
Corso base su docker - Setptember 12-14, 2023

Docker architecture, images 
and containers

Basic concepts

Marica Antonacci (INFN Bari)
marica.antonacci@ba.infn.it



Corso base su docker - Setptember 12-14, 2023

Outline

● What is a container?
● Docker architecture
● Docker main components

○ Images
○ Containers
○ Registries

● Docker CLI & GUI
● Hands-on#1
● References

2



Corso base su docker - Setptember 12-14, 2023

What are containers?

Containers are a form of virtualization technology that allows you to package an 
application and its dependencies together, isolating it from the underlying system

3

❏ Key concepts:
➢ Isolation: Containers provide a secure and 

isolated environment for applications, 
preventing conflicts with other applications 
or the host system.

➢ Portability: Containers can run consistently 
across different environments, making it easy 
to develop and deploy applications.

➢ Efficiency: Containers are efficient in terms 
of resource usage, as they share the host OS 
kernel.



Corso base su docker - Setptember 12-14, 2023

Benefits of containerization

Containerization offers several advantages in software development and deployment.

❏ Build it once, run it anywhere: Developers can easily and reliably run applications in different 
environments, such as local desktops, physical servers, virtual servers, production environments, 
and public and private clouds.

❏ Improved Developer Productivity: Containers allow developers to create predictable runtime 
environments. The old adage “it worked on my machine” is no longer a concern! In a containerized 
architecture, developers and operations teams spend less time debugging and diagnosing 
environmental differences, and can spend their time building and delivering new product features. 

❏ Smooth scaling: Applications in containers can be easily scaled up or down to handle varying 
workloads. Containers support a true microservices approach to development.

❏ Resource Optimization: Containers optimize resource utilization, making efficient use of server 
resources.

4



Corso base su docker - Setptember 12-14, 2023

Virtual Machines vs Containers

5

The Containers work on the concept of OS-level virtualization, i.e. the kernel's ability to make multiple 
isolated environments on a single host.



Corso base su docker - Setptember 12-14, 2023

Virtual Machines vs Containers

6

Virtual Machine Container

Pros: 
VMs provide strong isolation and 
offer flexibility in choosing 
different operating systems.

Pros:
Lightweight and efficient, 
containers share the host OS 
kernel, resulting in faster startup 
and efficient resource usage.

Cons:
VMs are heavier, slower to start, 
and consume more resources 
due to their independent OS.

Cons:
Limited OS compatibility and less 
isolation compared to VMs.



Corso base su docker - Setptember 12-14, 2023

OS-level virtualization pillars

Namespaces provide process and resource isolation. 

Control Groups (cgroups) are responsible for resource 
allocation and management. 

Security Modules (AppArmor, SELinux) restrict a 
container's capabilities. They ensure that containers can 
only access the resources and actions they are explicitly 
allowed to, enhancing overall security.

Seccomp (Secure Computing Mode): Seccomp allows 
administrators to define a list of system calls that 
containers are allowed to make. It significantly reduces 
the attack surface by limiting the system calls available 
to containers. The default seccomp profile for Docker, 
disables around 44 syscalls out of 300+.

7

See this interesting blog about Namespaces and Cgroups

https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/


Corso base su docker - Setptember 12-14, 2023

Restricting visibility: Namespaces

Linux namespaces: It is a feature of Linux kernel to 
isolate resources from each other. This allows one set of 
Linux processes to see one group of resources while 
allowing another set of Linux processes to see a different 
group of resources. 

There are several kinds of namespaces in Linux: Mount 
(mnt), Process ID (PID), Network (net), User ID (user) and 
Interprocess Communication (IPC). 

For example, two processes in two different mounted 
namespaces may have different views of what the 
mounted root file system is. Each container can be 
associated with a specific set of namespaces, and these 
namespaces are used inside these containers only.

8



Corso base su docker - Setptember 12-14, 2023

Restricting usage: Control groups

cgroups provide an effective mechanism for 
resource limitation. 

