

SiPM Front-end for CTA SMART2: a SiPM Multichannel ASIC for high Resolution Cherenkov Telescopes

F. Licciulli francesco.licciulli@ba.infn.it

INFN – Sezione di Bari

XII Front-End Electronics workshop – Turin – 12 - 16 June 2023

- The CTA experiment overview
- Silicon PhotoMultiplier overview
- SMART2: architecture, channel structure and measurements
- SMART3: a new channel prototype
- Future perspectives

The Cherenkov Telescope Array

- New generation of ground-based gamma-ray instrument to improve sensitivity in the range of 30 GeV 300 TeV;
- Two sites: La Palma for the northern emiphere, Atacama Desert (Chile) for the southern observatory;
- 3 sizes of telescopes: large (PMT), medium (PMT single mirror, SiPM double mirror) and small (SiPM);
- For the medium size a candidate is the Schwarzchild-Couder Telescope (SCT): higher FoV, aberration corrections and high camera resolution - > SMART front-end development.

How CTA works

Basic physics:

- Gamma ray interacts with atmosphere generating an electromagnetic cascade
- Cascade secondary products (charged particle) emit Cherenkov flashes
- Cherenkov flashes arrive on the camera with different times enlightening a small area of elliptical shape, event duration about 10 ns
- Other particles (hadrons, muons) can be observed and recognized analysing the detected images

Electronics requirements for the physics:

- Photon counting: 1 hundreds photon/pixel
- Signal time evolution recording: about 10 ns -> sampling at 1 Gsps
- Event separation: possibility to avoid pile-up with noise due to other sources (stars, moon light) -> Night Sky Background (NSB) in the order of tens of MHz

Silicon Photo-Multiplier

Silicon PhotoMultiplier (SiPM):

- Matrix of parallel connected microcell (SPADs);
- Microcell: SPAD (Single Photo Avalanche Diodes) operating in Geiger mode;
- SPAD: capable to detect the single photon generating a current pulse whose charge is controlled by the SiPM bias point;
- SiPM output is a fast rising edge current pulse whose charge is proportional to the number of detected photons.

Pro:

- Single photon resolution
- NSB tolerant: can operate in full moon condition
- High PDE: > 50% in the NUV range
- Low bias voltage: < 100 V

Cons:

- Correlated noise (crosstalk and afterpulsing)
- High sensitivity to NSB
- High Dark Count Rate (DCR), usally lower than NSB

Κ

SiPM modelling

SiPM equivalent circuit:

- N microcell detector: 1 cell is fired and N-1 pixels as load effect
- C_d: detector capacitance
- R_q: quenching resistor
- C_q: R_q parasitic capacitance
- C_g: microcell interconnection grid parasitic capacitance
- R_b: substrate Ohmic resistance
- Current generator: models the charge produced by the avalanche discharge by means of a Dirac's delta of area Q

SiPM Pulse charge:

• $Q = (C_d + C_q) x (V_{bias} - V_{BD})$, where V_{BD} is the breakdown voltage

SiPM Capacitance:

• Ceq = $(C_g + N C_d)$

SiPM Pulse duration:

• SiPM recovery time constant: $\tau_R = (C_d + C_q) R_q + (C_g + N C_d) (R_b + R_i)$, where R_i is the front-end input resistance

SiPM FBK NUV HD 6x6 mm2

- Q = from 150 fC (old SiPM) up to 750 fC (new SiPM)
- Ceq = 2 nF
- $\tau_{\rm R} = 200 \text{ ns} 250 \text{ ns}$ with Ri = 50 Ohm
- DCR = 2.5 MHz

- Single photon resolution
- Detector capacitance: 2 nF
- Single photo-electron charge: 150 fC
- Linearity range: up to hundreds of photons
- DCR + NSB in the order of tens of MHz -> a circuit to suppress the recovery tail is need to avoid pile-up
- Signal sampled at 1 Gsps (sampling done by a dedicated ASIC) -> output signal FWHM about 10 ns
- Possibility to fine adjust the SiPM bias voltage to compensate the gain mismatches among SiPMs
- Slow monitoring for SiPM mean current measurements (high luminosity enlightening, SiPM aging, telescope pointing)

SMART2: ASIC architecture overview

Analog Section:

- 16 Front-end channels:
 - Direct output: designed for photon-counting
 - Internal output: SiPM mean current measurement
- Global Bias: temperature and power supply independent
- 10 bit 1 MHz SAR ADC for channel internal output conversion

Digital Section:

- Control Unit:
 - 1 MHz SPI LVDS link
 - Channel & Global bias adj. bits
 - ADC control

SMART2: Channel architecture overview

Z-Amplifier:

- Input current conversion into an output voltage
- Low pass filtering to reduce noise
- Fine adjustment of the SiPM bias

Fast Path

Tail suppression filter:

Filters the output pulse tail due to the SiPM recovery

Output buffer:

Drives the output path providing the current to a low impedance load

Slow path:

- Ultra low-pass voltage amplifier -
- Output voltage proportional to the mean value of the SiPM current

Trans-impedance stage and tail suppression filter circuit

0,00

0,0

After suppression filter

0,2

0,3

0,1

10 **0,9**

1,0

0,8

0,6

^{0,4} 0,5 Time [us] 0,7

Slow monitoring circuit

17° channel:

