

Search for a muon EDM with the frozen-spin technique

Francesco Renga INFN Roma

Disclaimer

- Progetto non ancora presentato ufficialmente in CSN1:
 - non chiediamo l'apertura di una sigla per il 2023
 - presentazione introduttiva alla riunione di luglio, richiesta fondi per R&D e beam test per il prossimo anno
 - Sezioni attive: Roma, Pisa (+ manifestazione di interesse da Genova, Lecce, Pavia, Bologna e Padova)
- Progetto presentato al comitato scientifico del laboratorio di particelle del Paul Scherrer Institut (PSI), sotto forma di LoI, nel gennaio 2021:
 - feedback positivo dal comitato
 - si prevede di sottomettere un proposal formale alla prossima riunione nel gennaio 2023

Physics Motivation

The g-2

• The long-standing deviation of the anomalous magnetic moment of the muon ($a_{\mu} = g_{\mu} - 2$) from SM predictions have been confirmed by the new FNAL experiment

Phys. Rev. Lett. 126 (2021) 14, 141801

Dipole interactions in effective field theories

Electric dipole moments

 $\overrightarrow{\mu} = \frac{ge}{2mc} \overrightarrow{s}$

Magnetic dipole moment

$$U = -\overrightarrow{\mu} \cdot \overrightarrow{B}$$

P- and T-even

Electric dipole moment

$$U = -\vec{d} \cdot \vec{E}$$

- EDMs of fundamental particles imply CP violation (CPV)
 - leptons EDM in the SM from CKM phases in loops involving quarks —> very small, not accessible

Muon EDM

Electron and muon EDM

- Muon EDM: strong link with g-2, would imply new sources of CPV (matter-antimatter asymmetry of the universe) and is negligible in the SM
- Strong constraints exist on the electron EDM (spin precession in molecular systems excited by lasers):

- the muon EDM was somehow experimentally overlooked, due to the indirect constraint coming from the electron EDM under minimal flavour violation (MFV) assumptions

$$|d_e|_{\exp} \le 8 \times 10^{-30} e \,\mathrm{cm}$$

MFV
 $|d_\mu|_{\inf} \le 1.6 \times 10^{-27} e \,\mathrm{cm}$
 $|d_\mu|_{\exp} \le 1.5 \times 10^{-19} e \,\mathrm{cm}$

- Current muon EDM limits produced as by-product of g-2 experiments
- Indeed the new tensions in flavour physics, pointing toward Lepton Flavour Universality Violation (LUFV), challenge the MFV scenario and make a dedicated experiment to search for a muon EDM of great interest

Experimental techniques for muon EDM searches

Dipole moments in electromagnetic fields

Magnetic spin precession in the particle rest frame

$$\vec{\omega}_L = 2\vec{\mu} \cdot \vec{B^*}/\hbar$$

Electric spin precession in the particle rest frame

$$\overrightarrow{\omega}_d = 2\overrightarrow{d} \cdot \overrightarrow{E^*}/\hbar$$

Electromagnetic spin precession in the laboratory rest frame

Cyclotron frequency

$$\vec{\Omega} = \vec{\Omega}_0 - \left(\vec{\Omega}_c\right) = \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{B}\right) \vec{\beta} - \left(a + \frac{1}{1-\gamma^2}\right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma}{(\gamma+1)c} \left(\vec{\beta} \cdot \vec{E}\right) \vec{\beta} \right]$$
EDM contribution

Muon g-2 measurements in storage rings

- Thanks to parity violation, the *horizontally precessing* spin is reflected into the angular distribution of electrons produced in muon decays
- Counts on detectors at a given angle oscillate with frequency Ω

e'V.V.