With cgroups, you can control and manage 
system resources (CPU, Memory, Networking, 
disk I/O) per Linux process, increasing overall 
resource utilization efficiency. 

Cgroups allow to control resource utilization per 
container.

9



Corso base su docker - Setptember 12-14, 2023

Introduction to docker

❏ Docker is a leading containerization platform that simplifies the creation, 
deployment, and management of containers.

❏ Docker plays a pivotal role in modern software development and deployment 
practices.

❏ Notable companies like Netflix and Uber rely on Docker to enhance their 
application delivery processes.

https://www.linkedin.com/pulse/dockers-impact-how-leading-companies-scaled-
business-using-sachin-adi/

10

https://www.linkedin.com/pulse/dockers-impact-how-leading-companies-scaled-business-using-sachin-adi/
https://www.linkedin.com/pulse/dockers-impact-how-leading-companies-scaled-business-using-sachin-adi/


Corso base su docker - Setptember 12-14, 2023

Docker architecture

11

Docker works on a client-server architecture:

● a server with a long-running daemon 
process dockerd.

● APIs which specify interfaces that 
programs can use to talk to and instruct 
the Docker daemon.

● A command line interface (CLI) client 
docker.

Docker is an open source platform for building, deploying, and managing containerized 
applications



Corso base su docker - Setptember 12-14, 2023

docker, containerd, runc

When you run a container with docker, you’re actually running it 
through the Docker daemon, containerd, and then runc.

● containerd is an industry standard high-level runtime for 
containers. It's main responsibility is to maintain the 
container's lifecycle (create/update/stop/restart or delete). 

● runc is the runtime specification given by OCI (Open 
Container Initiative) for running containers, interacting with 
existing low-level Linux features, like namespaces and 
control groups. 

○ after the creation of the container runc exits and the lifecycle of the 
container is managed by the shim(*) process (that becomes parent of 
the container).

12

(*) In tech terms, a shim is a component in a software system, which acts as a bridge between different APIs, or as a compatibility layer. A 
shim is sometimes added when you want to use a third-party component, but you need a little bit of glue code to make it work.



Corso base su docker - Setptember 12-14, 2023

Docker main components 

● Docker containers: Isolated user-space environments running the same or 
different applications and sharing the same host OS kernel. Containers are 
created from Docker images.

● Docker images: Docker templates that include application libraries and 
applications. Images are used to create containers and you can bring up 
containers immediately. You can create and update your own custom images 
as well as download build images from Docker's public registry.

● Docker registries: This is an images store. Docker registries can be public or 
private, meaning that you can work with images available over the internet or 
create your own registry for internal purposes. One popular public Docker 
registry is Docker Hub.

13

https://hub.docker.com/


Corso base su docker - Setptember 12-14, 2023

What is a docker registry?

A Docker registry is a storage and distribution system for named Docker images. 

The same image might have multiple different versions, identified by their tags.

A Docker registry is organized into Docker repositories , where a repository holds 
all the versions of a specific image. 

The registry allows Docker users to pull images locally, as well as push new 
images to the registry (given adequate access permissions when applicable).

By default, the Docker engine interacts with DockerHub, Docker’s public registry 
instance. 

14

https://hub.docker.com/


Corso base su docker - Setptember 12-14, 2023

Private registries

Use cases for running a private registry on-premise (internal to the organization) 
include:

● Distributing images inside an isolated network (not sending images over the 
Internet)

● Creating faster CI/CD pipelines (pulling and pushing images from internal 
network), including faster deployments to on-premise environments

● Deploying a new image over a large cluster of machines
● Tightly controlling where images are being stored

15



Corso base su docker - Setptember 12-14, 2023

Private registries: some open-source implementations

● Docker Registry is a stateless, highly scalable server side application that stores 
and lets you distribute Docker images .

● GitLab Container Registry is tightly integrated with GitLab CI’s workflow, with 
minimal setup.

