

d'Altes Energies

Status of CMOS pixel sensor prototypes for the CEPC vertex detector

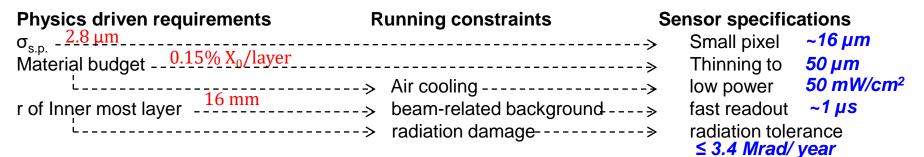
Ying Zhang (IHEP)

On behalf of the CEPC Vertex detector study team

XII Front-End Electronics Workshop June 12-16, 2023

Outline

- Overview of the CEPC Vertex detector R&D
- Progress of the JadePix chips
- Progress of the TaichuPix chips
- Summary and outlook


CEPC Vertex detector requirements

Circular Electron Positron Collider (CEPC) proposed as a Higgs factory.

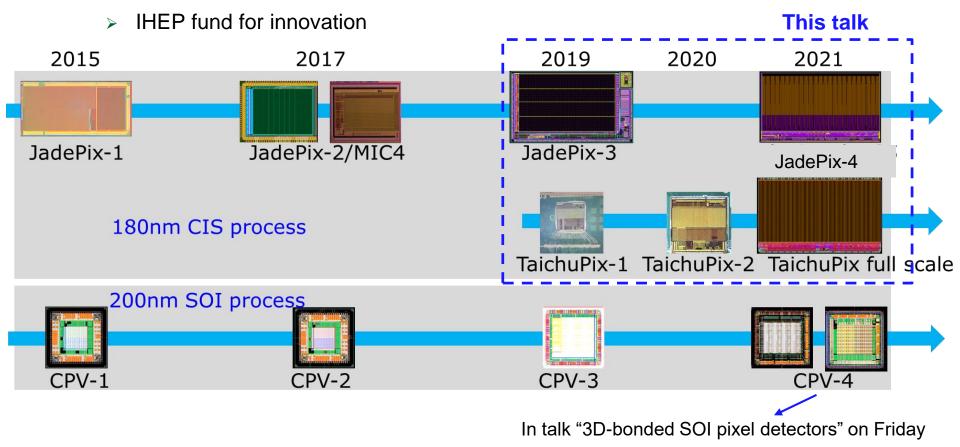
Efficient tagging of heavy quarks (b/c) and τ leptons

→ Impact parameter resolution,

$$\sigma_{r\emptyset} = 5 \oplus \frac{10}{(p \cdot \sin^{3/2}\theta)} \ (\mu m)$$

Baseline design parameters for CEPC vertex detector

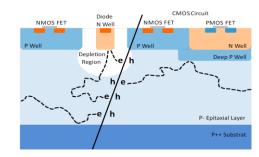
	$R (\mathrm{mm})$	z (mm)	$ \cos \theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4


Ref: CEPC Conceptual Design Report, Volume II - Physics & Detector, http://cepc.ihep.ac.cn/

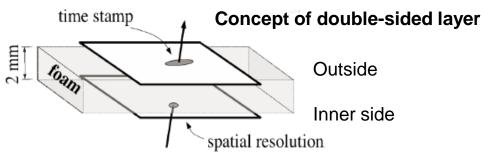
 $\leq 6.2 \times 10^{12} n_{eo} / (cm^2 year)$

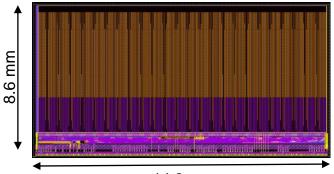
Overview of pixel sensors in China for CEPC VTX

Development of pixel sensors for CEPC VTX supported by


- Ministry of Science and Technology of China (MOST)
- National Natural Science Foundation of China (NSFC)

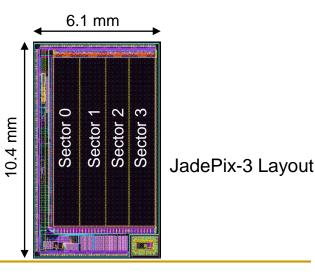
Outline


- Overview of the CEPC Vertex detector R&D
- Progress of the JadePix chips
- Progress of the TaichuPix chips
- Summary and outlook