Muon EDM from g-2 experiments

- Search for vertical precession due to the "relativistic" electric field observed by the muon in its rest frame, $\vec{E^*} = \gamma c \vec{\beta} \times \vec{B} \sim 13.5 \text{ GV/m}$
- Although the experiments are not optimised for this measurement, the vertical granularity of the detectors combined with such a huge field still allows a precise measurement of the muon EDM

$$\begin{split} |d_{\mu}|_{\exp} &\leq 1.5 \times 10^{-19} \, e \, \mathrm{cm} \\ \hline Phys.Rev.D \ 80 \ (2009) \ 052008 \ [BNL \ Muon \ g-2]} & \gamma &\simeq 1/\sqrt{a} \\ \vec{\beta} \perp \vec{B} & p &\simeq 3.09 \ GeV/c \\ \vec{\beta} \perp \vec{B} & q &\simeq 3.09 \ GeV/c \\ \vec{\beta} \times \vec{B} & \vec{\beta} - \left(a + \frac{1}{1 - \gamma^2}\right) \vec{\beta} \times \vec{E} \\ \vec{\alpha} &= \vec{\Omega}_0 - \vec{\Omega}_c = \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{B}\right) \vec{\beta} - \left(a + \frac{1}{1 - \gamma^2}\right) \vec{\beta} \times \vec{E} \\ + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} \right] + \frac{\vec{E}}{c} - \frac{\gamma}{(\gamma+1)c} \left(\vec{\beta} \cdot \vec{E}\right) \vec{\beta} \right]. \quad \text{Small} \end{split}$$

Farley at al., Phys. Rev. Lett. 93 (2004) 052001 Adelmann et al., J. Phys. G 37 (2010), 085001

The frozen spin technique

- An electric field is applied to cancel the horizontal ٠ precession
- For $\eta = 0$, the spin is locked parallel to the • momentum (as it has been produced in π decays)
- Search for a vertical precession due to a non-٠ null EDM in the relativistic electric field

 $\overrightarrow{}$.

 \rightarrow

$$\vec{\beta} \perp \vec{B} + \text{apply an electric field } E_f \simeq aBc\beta\gamma^2 \text{ so that}$$

$$a\vec{B} = \left(a - \frac{1}{\gamma^2 - 1}\frac{\vec{\beta} \times \vec{E}}{c}\right)$$

$$\vec{\Omega} = \vec{\Omega}_0 - \vec{\Omega}_c = \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma + 1)}\left(\vec{\beta} \cdot \vec{P}\right)\vec{\rho} - \left(a + \frac{1}{1 - \gamma^2}\right)\frac{\vec{\beta} \times \vec{E}}{c}\right]$$
"Relativistic"
$$\left(+\frac{\eta q}{2m}\left[\vec{\beta} \times \vec{B}\right] + \frac{\vec{E}}{c} - \frac{\gamma}{(\gamma + 1)c}\left(\vec{\beta} \cdot \vec{E}\right)\vec{\beta}\right].$$
Small

Experimental signal: up/down asymmetry

Sensitivity from the asymmetry averaged over the muon decay time distribution (lifetime = $\gamma \tau_{\mu}$)

$$\sigma(|d_{\mu}|) = \frac{d|d_{\mu}|}{d\overline{A}} \sigma(\overline{A}) \sim \frac{a\hbar\gamma}{2P_{0}E_{f}\sqrt{N}\tau_{\mu}\alpha}$$

The "PENTA" formula

 P_0 = initial polarisation degree E = electric field in the lab frame N = number of observed decays τ_{μ} = muon lifetime α = mean decay asymmetry (~ 0.3)

A muon EDM search at PSI

The muonEDM Proposal

 A formal proposal for a Muon EDM experiment was presented in January 2023 to the PSI Research Committee for Particle Physics

A. Adelmann, ^{1,2} M. Backhaus^{,1} C. Chavez Barajas, ³ N. Berger, ⁴ T. Bowcock, ³ C. Calzolaio, ² G. Cavoto, ^{5,6}
R. Chislett, ⁷ A. Crivellin, ^{2,8,9} M. Daum, ² M. Fertl, ¹⁰ M. Giovannozzi, ⁸ G. Hesketh, ⁷ M. Hildebrandt, ²
I. Keshelashvili, ¹¹ A. Keshavarzi, ¹² K.S. Khaw, ^{13,14} K. Kirch, ^{1,2} A. Kozlinsky, ⁴ A. Knecht, ² M. Lancaster, ¹²
B. Märkisch, ¹⁵ F. Meier Aeschbacher, ² F. Méot, ¹⁶ A. Nass, ¹¹ A. Papa, ^{2,17} J. Pretz, ^{11,18} J. Price, ³ F. Rathmann, ¹¹
F. Renga, ⁶ M. Sakurai, ¹ P. Schmidt-Wellenburg, ² A. Schöning, ¹⁹ C. Voena, ⁶ J. Vossebeld, ³ F. Wauters, ⁴ and P. Winter²⁰