○ INFN SSNN provide a container registry as part of the platform baltig.infn.it based on GitLab

● Harbor (CNCF Graduated project) is an open source registry that secures artifacts 
with policies and role-based access control, ensures images are scanned and free 
from vulnerabilities, and signs images as trusted.

○ INFN Cloud has implemented a docker registry based on Harbor: https://harbor.cloud.infn.it/ 

● JFrog Container Registry supporting Docker containers and Helm Chart repositories 
for Kubernetes deployments.

16

https://docs.docker.com/registry
https://docs.gitlab.com/ee/user/packages/container_registry/
https://baltig.infn.it/
https://goharbor.io/
https://harbor.cloud.infn.it/
https://jfrog.com/container-registry/


Corso base su docker - Setptember 12-14, 2023

Docker image layers

● A Docker Image consists of read-only layers 
built on top of each other. 

● Docker uses the Union File System (UFS) to 
build an image. 

● The image is shared across containers.
● Each time Docker launches a container from 

an image, it adds a thin writable layer, known 
as the container layer, which stores all 
changes to the container throughout its 
runtime.

17



Corso base su docker - Setptember 12-14, 2023

Docker image vs container

Each container has its own writable 
container layer, and all changes are 
stored in this container layer.

Multiple containers can share access to 
the same underlying image and yet have 
their own data state.

When the container is deleted, the 
writable layer is also deleted. The 
underlying image remains unchanged.

18



Corso base su docker - Setptember 12-14, 2023

Copy-On-Write mechanism

19

COW is a standard UNIX pattern that provides a single shared copy of some data until the 
data is modified.

Docker makes use of copy-on-write technology with both images and containers. This 
CoW strategy optimizes both image disk space usage and the performance of container 
start times. At start time, Docker only has to create the thin writable layer for each 
container.

Containers that write a lot of data consume more space than containers that do not. This 
is because most write operations consume new space in the container’s thin writable top 
layer.

Note: for write-heavy applications, you should not store the data in the container. Instead, 
use Docker volumes, which are independent of the running container and are designed to 
be efficient for I/O. In addition, volumes can be shared among containers and do not 
increase the size of your container’s writable layer. (Source: Docker docs)

https://docs.docker.com/storage/storagedriver/


Corso base su docker - Setptember 12-14, 2023

Docker storage drivers

Storage drivers allow you to create data in the writable layer of your container. The files won’t be 
persisted after the container is deleted, and both read and write speeds are lower than native file 
system performance.
Docker supports the following storage drivers:

● overlay2 is the preferred storage driver, for all currently supported Linux distributions, and requires no extra configuration.
● fuse-overlayfs is preferred only for running Rootless Docker on a host that does not provide support for rootless overlay2. On 

Ubuntu and Debian 10, the fuse-overlayfs driver does not need to be used as overlay2 works even in rootless mode. 
● devicemapper is supported, but requires direct-lvm for production environments, because loopback-lvm, while 

zero-configuration, has very poor performance. devicemapper was the recommended storage driver for CentOS and RHEL, as 
their kernel version did not support overlay2. However, current versions of CentOS and RHEL now have support for overlay2, 
which is now the recommended driver.

● The btrfs and zfs storage drivers are used if they are the backing filesystem (the filesystem of the host on which Docker is 
installed). These filesystems allow for advanced options, such as creating “snapshots”, but require more maintenance and 
setup. Each of these relies on the backing filesystem being configured correctly.

● The vfs storage driver is intended for testing purposes, and for situations where no copy-on-write filesystem can be used. 
Performance of this storage driver is poor, and is not generally recommended for production use.

20

More info at https://docs.docker.com/storage/storagedriver/select-storage-driver/

https://docs.docker.com/storage/storagedriver/select-storage-driver/


Corso base su docker - Setptember 12-14, 2023

Persist data with volumes

● volumes are stored in a part of the host filesystem which is managed by Docker 
(/var/lib/docker/volumes/ on Linux). Non-Docker processes should not modify this part of 
the filesystem. Volumes are the best way to persist data in Docker.