CMOS monolithic pixel sensor

JadePix chips strategy

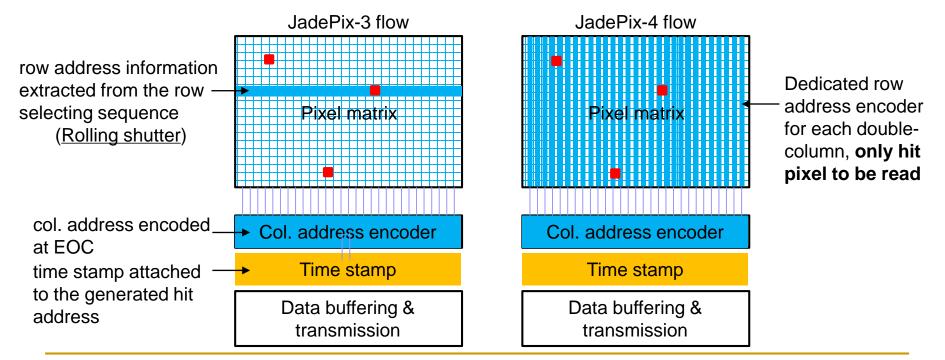
- JadePix concerns the concept of double-sided layer
 - > Fine pitch & low power sensor for spatial resolution
 - Laser test on JadePix-3 indicates s.p. < 3 μm achievable
 - > A faster sensor to provide time-stamp
 - JadePix-4 s.p. ~5 μm, 1 μs integration time



JadePix-4 Layout

14.8 mm

	JadePix-3	JadePix-4
Pixel size	16 μm × 23.1 μm	20 µm × 29 µm
Integration time	98.3 µs	~ 1 µs
Average power	< 100 mW/cm ²	< 100 mW/cm ²
Pixel array	512 row × 192 col.	356 row × 498 col.
Die size	10.4 mm × 6.1 mm	8.6 mm × 14.8 mm
Readout mode	Rolling shutter	Data-driven

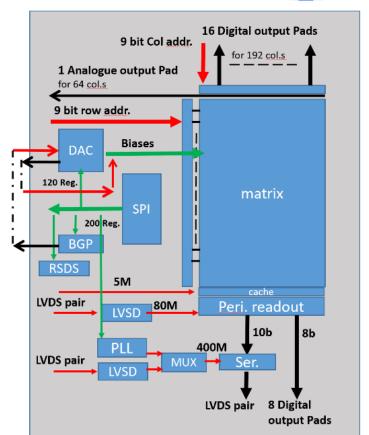

Hit processing flow of JadePix-3/4

Hit registered in each pixel needs fast processing

- > Hit position (col. and row address) to be encoded
- > Time stamp to be attached
- > Register to be reset for the next hit

A major modification on the hit processing flow

- > JadePix-3, rolling shutter \rightarrow minimized pixel pitches
- > JadePix-4, row address encoder embedded in the matrix \rightarrow much faster

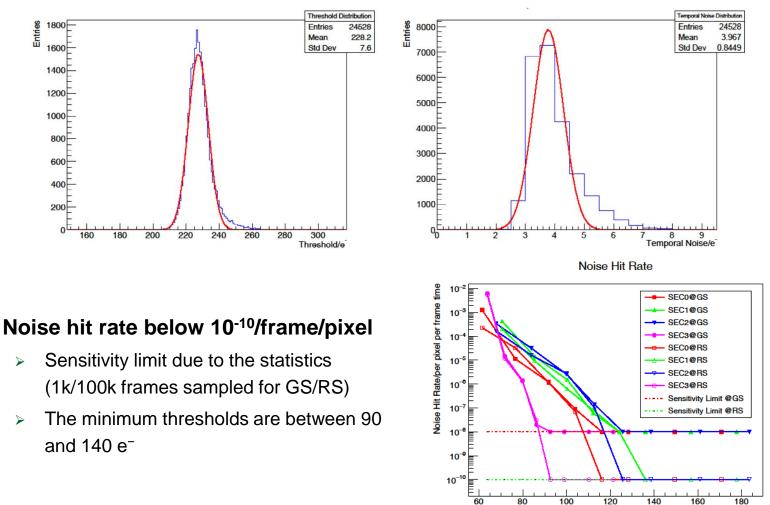


An overview of the JadePix-3 design

- Full-sized in the rφ direction of detector layout
 - > Matrix coverage: $16 \mu m \times 512 rows = 8.2 mm$
- 4 parallel sectors, scalable in the z direction
 - > 48 × 4 = 192 columns
- Rolling shutter to avoid heavy logic and routing in pixel matrix
 - > Minimum pixel size: 16 μ m × 23.11 μ m
 - Matrix readout time: 98.3 µs/frame