Experimental approach

Experimental concepts — Storage ring

- Compact storage ring with lateral injection through a magnetic channel
- Need a magnetic kick within 1 revolution (< 10 ns) to avoid hitting the injection channel after 1 turn
- In principle, 0.14% injection efficiency is possible considering the emittance of the PSI beam lines

Experimental concepts — Storage ring

- Compact storage ring with lateral injection through a magnetic channel
- Need a magnetic kick within 1 revolution (< 10 ns) to avoid hitting the injection channel after 1 turn
- In principle, 0.14% injection efficiency is possible considering the emittance of the PSI beam lines
 - In practice, before the orbit stabilises, muons are lost due to **MS through the E-field electrodes**
 - efficiency ~ 10⁻⁴
 - positron detection rate ~ 10 kHz

Experimental concepts — Helix muonEDM

- Vertical injection into a 3T solenoid
- Also need a kick to stabilise the orbit in the central region, but within > 50 ns
- Minimal material budget along the muon trajectories
- 5 x 10⁻⁴ capture efficiency
 - 50 kHz detection rate

Sensitivity and Physics reach (1 year run)

- a = 1.12 x 10⁻³
- $\gamma = 1.55$
- $P_0 = 0.93$
- E = 20 kV/cm
- $N = 50 \text{ MHz} \times 200 \text{ days} = 7 \times 10^{11}$
- $\tau = 2.2 \times 10^{-6} \text{ s}$
- $\alpha = 0.3$

$$\sigma(|d_{\mu}|) \le 6 \times 10^{-23} e \cdot \mathrm{cm}$$

$$\sigma(|d_{\mu}|) = \sim \frac{a\hbar\gamma}{2P_{0}E_{f}\sqrt{N}\tau_{\mu}\alpha}$$

A staged approach

- Phase-1 (precursor experiment):
 - goals: demonstrate the feasibility of injection principle and frozen spin technique + improve the current limit by x50 (competitive with final results from ongoing g-2 experiments)
 - existing magnet (3 T, 10 cm bore)
 - non-optimal beam line (28 MeV/c) to match the magnet strength and size and to avoid conflicts with other activities
 - E ~ 3 kV/cm
 - simplest detector solutions
 - partially covered by an ERC CoG at PSI

Phase-2

- goal: improve the current limit by x2000
- dedicated magnet (3T)
- best suited beam line (125 MeV/c)
- E ~ 20 kV/cm
- optimal detector solutions

Challenges

- Fast and very thin detectors in the injection channel to trigger the magnetic kick
- Fast ramping of kick magnets
- Detectors with minimal material budget, operating in vacuum
- Accurate rotation of the full apparatus to invert the injection direction and suppress systematics from disuniformities of the fields
- Large eddy currents from the magnetic kick

Detector developments

- Fast kick trigger from muons:
 - extremely thin scintillator to preserve the muon emittance (critical to keep a high capture efficiency)

To the solenoid

- Very light muon tracker to characterise the beam and the trigger before the EDM measurement – high granularity TPC
- Positron tracking and timing in a harsh environment (vacuum, limited space, eddy currents...) – scintillating fibers/ silicon detectors

From the injection channel

Entrance scintillator

INFN Roma: interests and opportunities

- Muon tracker:
 - R&D for a TPC with high granularity readout
- Mechanical integration
 - Criticalities in engineering manpower availability at PSI
 - Concrete possibility of taking a leading role
- Many other opportunities if there are people interested to join:
 - beam injection
 - fast trigger electronics
 - analysis and simulation

Muon tracker R&D (INFN Roma & Sapienza)

- TPC with high granularity readout (GridPix)
 - two test beams in 2022 @ PSI
 - one paper submitted to JINST, second paper in preparation

