a scheme the operators would be multiplicatively renormalizable and only one term would
contribute to the UV asymptotics:

2 Z@j (A0 o Z@jn (A)
Gél.)..jn()‘xla---7)\3771;/%9(:“)) S )\1D<91-|—"°-|—Don Ggoifjl__,jn(lﬁla---,iﬁn)

The existence of the above scheme may be decided as follows.



Renormalization may be interpreted in a differential-geometric setting, where a (finite) change of
renormalization scheme is interpreted as a coupling-dependent change of the operator basis:

O'(x) = S(9)0(z)

The matrix: A(g) = —% — g (% L Z Cng2n>

n=1

that occurs in the system of ODE defining the mixing matrix:

(538~

is interpreted as a (formal) real-analytic connection, with a simple pole at g =0,

d5(g)

that for the gauge transformation transforms as: 4’(g9) = S(9)A(g9)S™"(g) + 8—95_1(9)

Moreover, the operator: D — aﬁ — A(g) is the covariant derivative that defines the linear system: DY —
g

g(p)
whose particular solution is Z : Z(z,u) = Pexp </ A(Q))
g(z)

Therefore, Z is interpreted as a Wilson line that transforms under a gauge transformation as:

Z'(z, ) = S(g(p) Z (x, 1) S~ (g())



The Poincaré-Dulac theorem allows us to construct by induction order by order a formal analytic gauge
transformation such that the gauge-transformed connection is one-loop exact:

Y0

provided that the eigenvalues of the matrix 50 in nonincreasing order do not differ by a positive even integer
(nonresonant mixing):

W

o
For twist-2 operators 5o is always diagonalizable and satisfies (numerically up to 1074) the non-resonant condition
Hence, in the diagonal basis above the UV asymptotics of Z reduces essentially to the multiplicatively renormalizable case



M.B. and S.P Muscinelli, U

traviolet asymptotics of glueball

propagators, JHEP 08 (201 3) 064
f{ﬁ(—g)tr(z i) Mtr(zj F2,(0))) connt T
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Consequence: All the present proposals for string moc
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<e theories based on the gauge/gravity dual

els of
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DOSItIve

disagree with the correct UV asymptotics above by

powers of logs |



Asymptotic theorem that determines t

poles In the spectra
correla
large masses, In terms

of the operators anc

representation of

ne residues of the

large-N 2-point

ors asymptotically for

of the known anomalous dimension
the unknown spectral density:

M.B., Glueball and meson propagators of any spin
in large-N QCD, Nucl. Phys. B (6/5)201 3



Asymptotic Theorem:
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Nonperturbative renormalization of the large-N S matrix:
MBI large-N Yang—Mills S matrix 1s ultraviolet fiRtENeER
the large-N QCD S matrix 1s only renormalizable,

Fins, RGBS EOAN TOHOISAL0H |
In large-N YM the first-two coefficients of the beta function
are only planar without |/N corrections

Tl Yo

PO o a2
SN
fr= b -~ (4m)* 3

as a consequence the expansion

1
Ay ~ const Ay y, 1—|—ch0( —
=1 log (AP )

s finite, and so 1t Is the large-N expansion
O AE M S R



Instead, in large-N QCD the first-two coefficients of the
BERRINRction cet corrections 1o tne orde NS

50 6() el 6 5 (477)2 11 (471r)2 %%

N
=P +8 =T s

As a consequence:

A Abep |1+ 5NP1 ( - ) BPI log( . )({VP éVP)
CD ™~ og A og log — G -
g & By ASCD 50 ASCD By By

S divergen. (though renormalizable), and so It Is the

nonperturbative large-N expansion of the QCD S matrix
around the planar theory




No-go theorem for the canonical QCD string:

M. B., Renormalization in large-N QCD Is incompatible with
open/closed string duality, Phys. Lett. B 783 (2018) 341 M.

The UV finiteness of the large-N YM theory, due to Al and
RG, that we have just mentioned Is

compatible

with the universally believed UV finiteness of (consistent)
closed-string theories (due to the underlying modular
invariance on the closed-string side)




But, contrary to the universal belief,
the aforementioned renormalization properties in large-N

QCD

+ the existence of the glueball mass gap at the lowest [/N

order, I.e. In the planar

theory

i initeness off ClosEa StlifcRReEe

"
In fact, the

based on a low-energy theorem In la

re IS a stronger version o

roe-N QC

nat therefore does not actually exist.
' the no-go theorem,

D that does

not assume nerther the mass gap nor the UV finiteness of
closed string trees



The proof is In this picture of open/c
S a consequence of the conformal |
world sheet

osed string duality t

Nvariance of 1
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