Full functional blocks in the chip peripheral

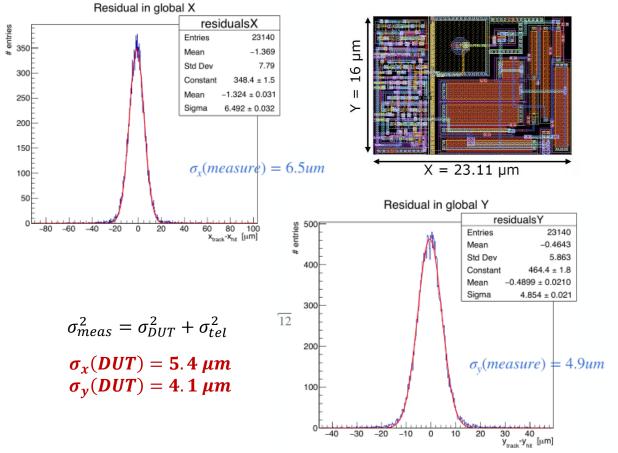
- Zero suppression, data buffering, Serializer, PLL, DACs, SPI
- 8-bit parallel output or serial differential output @ 833 Mbit/s


Sector	Diode	Analog	Digital	Pixel layout		
0	2 + 2 µm	FE_V0	DGT_V0	16×26 μm²		
1	2 + 2 µm	FE_V0	DGT_V1	16× 26 µm²	Deteile in NIMA 4040	
2	2 + 2 µm	FE_V0	DGT_V2	16× 23.11 μm²	Details in NIMA, 1048 (2023) 167967	
3	2 + 2 µm	FE_V1	DGT_V0	16×26 µm²		

Threshold and noise of JadePix-3

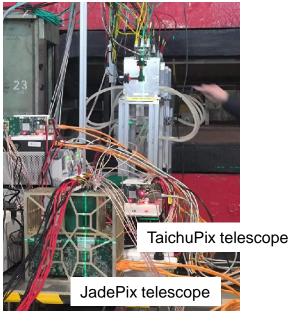
Threshold and noise distribution measured with electrical test pulse

Threshold: $228 \pm 7.6 e^{-1}$, temporal noise 4.0 e⁻¹ for sector2 of matrix \succ


80

180

Equivalent Threshold Charge/e

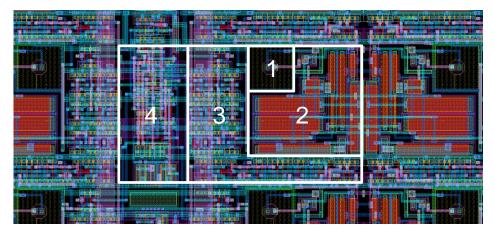

JadePix-3 Telescope

- Beam test performed in DESY TB21
 - > 4 detector planes assembled, one as DUT
 - Beam energy ~4GeV

JadePix-3

Single plane structure

Test setup @DESY Dec 2022


Pixel of JadePix-4 prototype

Key component verified and reused from JadePix-3

- > Diode
- Analog front-end
- Hit register
- Asynchronized Encoder and Reset Decoder (AERD) *
 - Generating col. and row address from hit pixel
 - > Tracing back to reset hit pixel

Final layout of pixel matrix

- \succ pixel array: 356 row \times 498 col.
- $\succ~$ Pixel size: 20 $\mu m \times$ 29 μm

JadePix-4 pixel layout

(MET4 and above not shown)

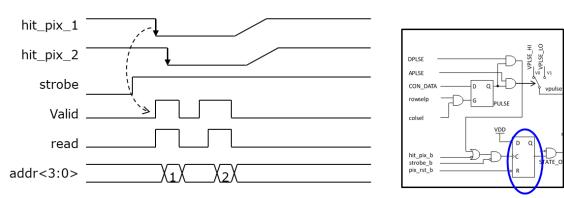
- 1. Diode 2. Analog front-end
- 3. Digital logic; 4. AERD shared by 2 col.

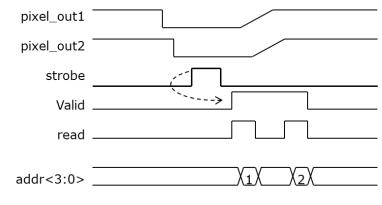
Submitted to a shared engineering run in Oct. 2021