- Not connected to input pad
- Biased as the 16 read-out channels
- SiPM Bias adjustment used for slow monitoring calibration

SMART2 features

- AMS 0.35 μm SiGe technology node
 - 3.3 V power supply
 - Die size: 2.9 mm x 5.1 mm
- 16-channel trans-impedance amplifier
 - Input impedance \approx 12.5 Ω
 - Current consumption: 5.5 mA
- 20-bit global adjustment: gain (8 bits), bandwidth (6 bits), PZ (6 bits)
 - Gain at the Fast Path output: 0.5 mV/pe ÷ 3.5 mV/pe
 - FWHM at the Fast Path output: 8 ns ÷ 20 ns
- 8-bit DAC for SiPM bias adjustment (one per channel):
 - 1.2 V adjustment range
- Slow monitoring of SiPM mean current (16 channels multiplexed)
 - Rate resolution: 20 kHz/LSB ⇔ Current resolution: 25 nA/LSB
- 10-bit ADC
- 1 MHz SPI LVDS interface
- 330 mW power consumption

Designed for old SiPMs, no more suitable for new ones. An external filter is needed to fully compensate the SiPM recovery tail.

SMART2 layout

SMART2 characterization tests: Fast Path

Measurement conditions: SiPM FBK NUV-HD 6x6 mm², 35 V bias voltage, SMART2 conf. R = 16, C = 5, PZ = 40, laser pulse mode

SMART2 characterization tests: Fast Path

Measurement conditions: SiPM FBK NUV-HD 6x6 mm², 35 V bias voltage, SMART2 conf. R = 16, C = 5, PZ = 40, laser pulse mode

SMART2 characterization tests: Slow Path

- **Measurement conditions**: 4x4 matrix of SiPM FBK NUV-HD 6x6 mm², SMART2 conf. R = 16, C = 5, PZ = 40
- Measurement: mean dark current as function of SiPM bias voltage
- Comparison between the SMART2 slow-monitoring output and the average dark current measured by the HV power supply pico-ammeter

- Left y-axis: SMART2 slow-monitoring ADC output
- Rigth y-axis: current measured by pico-ammeter divided by 16 (dashed line)

- y-axis: SMART2 slow-monitoring ADC output
- x-axis: current measured by pico-ammeter divided by 16

SMART2 characterization tests: Slow Path

- Measurement conditions: 4x4 matrix of SiPM FBK NUV-HD 6x6 mm², 35 V bias voltage, SMART2 conf. R = 16, C = 5, PZ = 40, laser continuous mode
- Measurement: mean current as function of incoming pulse rate (laser in continuous mode and change the intensity)
- Rate is measured by the acquisition of the SMART2 fast-path output
- Rate values are compared with the current measured by the pico-ammeter of HV power supply

Slow-path measurements for a single channel, laser in continuous mode: max pulse rate: 20 MHz

Bottom x-axis has an offset that corresponds to the overall matrix dark rate

SMART2: SiPM fine bias adjustment

• Measurement conditions: four 4x4 matrices of SiPM FBK NUV-HD 6x6 mm², laser pulse mode

Gain measured at a fixed fine bias voltage DAC value (100) equal for all the channels. Gain variation ±11,7% Gain vs SiPM fine bias DAC characteristics measured for all the SiPMs

Gain measured after equalization. Gain variation ±1,6%

SMART3 front-end architecture

Why? SMART2 issues:

- Pole-zero suppression not matched with the new SiPMs recovery tail -> a further external filter needed
- Limited fast-path output dynamic range
- Limited slow-path input dynamic range

SMART3: channel prototype

New channel prototype:

- New technology node: LF110nm
- New front-end architecture
- No programmable features (fixed gain, band-width and filter)
- Slow-monitoring not included
- First characterization tests in March 2022

SMART3 channel prototype test: fast-path output waveforms

Measurement conditions:

- SiPM NUV HD3-5 produced by FBK
- HV = 41 V -> OV = 13.5 V
- Laser pulse mode

20

SMART3 channel prototype test: fast-path photon-counting

Measurement conditions:

• SiPM NUV HD3-5 - produced by FBK - same as those installed on pSCT camera

AMPLITUDE DISTRIBUTION

- HV = 41 V -> OV = 13.5 V
- Laser pulse mode

CHARGE DISTRIBUTION

SNR = 4.85

SNR = 4.39

SMART3 channel prototype test: fast-path output dynamic

• Fast-path output dynamic up to 1.7 V on 50 Ohm load

Coming soon...

SMART3:

- 16 channel front-end ASIC
- LF110nm technology node
- 3.3 V & 1.2 V power supply
- SiPM fine bias adjust range: 1.7 V
- Channel current consumption 3.6 mA
- Fast-path output dynamic range: up to 1.7 V on 50 Ohm load (AC coupled)
- Slow-path input dynamic range: up to 2 mA of mean SiPM current (1 pC/pe at 2 GHz)
- Programmable gain, bandwidth and tail suppression

Tape-out: 7th November 2022

Currently in packaging

First tests expected for September 2023

Thanks