
Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Networking for
Docker containers

Stefano Nicotri (INFN Bari)
nicotri@infn.it

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Outline

● Networking in Docker containers
● Networking Drivers

○ bridge
○ overlay
○ ipvlan and macvlan
○ none
○ third-party

● Challenge

2

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Networking in Docker containers

Some of the questions we want to answer here are:

how do I connect two containers running on my host?

how do I isolate my container?

how do I access a specific port?

how do I connect containers running on different hosts?

how do I connect an external (possibly non-containerized) service to my container?

3

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Networking in Docker containers

One powerful feature of Docker is its large variety of networking possibilities for
containers.

It is possible to connect containers together, or connect them to non-Docker
workloads, and services do not need to be aware that they are deployed on Docker,
or whether their peers are also Docker workloads or not.

The Docker networking system makes use of drivers, which provide different
functionalities

4

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Docker driver summary

User-defined bridge networks are best when you need multiple containers to communicate on the same
Docker host.

Host networks are best when the network stack should not be isolated from the Docker host, but you want
other aspects of the container to be isolated.

Overlay networks are best when you need containers running on different Docker hosts to communicate, or
when multiple applications work together using swarm services.

IPvlan networks give users total control over both IPv4 and IPv6 addressing. The VLAN driver builds on top
of that in giving operators complete control of layer 2 VLAN tagging and even IPvlan L3 routing

Macvlan networks are best when you are migrating from a VM setup or need your containers to look like
physical hosts on your network, each with a unique MAC address.

Third-party network plugins allow you to integrate Docker with specialized network stacks.

5

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Bridge networking driver

The bridge network driver is the default networking driver (the one you end up
using if you don’t specify any driver), and apply to containers running on the same
Docker daemon host

A bridge network uses a software bridge which allows containers connected to the
same bridge network to communicate, while providing isolation from containers
which are not connected to that bridge network

Docker automagically creates rules (e.g. via iptables) in the host machine to achieve
such result

6

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Bridge networking driver

When Docker is started, a default bridge network is created, called bridge, and all
containers connect to it unless otherwise specified. As a result, all such containers
can communicate with each other, but are not accessible from the outside

Each container has its own IP address on the bridge

It is also possible to create user-defined custom bridge networks, with interesting
features

7

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

User-defined bridge networks: automatic DNS resolution

Containers on the default bridge network can only access each other by IP
addresses

On a user-defined bridge network, containers can resolve each other by name or
alias.

For example, if you call your containers web and db, the web container can connect
to the db container at db, without needing to specify (or even know) its IP address

8

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

User-defined bridge networks: better isolation

Having all our containers attached to the default bridge network can be risky, as
unrelated stacks/services/containers are then able to communicate, and a
vulnerability in a service can affect unrelated services

Using a user-defined network provides a scoped network in which only containers
attached to that network are able to communicate among each other

9

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

User-defined bridge networks: attachability

It is possible to connect or disconnect containers from user-defined networks on
the fly (without stopping them), while this is not possible with the default bridge

To remove a container from the default bridge network, you need to stop the
container and recreate it with different network options

10

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Bridge network driver: usage

create the my-net bridge

11

$ docker network create my-net

$ docker create --name my-nginx --network my-net --publish 8080:80 nginx:latest

create a container attached to the my-net bridge, with a port exposed on the host

in this way, the port 8080 on the host will be mapped to the port 80 of the container
(the syntax is host_port:container_port), and it will be possible to access
the service exposed by the container directly from the host

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Bridge network driver: usage

12

$ docker network connect my-net my-container

$ docker network disconnect my-net my-container

connect a container (here called my-container) to the my-net bridge:

disconnect it:

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Host network driver

The host driver is mainly used for standalone containers

It removes network isolation between the container and the Docker host, and uses
the host’s networking directly.

If you run a container using this driver it does not get its own IP-address allocated

example: if you run a container which binds to port 80, the container’s application is
available on port 80 on the host’s IP address, without needing to publish any port

13

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Host network driver: use cases

Host mode networking can be useful to optimize performance, and in situations
where a container needs to handle a large range of ports, as it does not require
network address translation (NAT), and no proxy is created for each port.

The host networking driver only works on Linux, and is not supported on Mac
and/or Windows

14

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Host network driver: usage

The host network driver is used passing the --network host option when
creating a container

15

$ docker run --rm -d --network host --name my_nginx nginx

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Overlay network driver

Overlay networks connect multiple Docker daemons together

The overlay network driver creates a distributed network among multiple Docker
daemon hosts. This network sits on top of (overlays) the host-specific networks,
allowing containers connected to it (including swarm service containers) to
communicate

Docker transparently handles routing of each packet to and from the correct Docker
daemon host and the correct destination container.

16

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Overlay network driver: use cases

Overlay networks can be used to connect standalone containers living on different
Docker hosts or connect a swarm service and a standalone container

Overlay networks support encryption (not on Windows) for secure communications
among containers/swarms

17

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Overlay network driver: usage

18

create the my-overlay-net overlay network

$ docker network create -d overlay my-overlay-net

$ docker network create --driver overlay --attachable my-overlay-net

use the --attachable flag to make it usable to standalone containers

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Overlay network driver: encryption

19

It is possible to enforce data encryption adding the --opt encrypted flag when
creating the overlay network. This enables IPSEC encryption at the level of the vxlan.
This encryption imposes a non-negligible performance penalty, so you should test
this option before using it in production.

$ docker network create --opt encrypted --driver overlay --attachable my-net

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

ipvlan and macvlan network driver

the ipvlan network driver give users total control over IPv4 and IPv6 addressing

The VLAN driver builds on top of that in giving operators complete control of layer 2
VLAN tagging and even IPvlan L3 routing

Some applications (e.g. applications which monitor network traffic) expect to be
directly connected to the physical network instead. In this type of situation, you can
use the macvlan network driver to assign a MAC address to each container’s
virtual network interface, making it appear to be a physical network interface
directly connected to the physical network

Used for legacy applications or if you need your containers to look like physical
hosts on your network

20

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

“none” network driver

The last possibility is to disable networking features for the container altogether,
using the none network driver

This is usually used in conjunction with a custom network driver

21

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Third party network driver

As for storage drivers, multiple third-party plugins are available for networking as
well, to integrate Docker with specialized network stacks

22

Corso base su Docker 12-14/09/2023S. Nicotri (nicotri@infn.it)

Thank you for your attention

23