 Chips received in July 2022, test ongoing

*P.Yang, et al., NIMA 785(2015) 61-69

Readout of JadePix-4




Triggerless mode

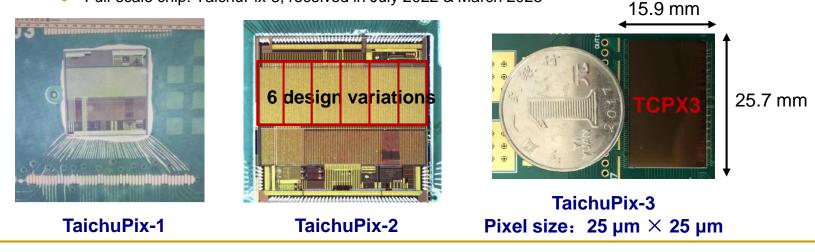
- Global gate signal, strobe==1
- > All hits registered at their leading edge
- 0.2 hits/µs per double col. with the estimated hit density of inner most layer
- > Occupancy 0.02% @ integration time = 1 μ s

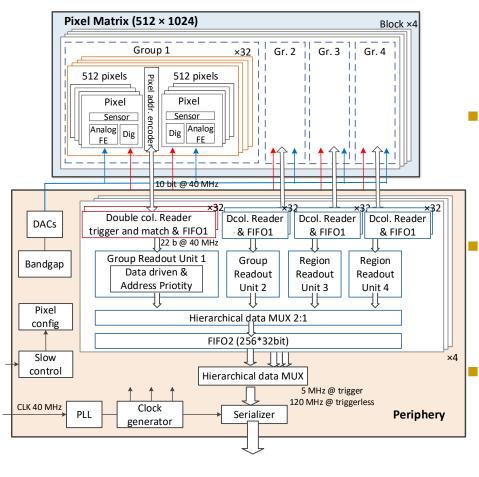
Trigger mode

- > Global gate **controlled by trigger signal**
- Hits registered only when overlapped with a trigger (analog buffer)
- Capable to handle very high hit density with a dead time for readout, 50 ns/hit

Outline

- Overview of the CEPC Vertex detector R&D
- Progress of the JadePix chips
- Progress of the TaichuPix chips
- Summary and outlook


TaichuPix prototypes overview


- Motivation: a large-scale & full functionality pixel sensor for the first 6-layer vertex detector prototype
- Major challenges for design
 - > Small pixel size \rightarrow high resolution (3-5 μ m)
 - > High readout speed (dead time < 500 ns @ 40 MHz) → for CEPC Z pole
 - Radiation tolerance (per year): 1 Mrad TID

Completed 3 round of sensor prototyping in 180 nm CMOS process

- > Two MPW chips (5 mm \times 5 mm)
 - TaichuPix-1: 2019; TaichuPix-2: 2020 → feasibility and functionality verification
- > 1st engineering run
 - Full-scale chip: TaichuPix-3, received in July 2022 & March 2023

TaichuPix architecture

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- Priority based data-driven readout
- > Time stamp added at EOC
- > Readout time: 50 ns for each pixel

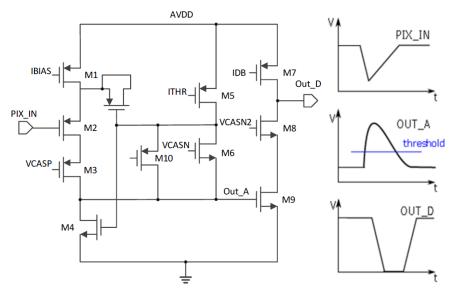
2-level FIFO architecture

- > L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate between core and interface

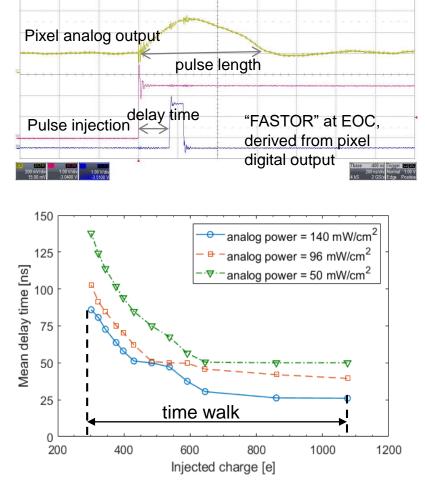
Trigger-less & Trigger mode compatible

- > Trigger-less: 3.84 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation


On-chip bias generation, LDO, slow control, etc.

