Wide band-gap semiconductor sensors and front-ends for harsh environments

KEK Electronics-system group Tetsuichi Kishishita

XII Front-End Electronics Workshop, 12-16 Jun. 2023, Torino

kisisita@post.kek.jp

Outline

- SiC sensors for MIP detectors at COMET muon experiment @ J-PARC (Japan Proton Accelerator • Research Complex)
 - Application to muon beam monitor and proton extinction monitor
 - Characteristics of the PN-sensors -
- Diamond sensors for neutron detection at Fukushima nuclear power plant ٠
 - Device fabrication and characteristics Detector system and prototype performance

XII Front-End Electronics Workshop, 12-16 Jun. 2023, Torino

2

Introduction

- SiC and diamond are more radiation-hard than standard n-type Si, 10¹⁴ n_{eq}/cm² for SiC and 10¹⁵ n_{eq}/cm² for diamond. -
- Uniform device characteristics and productivity are still challenging. -

Property	Diamond	GaN	4H-SiC	Si	Ge	CdTe	CdZnTe
Eg [eV]	5.5	3.39	3.26	1.12	0.67	1.44	1.60
Ebreakdown[V/ cm]	107	4x10 ⁶	2.2x10 ⁶	3x10⁵	10 ⁵	TBD	TBD
μ _e [cm²/Vs]	1800	100	800	1450	<3900 *[2]	1090 *[1]	906 *[3]
μ _h [cm²/Vs]	1200	30	115	450	<1900	110	-
v _{sat} [cm/s]	2.2x10 ⁷	-	2x10 ⁷	0.8x10 ⁷	0.74x10 ^{7*[5]}	107	107
Z	6	31/7	14/6	14	32	48/52	48/52/30
E r (dielectric const.)	5.7	9.6	9.7	11.7	TBD	TBD	TBD
e-h energy [eV]	13	8.9	7.6-8.4	3.6	2.9	4.5	5.0
Density	3.515	6.15	3.22	2.33	5.3	5.9	5.8
Displacem. [eV]	43	20	25	13-20	15-18	5.3-6.2 * ^[4]	-
	high radiation-tolerance				small signal	charges	

For stable device production, KEK-Esys collaborates with AIST power device group from 2019.

kisisita@post.kek.jp

low leakage current

SiC device fabrication

- PN diodes in wafer process
- Reverse bias tolerance of 3 kV
- 50 um epi grown on (0001) 4H-SiC n-type substrate @AIST
- Nd-Na: 4.7 x 10¹⁴ cm⁻³
- Thickness: 350 um
- 260 dies with 5 x 5 mm² from 4-inch wafer, 4 x 4 mm² active area

kisisita@post.kek.jp

XII Front-End Electronics Workshop, 12-16 Jun. 2023, Torino

Schottky diode

- Easy process

PN diode

- Difficult process (High temperature annealing)

- Sensitive to surface conditions

- Less sensitive to surface conditions

Silicone rubber for preventing electric discharges

commercial CSA (AC-coupling)+shaper

Device characteristics

- Stable Landau peak position (no polarization/charge-up)
- Full depletion voltage 1000 V for 50 um epi (TCAD).

kisisita@post.kek.jp

XII Front-End Electronics Workshop, 12-16 Jun. 2023, Torino

What can we do with these devices?

Needs for SiC sensor: COMET at J-PARC

- COMET (COherent Muon to Electron Transition) starts from 2027 (one of the KEK core projects).
- They require rad-hard beam monitors for high-intensity 8 GeV protons / secondary particles.

kisisita@post.kek.jp

What do we do in COMET: Muon to Electron Transition

kisisita@post.kek.jp

- Conversion of a muon to an electron is "Charged Lepton Flavor Violation" process and strongly prohibited in the Standard Model.
- Its discovery is an evidence of the new physics.

- Sensitivity for the new physics scale is >1000TeV.
- \sim µ-e conversion has sensitivity to both photonic and non-photonic interaction.

It's good opportunity to install "own" detectors to contribute to new physics!

COMET Phase-1

- 8 GeV proton beam is injected to Pion production target.
- Pions decay to muons during transportation in Solenoid magnet.

kisisita@post.kek.jp

Concept of SiC Muon Beam Monitor

kisisita@post.kek.jp

kisisita@post.kek.jp

ADC Sampling Rate: 10MS/s or 12.5MS/s

Preliminary test results

XII Front-End Electronics Workshop, 12-16 Jun. 2023, Torino

kisisita@post.kek.jp

ADC outputs from 50 kHz sin-wave

Prototype of the SiC matrix board

We can make the muon beam monitor on time before the COMET Phase-1.

*Commercial SiC epi-wafer is another option. (6k euros/wafer).

11

Further Needs for SiC sensors (more challenging)

- 8 GeV proton beam is bunched in every 1.2us.
- Pion is BGD. Select muon events by timing difference.

