

MIRA: a Low-Noise ASIC with 35 μm Pixel Pitch for the Readout of Microchannel Plates

E. Fabbrica, D. Butta, L. Nassi, J. E. Nino, L. Zorzato, M. Carminati, <u>C. Fiorini</u> *Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy*

Work supported by ASI (Italian Space Agency) within the PLUS project

OUTLINE

- Ultraviolet Astronomy and Microchannel Plates (MCP) Detectors
- The MIRA readout ASIC for MCPs
- Charge Sensitive Preamplifier
- Pixels summing stage and discriminator
- Charge sharing arbitration
- Experimental results (MIRA I and MIRA II)
- First operation with MCP
- Conclusions and future work

FUV/EUV Imaging Spectrometry:

- To probe the exospheres (direct detection) and the highest-altitude atmospheres (through stellar occultation) of planets and satellites, including the Moon
- To determine constituents, study the atmosphere dynamics, and understand the formation mechanisms and the surface release processes
- To investigate auroras occurring on giant planets

ESA. "Ultraviolet image shows the sun's intricate atmosphere"

The PLanetary Ultraviolet Spectrometer (PLUS) Project

EUV/FUV Photon

PLUS PLANETARY ULTRAVIOLET SPECTROMET

• Started in 2020

- PoliMI, CNR, INAF
- Multichannel FUV/EUV imaging spectrometer for astronomical application
- Improved detection limit, shorter observations integration time, and in dynamic range
- EUV/FUV MCP-based photon counting unit for events counting

Microchannel Plates Detectors (MCPs)

- High time resolution (down to 10 ps)
- **High spatial** resolution (down to 10 μm)
- Large **format arrays** (> 1K x 1K pixels)
- Large **sensitive area** size (up to 20 cm)

- Low dark current (< 0.5 pA/cm² at HV = 1 kV)
- High out-of-band rejection (solar blindness)

Inciden

• Radiation hardness and operation at room temperature

Carlo Fiorini – Politecnico di Milano, Italy – FEE2023, 15th of June 2023

Channel Wall

HV⁺

GAIN

Secondary Emissive Layer

Flortron

MCP Detector Readout Electronics

Readout Integrated Circuit (ROIC):

- Integrated 2D anode array
- Analog and Digital circuits to perform pulse processing and events identification
- Low noise operation
- High count rate capability
- Zero dead time
- Small pixel size
- Integrated charge sharing correction

Refs:

J Vallerga *et al* 2014 *JINST* 9 C05055 A.Harwit, wt al., Proc. SPIE, 91541N, 2014

Goal of the project: develop a custom-designed ROIC for the readout of microchannel plates

The PLUS Photon Counting Unit

MIRA Development Roadmap (3 years)

Carlo Fiorini – Politecnico di Milano, Italy – FEE2023, 15th of June 2023

The MIRA ASIC

MIRA Purpose and Specs:

- Collect the charge cloud with the integrated 2D anode array
- **35µmx35µm** pixel size
- Low electronics noise (ENC = 20 e-_{rms}) to operate the MCP at low gain and extend its lifetime in space.
- Charge Sharing Correction Logic to select a single pixel in charge shared events
- Counting capability up to
 100kcounts/s/pixel, zero dead time
- 32x32 pixels prototype
- TSMC 65nm technology

Pixel Readout Channel

MIRA Charge Sensitive Amplifier (CSA)

MIRA CSA:

- Folded Cascode Amplifier
- Buffer → Selectable R₁ for different shaping times: Fast & Slow Mode
- ICON* \rightarrow Large feedback resistance $R_{eq} = R_1(1 + K)$ for C_F discharge

* Refs:

- R. L. Chase, A. Hrisoho, J.-P. Richer: "8-channel CMOS preamplifier and shaper with adjustable peaking time and automatic pole-zero cancellation." Nucl. Instr. and Meth. A, vol. 409, 1998, p. 328–331.
- C. Fiorini and M. Porro, "Integrated RC cell for time-invariant shaping amplifiers", IEEE Trans. Nucl. Sci., Vol. 51, n°5, pp. 1953 –1960, Oct 2004.