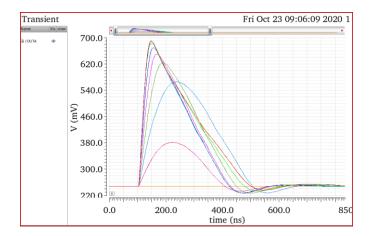
Pixel analog front-end


Based on ALPIDE* front-end scheme

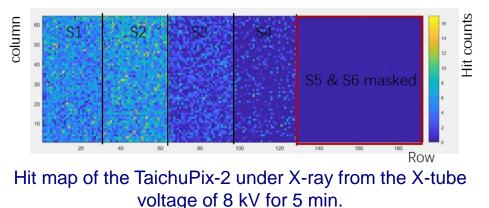
- > modified for faster response
- 'FASTOR' signal delivered to the EOC (end of column) when a pixel fired, timestamps of hit recorded at pos. edge of 'FASTOR'

Schematic of pixel front-end

*Ref: D. Kim et al. DOI 10.1088/1748-0221/11/02/C02042

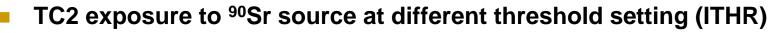


Delay time of FASTOR with respect to the pulse injection vs. injected charge. The delay time was measured by the timestamp of a step of 25 ns.


Functionality of complete signal chain of TaichuPix2

Functionality of the complete signal chain (including sensor, analog front-end, in-pixel logic readout, matrix periphery readout and data transmission unit) was firstly proved with an X-ray source and a laser source.

TaichuPix2 response to X-ray tube (cutting energy @ 6keV) Simulated analog output with different input signal



Suppose the second seco

Letter imaging obtained with a 1064 nm laser spot scanning on the TaichuPix-2

TaichuPix2 test with ⁹⁰Sr

- Shape and amplitude of analog signal as expected, but peaking time and pulse length larger than simulation.
- Average cluster size decreases with threshold as expected
- Average cluster size for S1-S4 less than 3 as expected
 - Indicates the estimated maximum hit rate (36 MHz/cm²) reasonable
 - Cluster size >1, benefits the spatial resolution (better than $pitch/\sqrt{12}$ = 7.2 µm)

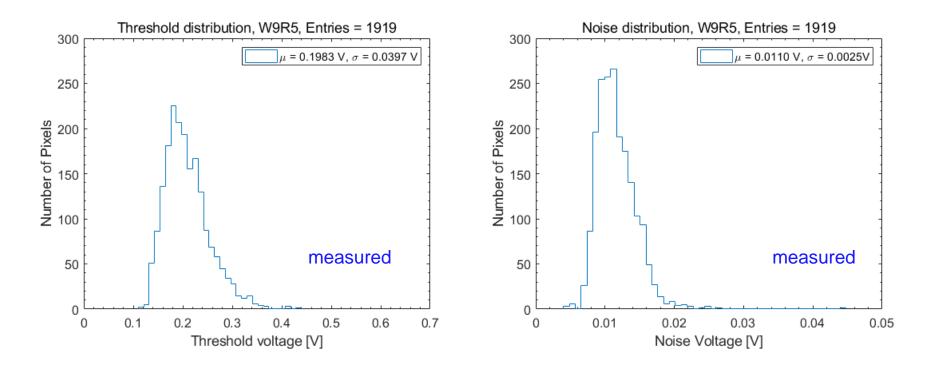
Large-scale sensor TaichuPix-3

- 12 TaichuPix-3 wafers produced from two rounds
 - One wafer thinned down to 150 μ m and diced \geq

8-inch wafer

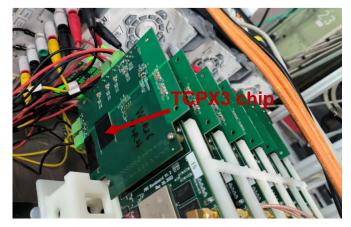
Wafer after thinning and dicing

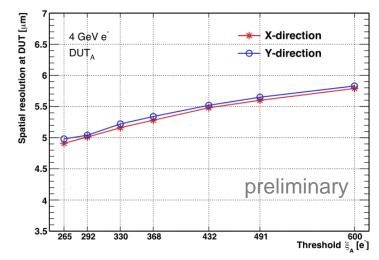
Thickness after thinning


11 wafers were tested on probe-station before dicing \rightarrow chip selecting & yield evaluation \geq

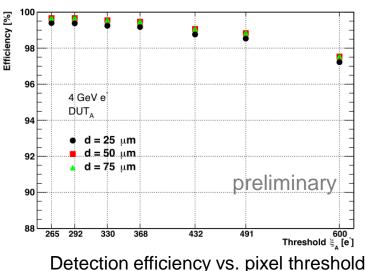
	🗶 WaferMap 🖃	Wafer num.	Yield	Wafer num.	Yield
	Wafer T212141-02E3	1	0.65	4	0.475
		2	0.725	5	0.625
		3		6	0.525
		7	0.775	10	0.675
		8	0.725	11	0.6
	61400 1 0000 10122	9	0.275	12	0.35
Probe card for wafer test	An example of wafer test result	1 st rour	nd	2 nd ro	und

