RUN 1:

LY studies with differrent gas flows

Rita Antonietti
11/05/2023

Goal

The goal is to study the LIME's response with different gas flow
-> The LY has been studied with different gas flow:

Flow (I/h)	Range Run
20	$4205-4256$
	$4315-4509$
	$5110-5162$
	$5508-5565$
10	$5566-5729$
3	$4512-4780$
1	$5164-5490$

Parameter	Value
Exp time [s]	0.3
GEMs HV [V]	420
55Fe distance [cm]	25

The LY has been evaluated fitting the integral distribution with:

exp + exp + Cruijff function

The mean of the Cruijff function defines the ${ }^{55}$ Fe peak

- Increasing the pressure, the LY increase
- There are some current fluctuations;
- The average trigger rate decreases;
- The number of super cluster per image increases and the number of the ${ }^{55} \mathrm{Fe}$ cluster per image is costant -> the background increases

Flow = $10 \mathrm{l} / \mathrm{h}$

- The number of super cluster per image is costant and the number of the ${ }^{55} \mathrm{Fe}$ cluster per image is costant;

Three different areas with gas flow $\mathbf{=} \mathbf{2 0} \mathrm{l} / \mathrm{h}$ are shown

Flow $=20 \mathrm{l} / \mathrm{h}$

- Decreasing the pressure, the LY increase

The light is normalised to the first run and a linear fit is done

Overground at LNF

Run1 - Underground at LNGS

Spikes per hour

For each GEM, the spikes are defined as the variation of the current -> For each gas flow the number of spikes per hour is less than 1