Noise current source vs. pulse duration

• Shaping time $\tau_s \propto \frac{1}{I_K}$

- Noise current source $\propto I_K$
- Dependence between noise of *I_K* and shaping time

*Ref: Krummenacher, Francois. "Pixel detectors with local intelligence: an IC designer point of view." Nuclear Instruments and Methods in Physics Research Section A **305.3** (1991): 527-532

- Main noise current source at the input $\propto I_{out}$
- Shaping time $\tau_s \propto KR_1C_f$
- No dependence between noise of *I*_{out} and shaping time
- Buffer and left-brench ICON noise sources demagnified by a factor K² → negligible

MIRA CSA Transient Pulse and Noise - Simulations

Slow Mode

Slow Mode:

- $|\mathbf{t_{width}}|_{1\%\text{peak}} = 265 \text{ ns}$
- $V_{\text{peak}} = 29 \text{ mV}$
- $Q_{in} = 1000 e^{-1}$
- $\sigma_{n,vout} = 835 \mu V_{rms}$
- ENC_{CSA} = $27 \text{ e}_{\text{rms}}^-$

Fast Mode:

- $\mathbf{t_{width}}|_{1\% peak} = 125 ns$
- $V_{\text{peak}} = 28 \text{ mV}$
- $Q_{in} = 1000 e^{-1}$
- $\sigma_{n,vout} = 835 \mu V_{rms}$
- ENC_{CSA} = $27 \text{ e}_{\text{rms}}^{-}$

Noise contributions - Simulations

Carlo Fiorini – Politecnico di Milano, Italy – FEE2023, 15th of June 2023

Pixel Readout Channel

MIRA Summing Stage and Discriminator

MIRA Summing Stage:

- Charge Summing Mode (CS) → Signal sum from adjacent pixels*
- Single Pixel Mode (SP) \rightarrow Gain $\times 4$
- Low-pass Filtering on the sum signal $\rightarrow C_{LPF}$

MIRA Current Discriminator:

- **Tunable Threshold** \rightarrow 4-bit DAC + 1 Sign bit
- DC Feedback (Baseline Holder)
 - \rightarrow Improves compensation of mismatches

*Ref: R. Ballabriga et al: "The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance." IEEE Trans. Nucl. Sci., vol. 54, no. 5, 2007, p. 1824–1829.

MIRA Sum. and Discr. Transient Response - Simulations

• **ToT strategy: higher** the charge, the **faster** the pulse arrival time and the **longer** its duration Example:

Q _{in} [e ⁻]	Rising Edge Arrival Time [ns]	Falling Edge Arrival Time [ns]
1000	3.4	126.25
500	4.1	88.9
250	7.6	47.5

- Noise after 2nd stage:
- $\circ~$ ENC $\,=\,17~e^-_{rms}$ in SP and Slow Mode
- $\circ~$ ENC $\,=\,18~e^-_{rms}$ in SP and Fast Mode

Pixel Readout Channel

Charge Sharing

Simulation Model:

- Electrons cloud: $Q_{MCP} = 4000e^{-}$, $\sigma_x = 7\mu m$, $\sigma_y = 9\mu m$
- Multiple counts and a degraded spatial resolution
- Anode size: 20µm

Charge Sharing Correction:

- **Highest** amount of charge identification \rightarrow MUTEX
- Mutex is based on an SR latch
- Several comparisons inside a **cluster** of 2x2 pixels
- **Two** modalities of operations Mode2 and Mode3
- Multiple counts avoided and spatial resolution recovered

MIRA Charge Sharing Correction Logic

Mode2

- Filter Stage in Single Pixel mode (SP)
- Horizontal and vertical comparisons with the charge collected by each anode

Mode3

- Filter Stage in **Charge Summing** Mode (CS)
- **Cluster** identified by summing node
- **Comparisons** made on all pixels in the cluster (including diagonal)

Discriminator 600 📥 1000 📥 600 1000 Mode2 XA 1000 1400 🟓 1000 🗭 1400 📻 Mode3 400 150 250 150 G 150 250 150 250 Mode3 400 400 600 250 350 250 350 250 600 350

Mode2

Pixel Readout Channel

Readout Stage - Pixel

Pixel readout stage:

- Two 17-bit counters •
- Implemented as Linear Feedback Shift Register (LFSR)
- LFSR acts as a counter or shift register
- **Countinous** counting and reading phases to have zero dead time
- **7-bit Pixel Configuration Register** (PCR) to program the pixel