Threshold and noise of TaichuPix-3


- Pixel threshold and noise were measured with selected pixels
 - Average threshold ~215 e⁻, threshold dispersion ~43 e⁻, temporal noise ~12 e⁻ @ nominal bias setting


TaichuPix-3 telescope

- The 6-layer of TaichuPix-3 telescope built
 - Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board



6-layer TaichuPix-3 telescope

- TaichuPix-3 telescope achieved the expected goal in the DESY testbeam
 - > Basically works well during the beam test time
 - The preliminary offline results indicate the best spat resolution could be < 5 µm

Spatial resolution vs. pixel threshold

Summary and outlook

- Development of JadePix series towards the baseline requirements of CEPC vertex detector
 - JadePix3: excellent noise performance; spatial resolution close to the requirement in One direction
 - Jadepix4: a complementary design to the JadePix-3, to complete the R&D for the double-sided concept
- The full-scale and high granularity pixel sensor prototype, TaichuPix-3, has been designed and tested
 - Spatial resolution ~5 µm measured with 4 GeV electron beam in DESY
 - > Full vertex detector prototype assembly in process

 In future, more advanced technology node (65/55nm CMOS) or new process techniques (3D-integrated devices or stitching) may significantly improve the performances of the design

Pixel sensor teams

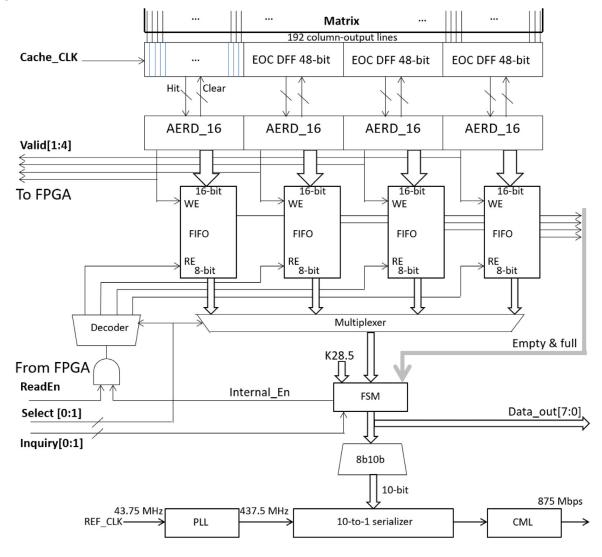
JadePix-3/4

- IHEP: Ying Zhang, Yang Zhou, Zhigang Wu (graduated), Jing Dong, Wenhao Dong/ USTC, Chunhao Tian/ USTC, Sheng Dong, Yunpeng Lu, Qun Ouyang
- CCNU: Yang Ping, Weiping Ren, Le Xiao, Di Guo, Chenxing Meng (graduated), Anyang Xu (graduated), Hulin Wang, Xiangming Sun
- > SDU: Liang Zhang, Meng Wang
- > Dalian Minzu Unv: Zhan Shi
- > USTC: Zhiliang Chen, Lailin Xu

TaichuPix

- IHEP: Wei Wei, Ying Zhang, Xiaoting Li, Jun Hu, Hongyu Zhang, Zhijun Liang, Joao Guimaraes da Costa
- > CCNU/IFAE: Tianya Wu, Raimon Casanova, Sebastian Grinstein
- > NWPU: Xiaomin Wei, Jia Wang
- > SDU: Liang Zhang, Jianing Dong, Long Li
- > NJU: Xiaoxu Zhang, Yiming HU, Lei Zhang, Ming Qi

Thank you very much for your attention!



Backup

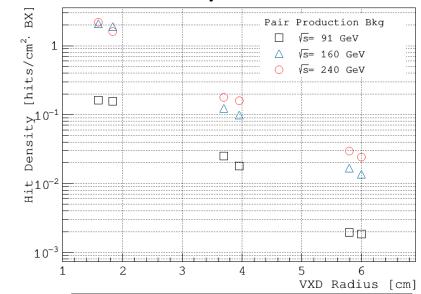
Periphery readout of JadePix-3

AERD* (Address Encoder and Reset Decoder)