50 µm pixel readout

Tentative Schedule

- First tests with the precursor setup: 2026
 - demonstration of injection and frozen spin
- PSI long shutdown: 2027
 - upgrade of the muon beam lines
- Precursor experiment: 2028
- Final experiment: 2030 2031
 - in combination with innovative beam-cooling approaches (muCool) could yield a much higher injection probability

Conclusions

- A dedicated experiment to search for a muon EDM is highly desirable to complete the experimental coverage on dipole interactions and new sources of CP violation
- Excellent prospects for a ground-breaking muon EDM experiment at PSI within this decade
 - improving the limit by 3 orders of magnitudes, down to 6 x 10⁻²³ e² cm per year
 - improving the expected limit from FNAL g-2/EDM by a factor 20
- Still in a conceptual design phase, many challenges to face, a lot of room for new ideas and new contributions
- Close synergies with other activities at INFN Roma: MEG (physics, logistic), RD51-DRD1 (detectors, electronics), aMUSE (physics, beam studies)

Backup

The HiMB Project @ PSI

- PSI is designing a high intensity muon beam line (HiMB) with a goal of ٠ ~ $10^{10} \,\mu$ /sec (x100 the MEG-II beam)
- Optimization of the beam optics: ٠
 - improved muon capture efficiency at the production target
 - improved transport efficiency to the experimental area -

x4 μ capture eff. x6 µ transport eff.

1.3 x 10¹⁰ µ/s

in the experimental area with 1400 kW beam power

muCool

The Detector — Entrance trigger

- A muon detector with reasonable timing performances (~ ns) is needed at the entrance to:
 - set the T₀ for the precession measurement
 - trigger the magnetic kick
 - start the measurement cycle
- O(10 MHz) muons pass the injection channel, only O(60 kHz) are in a phase space region that allows the capture:
 - to avoid a large dead time, need to trigger only muons that can be captured

To the solenoid

Anti-coincidence between entrance and lateral scintillators

Only muons on a trajectory close to the nominal one will be triggered

The Detector — Muon tagger

- Among triggered muons, there will be still some with a relatively large vertical angle in the measurement region
 - the measurement of the decay angle can be biased
- A muon tracker/tagger can identify such events for a proper treatment
 - needs σ(θ) ~ 1 mrad —> very precise and very light

- Design derived from Mu3e $(\mu^+ \rightarrow e^+ e^+ e^- @ PSI)$

The Detector — End signals

- The measurement has to be stopped as early as possible to allow a new entrance trigger and avoid dead time
- Stop signal should arrive when:
 - a positron from the muon decay is detected
 - the muon exits the measurement region
- Fast scintillators to:
 - measure the decay time
 - lift the veto for a subsequent entrance trigger
 - identify muons exiting the measurement region before decaying

Systematic uncertainties

- The main sources of systematic uncertainties were discussed in the paper by Farley *et al.*
 - 1. $B_r \neq 0$
 - 2. Misalignment of B and E planes
 - 3. Electric field not on a plane —> magnetic precession in the rest frame —> vertical precession in the lab frame
 - 4. Residual (g-2) precession + locally nonhorizontal orbit = vertical precession
 - 5. $B_{\theta} \neq 0$
 - 6. Early-to-late detector effects

Vertical orbit oscillations! Average to 0, but can deteriorate the quality of the asymmetry fit

Can be canceled by comparing clockwise (CW) and counter-clockwise (CCW) injection

CW vs. CCW

+ Single muon storage avoids high detector rates changing with time + injection effects measured without muons

Sensitivity and Physics reach (1 year run)

- a = 1.12 x 10⁻³
- $\gamma = 1.55$
- $P_0 = 0.93$
- E = 2 MV/m
- $N = 50 \text{ MHz} \times 200 \text{ days} = 7 \times 10^{11}$
- $\tau = 2.2 \times 10^{-6} s$
- $\alpha = 0.3$

$$\sigma(|d_{\mu}|) \le 6 \times 10^{-23} e \cdot \mathrm{cm}$$

$$\sigma(|d_{\mu}|) = \sim \frac{a\hbar\gamma}{2P_{0}E_{f}\sqrt{N}\tau_{\mu}\alpha}$$