The SuperPixel - Layout

The SuperPixel:

- **Two** mirrored pixels with adjacent digital parts
- $35x35 \ \mu m^2$ pixel size with $20x20 \ \mu m^2$ anode size
- Half-analog and half-digital pixel
- Fully-custom design for analog part, RTL design and synthesis for digital part

MIRA first prototype:

- 2x2 mm² chip area
- 1.12x1.12 mm² active area
- **Two** test pixels

Periphery & Power Domains:

- Column drivers for column bus lines
- EoC logic and I/O drivers
- LVDS driver and receivers
- Two test blocks
- **Decoupling** capacitances
- Analog and Digital power domains
- Supplies isolation
- CUP structure

Layout Microscope Image Anodes

MIRA Acquisition System

- MIRA PCB to supply, configure, read MIRA and monitor the test pixels
- MIRA Carrier to host MIRA

- Communication with an external PC through **USB 2.0**
- MATLAB-based **GUI** to show and arrange the **acquired and configuration data** of the MIRA ASIC

MIRA I CSA Transient Response - Measurements

With active probe:

- Slow Mode
- $\mathbf{t_{rise}} = 7 \text{ ns}$, $\mathbf{t_{fall}} = 150 \text{ ns}$
- $\mathbf{t_{width}}|_{1\% peak} = 261 \text{ ns}$
- $V_{amp} = 112 \text{ mV} \rightarrow Q_{in} = 4000 \text{ e}^-$

With SMA connection:

- $t_{rise} = 22 ns$
- $\sigma_{n,vout} = 750 \ \mu V_{rms}$
- $ENC_{CSA} = 27 \ e_{rms}^-$

MIRA I Characterization Results

Charge Sharing Correction Logic - Results

Test Setup:

- Each pixel stimulated with same test signal $(Q_{in,eq} = 1000e^{-})$
- Different pulse ToTs obtained by programming the cluster pixels with different thresholds

Results:

- Only the pixel with the **highest charge** is counting
- MIRA CSCL works as expected
- Multiple pixel counts avoided

Mode2 vs Mode3

Diagonal double counting:

- A diagonal double counting may occur in Mode 2 from a **charge cloud** almost equally shared in the cluster, and pixels mismatches
- It results in two diagonally-placed pixels with longer ToTs
- **Mode3 solves** it performing diagonal comparisons

30

MIRA II – Improvement of Low-Threshold Operation

Clock coupling:

- Parasitic coupling between clock lines and Anode pad
- Coupling induced by metal dummies patterns in M9 (foundry)

Further improvements:

- Elimination of self-trigger due to digital pickup on analog pulse
- Improvement of clock distribution (configuration and readout issues, not discussed here)

✓ All pixels are configurable and readable

MIRA II – Offset Dispersion and Noise

Offset dispersion (before calibration)

Noise threshold distribution after Offset calibration

MIRA ASIC assembly in the MCP system

MIRA MCP detector integration

MIRA MCP detector acquisition

Conclusions and future work

MIRA ASIC developed for the readout of MCP for space applications:

- TSMC 65 nm technology
- 32 x 32 pixels, in a chip area of 2 mm x 2 mm, Active area of 1.12 mm x 1.12 mm
- Pixel size of **35 μm**
- Low noise \rightarrow ENC \simeq 20 e⁻_{rms}
- MIRA II prototype integrated with MCP

Future Developments:

- Extended characterization of the PLUS photon counting unit and MIRA II in the PLUS spectrometer with a UV source
- Revision of power consumption (presently ~ 150μ W/pixel)
- Increase of ASIC pixels matrix (e.g. 256×256 pixels) and possible sub-pixel spatial resolution
- Possible extension of application for solid-state detectors?

Acknowledgments

Partners of the PLUS Collaboration:

M.G. Pelizzo, G.L. Santi Università di Padova, Dipartimento di Ingegneria dell'Informazoine e CISAS, Padova, Italy

A.J. Corso, M. Padovani

Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Padova, Italy

M. Uslenghi, M. Fiorini, D. Faccini, S. Incorvaia, L. Schettini, G. Toso Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Fisica Cosmica Milano, Milano, Italy