*P.Yang, et al., NIMA 785(2015) 61-69

TaichuPix specification

Bunch spacing

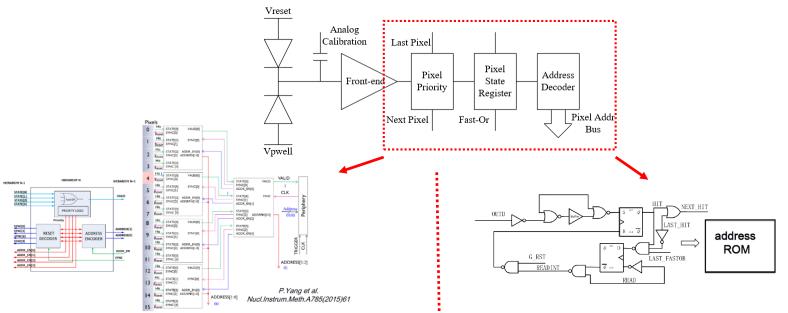

- Higgs: 680 ns; W: 210 ns; Z: 25 ns
- > Max. bunch rate: 40 M/s

Hit density

 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z

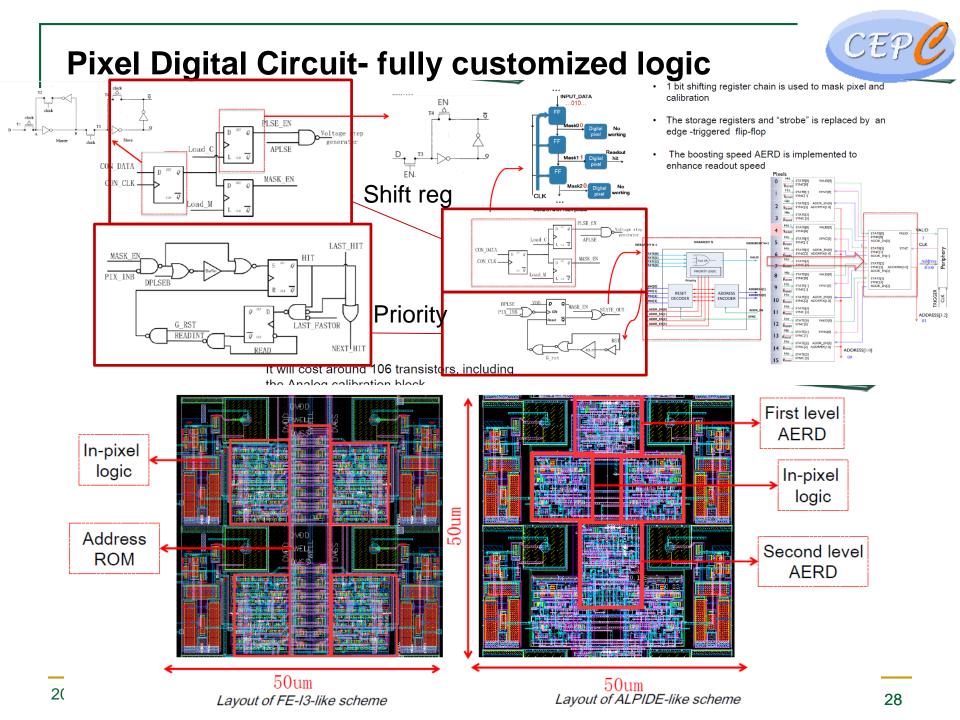
Cluster size: ~3 pixels/hit

- > Epi-layer thickness: ~18 µm
- > Pixel size: 25 μ m × 25 μ m

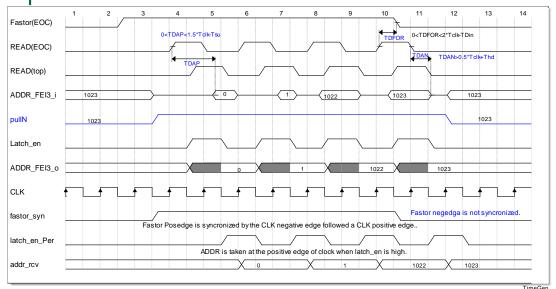


Ref: CEPC Conceptual Design Report, Volume II

For Vertex	Specs	For High rate Vertex	Specs.	For Ladder Prototype	Specs.
Pixel pitch	≤ 25 µm	Hit rate	120 MHz/chip	Pixel array	512 row × 1024 col
TID	>1 Mrad	Data rate	3.84 Gbps triggerless ~110 Mbps trigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	< 500 ns (for 98% efficiency)	Chip size	~1.4 cm × 2.56 cm


Hit Density vs. VXD Radius

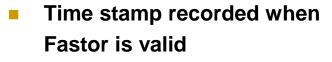
Pixel architecture – parallel digital schemes