● bind mounts may be stored anywhere on the host system. They may even be important 
system files or directories. Non-Docker processes on the Docker host or a Docker container 
can modify them at any time.

● tmpfs mounts are stored in the host system’s memory only, and are never written to the 
host system’s filesystem

21

Docker provides the following options for 
containers to store files in the host machine, so 
that the files are persisted even after the 
container stops
❖ volumes
❖ bind mounts
❖ tmpfs 



Corso base su docker - Setptember 12-14, 2023

Docker networking

● bridge: the default networking driver in Docker. This can be used 
when multiple containers are running in standard mode and need 
to communicate with each other

● host: removes the network isolation completely. Any container 
running under a host network is basically attached to the network 
of the host system. Host mode networking can be useful to 
optimize performance, and in situations where a container needs 
to handle a large range of ports, as it does not require network 
address translation (NAT), and no “userland-proxy” is created for 
each port

● none: this driver disables networking for containers altogether
● overlay: this is used for connecting multiple Docker daemons 

across computers
● macvlan: it allows assignment of MAC addresses to containers, 

making them function like physical devices in a network
● ipvlan: similar to macvlan, the key difference being that the 

endpoints have the same MAC address. 

22

A network in Docker is another logical object like a container and image.

By default Docker has the following networking drivers: 



Corso base su docker - Setptember 12-14, 2023

Docker cli
$ docker help

23

https://docs.docker.com/engine/reference/commandline/cli/

https://docs.docker.com/engine/reference/commandline/cli/


Corso base su docker - Setptember 12-14, 2023

Commands to manage docker objects

24



Corso base su docker - Setptember 12-14, 2023

Miscellaneous commands

● docker ps: list running containers 
○ -a to list also stopped containers
○ -s to show container sizes

● docker stats: display container(s) usage statistics
● docker system df: show docker disk usage
● docker system prune: remove unused data

25



Corso base su docker - Setptember 12-14, 2023

Docker Graphical Interface
Portainer is a lightweight management UI which allows you to easily manage your different Docker environments.

The tool, which is compatible with the standalone Docker engine, Docker Swarm, Nomad and Kubernetes, is simple to 
both use and deploy, being available as a Docker container itself. It can be used both on the local machine as well as a 
remote Docker GUI.

Portainer allows you to manage all your Docker resources (containers, images, volumes, networks and more)

26

For more details: https://docs.portainer.io/

https://docs.portainer.io/


Corso base su docker - Setptember 12-14, 2023

Docker alternatives

One of the drawbacks of Docker is that the Docker engine requires root privileges 
to run containers.

udocker is an open source project and provides the same basic functionality the 
Docker engine does but without root privileges.

It works by creating a chroot-like environment over the extracted container 
and uses various implementation strategies to mimic chroot execution with 
just user-level privileges. One of the execution environments you can use is 
runC, the same one used by Docker.

Podman is a daemon-less, open-source, Linux-native container engine developed 
by RedHat, that is used to build, run and manage Linux OCI containers and 
container images. Containers can either be run as root or in rootless mode

27

https://github.com/indigo-dc/udocker
https://podman.io/


Corso base su docker - Setptember 12-14, 2023

Docker Hands-on#1

https://infn-bari-school.github.io/docker-tutorial/

28

https://infn-bari-school.github.io/docker-tutorial/


Corso base su docker - Setptember 12-14, 2023

References & credits

https://docs.docker.com/get-started/

https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-kno
w-to-start-creating-containers-8ffaf064930a

http://100daysofdevops.com/21-days-of-docker-day-21/

https://awesome-docker.netlify.app/

29

https://docs.docker.com/get-started/
https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-know-to-start-creating-containers-8ffaf064930a
https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-know-to-start-creating-containers-8ffaf064930a
http://100daysofdevops.com/21-days-of-docker-day-21/
https://awesome-docker.netlify.app/