DCC

kisisita@post.kek

Workshop, 12-16 Jun. 2023, Torino

	r	٦	
	1		/
		r.,	
- 1		-	

Requirements for Extinction Monitor

- Want to detect 1 proton after the main bunch -
- Max. 1.6 x 10⁷ proton/bunch with beam spot of ϕ ~1 cm (TBD)
- Neutron fluence of 2.1 x 10^{14} n_{eq}/cm² during Phase-1

- 1. Relatively large-area devices can be fabricated in wafer process.→many detectors
- 2. Machine maintenance period is available every week. \rightarrow We replace the detector!
- Electrodes should be segmented (pixel/strips) to reduce the event rates.
- Readout electronics placed sidewards to avoid proton beam spot for radiation reason. -

extraction

prove the concept, we investigated the sensor segmentation and performance uniformity.

10p, 12-16 Jun. 2023, Torino

断面图

13

Sensor segmentation (hybrid pixel detector)

- 5 mm x 5 mm with 12 x 12 electrodes, 270 um pitch
- readout with low-noise ASIC
- Au/In stud bump technology
 - (a)

Ti(100nm)/Al(2500nm)

kisisita@post.kek.jp

XII Front-End Electronics Workshop, 12-16 Jun. 2023, Torino

Passivation (Parylen or Silicone rubber) is necessary to prevent electric discharges @1 kV.

14

kisisita@post.kek.jp

technology developed by JAXA and Mitsubishi Heavy Indus- to the common cathode electrode at a temperature of -18° C. tries (MHI) in Japan [22]. Subsequently, the CdTe-ASIC hybrid All the pixels were read out for each trigger, and the data were

Spectral performance

- HV: +600 V
- Exposure: 3 days
- Mode: HG

- HV: +600 V
- Exposure: 0.5 days
- Mode: HG

h
U

Imaging performance

- Blind search of pinhole position in Pb sheet -
- Count Sr-90 events between 1000-6000 e-, 1 min for each pixel -

- Finer segmentation is realistic and nice uniformity expectable in larger devices
- SiC performance is closing to silicon.
- Still long way to reach the proton extinction monitor, but SiC is an important candidate.

kisisita@post.kek.jp

Needs of Diamond sensors

- Nuclear decommission is on-going at Fukushima Nuclear Power Plant. -
- Need "eye" to know exact locations of nuclear debris for robotic arms (at least monitor the neutron flux to protect workers). _
- No data of radiation environment yet. Gamma-rays from Cs every direction: max. 1 kGy/h (100 krad/h)

Site of the Fukushima Nuclear Power Plant

kisisita@post.kek.jp

XII Front-End Electronics Workshop, 12-16 Jun. 2023, Torino

Concept of the neutron detector

Under high γ -BGD, thin sensors are required for neutron detection. \rightarrow Diamond!

Concept of neutron detector

- Use neutron converters (⁶LiF/¹⁰B₄C) and detect alpha-particles
- Detect neutrons (~1 Hz) under high gamma-ray BGD (~1 MHz)
- Sandwich configuration to increase detection efficiency

kisisita@post.kek.jp

kisisita@post.kek.jp

Characteristics of the diamond device

- Cathode luminescence method, free-exciton recombination line@ 235nm
- IBE (Ion Beam Etching) on 10 um surface to mitigate roughness
- Implant p+ layer on Ohmic side

kisisita@post.kek.jp

Analog front-ends & prototype

- TSMC 65 nm LP process, 1 mm x 1 mm
- 8 channels, CSA+CR-RC+Disc.+counter
- No ENC degradation confirmed @ 1 MGy

1000	phildrand.	Section of the	kin Bri	200	16.5		
激計的				HILLING	四位	192	
國制度	an ar	THE REAL OF	BERT.	181		经	
88 L 4	in the second	IN STIE	See.			题	
23 1 2	10.00	D.R. HILL	1008			1	
38 H H	(CONTRACT	IT BE BETER	BH'SE			53	
要冒留	1000	四日 金川 (梁)	TRAN.			12	1
28 R B	1.200	IL FUE	and a			1	
新教教	19-14	日月日]	調調	141		25	
四祖間	A MARIN	CAL ST. IN	1000	1888 ···		1	
R.5 14	in the state	Same Providence		1823-	- 2	-	
	and the second second	and shows	-		and the	100	9
and states	123 24	26 88 9	3281	22 69 5		1	

N	u-K_CSA
Туре	С
Peaking time	50n
Noise	~15
S/N	~3

Sensor pads (4ch x 600 chips!)

Prototype of the neutron detector

0.5 mW/ch

harge sensitive

sec(t_w~100nsec)

00e @Cdet=5pF

50@Cdet=5pF

ົງ23, Torino

System test @ y-facility

- Tested best device under γ-BGDs, 1 kGy/h is the requirement
- Neutron converters under preparation

kisisita@post.kek.jp

develop actual detector from this October.

XII Front-End Electronics Workshop, 12-16 Jun. 2023, Torino

Thank you very much for your attention.

kisisita@post.kek.jp