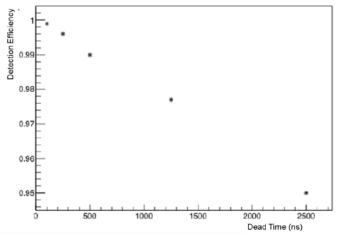
Simplified column-drain readout:

- > Each double column shares a common Fast-Or bus for hit indication
- > Common time stamp register @40MHz will record the hit arrival time
- > Hit pixels in the same cluster will share a common time stamp as the Trigger ID
- Two parallel digital readout architectures were designed:
 - > Scheme 1: ALPIDE-like: benefit from the proved digital readout in small pixel size
 - Readout speed was enhanced for 40MHz BX
 - Scheme 2: FE-I3-like: benefit from the proved fast readout @40MHz BX (ATLAS)
 - Fully customized layout of digital cells and address decoder for smaller area

Readout & Periphery



Designed for low power

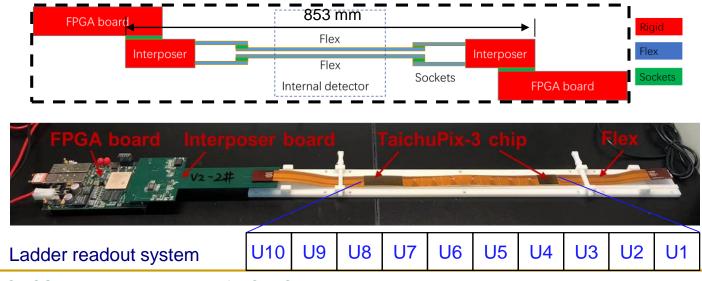

- > Only the hit (fastor) info & address are fannout from the pixel array
- > Only the read (acquisition) signal is fanned in to the pixel array
 - Clock & time stamp are localized only in the EOC, different from FE-I3

Optimized @ CEPC hit rate

- Common time stamp recorded for a full double column
 - For low power
 - Column is hit every 8.3us / pixel is readout in 2 clocks (50ns)
 / cluster size 3 pixels
 - Dead time 500ns 98% trigger efficiency

- Each pixel readout by 2 clocks (50ns)
 - Worst delay ~ 25ns
 - Sim by 512 rows (full size)
 - TDA: read sent –addr come
 - Address latch @ 37.5ns
 - @1.5 clock
 - Enough headroom for all corners

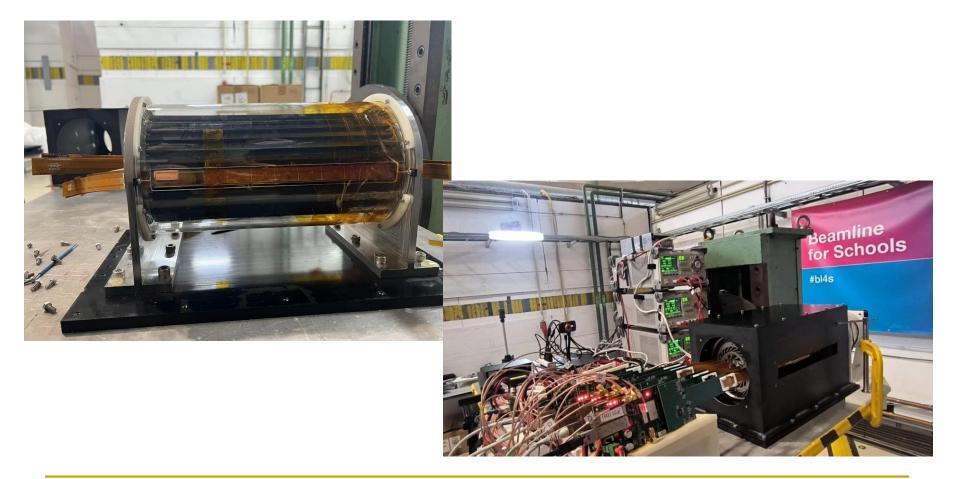
Ladder readout



Completed detector module (ladder) design

- > Detector module (ladder) = 10 sensors + readout board + support structure + control board
- > Sensors are glued and wire bonded to the flexible PCB
- > Flexible PCB will be supported by carbon fiber support structure
- > Signal, clock, control, power, ground will be handled by control board through flexible PCB

Challenges


- > Long flex cable \rightarrow some issue with power distribution and delay
- > Limited space for power and ground placement \rightarrow bad isolation between signals
- > No debug testing point \rightarrow hard to debug the flex readout system

Detector prototype

- 6 double-sided layers assembled on the detector prototype
 - > 12 flex boards with two TaichuPix-3 chips bonded on each flex
 - > Readout boards on one side of the detector

