

project and results towards picosecond timing with monolithic silicon

Thanushan Kugathasan — Université de Genève

The MONOLITH ERC Project

Funded by the H2020 ERC Advanced grant 884447^[1] July 2020 - June 2025

Monolithic silicon sensor for picosecond-level timing

- Good spatial resolution, Low power, Radiation tolerance

[1] MONOLITH H2020 ERC Advanced Project Web Page - https://www.unige.ch/dpnc/en/groups/giuseppe-iacobucci/research/monolith-erc-advanced-project/

Target: HEP, Nuclear Physics, Space Borne, high tech applications requiring ps level ToF

Precise timing with silicon

1. Sensor geometry and fields

Sensor optimization for time measurement means: Sensor time response independent from the particle trajectory

 \rightarrow "Parallel plate" read out: wide pixels w.r.t. depletion region

$$I_{ind} = \sum_{i} q_{i} \bar{v}_{drift,i} \cdot \bar{E}_{w,i} \cong \underbrace{v_{drift}}_{\text{Scalar, saturated}} \underbrace{\frac{1}{D}}_{\text{Scalar, uniform}} q_{i}$$

Uniform weighting field (signal induction)

Desired features:

- Uniform electric field (charge transport)
- Saturated charge drift velocity (signal speed)

3. Electronic noise

Once the geometry has been fixed, the time resolution depends mostly on the **amplifier performance**.

Thanushan Kugathasan – Université de Genève

When large clusters are absorbed at the electrodes, their contribution is removed from the induced current. The statistical origin of this variability of I_{ind} makes this effect irreducible in PN-junction sensors.

4. Gain

• A gain layer allows larger signals, and thus, better time resolution

$$\sigma_T \cong \frac{t_{rise}}{Signal/Noise} \cong \frac{ENC}{I_{Ind}}$$

Front End Electronics Workshop 2023, Torino — June 13, 2023

Precise timing with silicon

1. Sensor geometry and fields

Sensor optimization for time measurement means: Sensor time response independent from the particle trajectory

 \rightarrow "Parallel plate" read out: wide pixels w.r.t. depletion region

$$I_{ind} = \sum_{i} q_{i} \bar{v}_{drift,i} \cdot \bar{E}_{w,i} \cong \underbrace{v_{drift}}_{\text{Scalar, saturated}} \underbrace{\frac{1}{D}}_{\text{Scalar, uniform}} q_{i}$$

• Uniform weighting field (signal induction)

Desired features:

- Uniform electric field (charge transport)
- Saturated charge **drift velocity** (signal speed)

3. Electronic noise

Once the geometry has been fixed, the time resolution depends mostly on the amplifier performance.

Thanushan Kugathasan — Université de Genève

is produced by the **non uniformity of the charge deposition** in the sensor:

$$I_{ind} \cong v_{drift} \frac{1}{D} \sum_{i} q_i$$

When large clusters are absorbed at the electrodes, their contribution is removed from the induced current. The statistical origin of this variability of I_{ind} makes this effect irreducible in PN-junction sensors.

4. Gain

 A gain layer allows larger signals, and thus, better time resolution

$$\sigma_T \cong \frac{t_{rise}}{\underline{Signal}/\underline{Noise}} \cong \frac{\underline{ENC}}{\underline{I_{Ind}}}$$

SiGe Heterojunction Bipolar Transistor (HBT)

SiGe grading of the bandgap in the Base changes the chargetransport mechanism in the Base from diffusion to drift:

 \Rightarrow short e⁻ transit time in Base \Rightarrow very high β

 \Rightarrow smaller size \Rightarrow reduction of R_h and very high f_t (>100 GHz)

$$ENC_{\text{series noise}} \propto \sqrt{k_1 \cdot \frac{C_{tot}^2}{\beta} + k_2 \cdot R_b C_{tot}^2}$$

Cross section of a High speed SiGe HBT. Vertical transport device less dependent on lithography than CMOS

Front End Electronics Workshop 2023, Torino – June 13, 2023

SiGe HBT vs. CMOS

Peak transition frequency vs. technology node

A. Mai and M. Kaynak, SiGe-BiCMOS based technology platforms for mm-wave and radar applications. DOI: 10.1109/MIKON.2016.7492062

Peak transition frequency vs. current density

M. Schröter, U. Pfeiffer and R. Jain, Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications.

IHP SG13G2 130 nm process featuring **SiGe HBT** with

- Transistor transition frequency: f_T/f_{max} = 350/450 GHz
- Current gain: $\beta = 900$
- Delay gate: **1.8 ps**

Fast growing technology:

Several large-volume foundries offer SiGe processes: TJ, TSMC, ST, AMS, GF

SiGe BiCMOS Markets Served

Optical fiber networks

Smartphones

IoT Devices

source:

https://towerjazz.com/technology/rf-and-hpa/sige-bicmos-platform/

Thanushan Kugathasan – Université de Genève

Front End Electronics Workshop 2023, Torino – June 13, 2023

SiGe Bi-CMOS

- SiGe-HBT implemented as add-on in a CMOS technology (increase of cost of ~ 10%)
 - State of the art HBT by IHP research institute

new IHP process SG13G3Cu, now available through EUROPRACTICE, includes transistor with f_T/f_{max} = 500/700 GHz

Microwave Automotive: LiDAR, Radar and Communication Ethernet

HDD preamplifiers, line drivers, Ultra-high speed DAC/ADCS

Collection electrode cross-section

Parasitic capacitance dominated by p-well – n-well junction

Large n-well collection electrode (parallel plates) for uniform electric field

Electronics inside the n-well electrode:

- NMOS in isolated p-well
- PMOS in the collection n-well
 - Bias condition:

 $V_{pixel} \approx V_{inpixel} \geq V_{ccA}$

PMOS in isolated n-well: developed by the foundry, soon available.

Pixel matrix cross-section

100 µm pitch

Hexagonal grid

65 µm

- High resistivity epitaxial layer as active 2. volume.
 - 3. Electronics inside the guard-ring, isolated from substrate using deep n-well.

- VDD

000

- VDD

000

- VDD

→ VDD

2 - - - - -

000

-• VDD

- VDD

000

000

- VDD

- VDD

100

Cd = 80 fF(100 µm pitch, electronics outside thee pixel)

Analog Front-End

Ibias_preamp : 2 µA to 150 µA Ibias_fbk: nominal 400 nA

Monolith Prototype 2 (2022)

Monolith Prototype 1 (2019) 36 ps time jitter.

Improvements in Prototype 2:

- - Smaller pixel capacitance
 - Depletion 26 μ m \rightarrow 50 μ m
- Preamp and driver voltage decoupled:
 - Increased amplifier gain
 - Removed cross-talk
- - Better rise time (600ps \rightarrow 300ps)

hexagonal pixels with $\approx 100 \mu m$ pitch

• Substrate: $50\Omega cm \rightarrow 350 \Omega cm$ epilayer, $50\mu m$ thick on low-res ($1\Omega cm$) substrate.

Can operate sensor with v_{drift} saturated everywhere

• Analog Differential output, optimized FE layout, high-frequency cables:

Front End Electronics Workshop 2023, Torino – June 13, 2023

Monolith Prototype 2 – Analog readout

Voltage noise of the differential signal: $\sigma_{\rm V} \approx 1 \, {\rm mV}$

Amplitude distribution of differential signal: Landau with most probable value 🛛 🕿 50 mV

Monolith Prototype 2 – Efficiency and Noise Hit Rate

MONOLITH prototype (2022) - no gain layer

Large efficiency plateau at \approx 99.8%, that allows operation at very low noise-hit rate

Thanushan Kugathasan – Université de Genève

Front End Electronics Workshop 2023, Torino – June 13, 2023

MONOLIT

Monolith Prototype 2 – Jitter vs Power

DUT operated at $HV = 200$ V and $V_{th} = 7\sigma_V$					
P _{density} [W/cm ²]	Amplitude MPV [mV]	Time Resolution			
2.7	48.6 ± 0.5	20.7 ± 0.3			
0.9	35.8 ± 0.5	23.8 ± 0.3			
0.36	22.6 ± 0.4	30.1 ± 0.4			
0.13	14.2 ± 0.3	47.2 ± 0.7			
0.04	16.2 ± 0.3	77.1 ± 0.9			

20 ps at 2.7 W/cm² 50 ps at 100 mW/cm²

Monolith Prototype 2 – Jitter vs Position

For HV \ge 160V, time resolution ranges from \approx 19 ps at the center

to \approx 23 ps at the edge of the pixel Still something to improve with the weighting field far from pixel center.

For HV = 120 V: \approx 3 ps worse.

Monolith Prototype 2 - Laser measurement

Our prototype "**Reference**": Time resolution = 2.5 ps with **17k** e^{-} (5–6 mips)

Monolith Prototype 2 – MIP vs Laser

Laser amplitudes were reweighed to the testbeam amplitude distribution:

to estimate the charge-collection ("Landau") noise

Radiation hardness of SiGe HBTs

Radiation tolerance studies in collaboration with **KEK** and **IHP** colleagues. 10 samples of prototype2 ASIC were irradiated in Japan up to 1×10¹⁶ n_{eq}/cm².

> Very good news: even after 10¹⁶ n_{eq}/cm² the prototypes work !!!

Monolith Prototype 2 Radiation hardness – Jitter vs Qin

pre-rad

after $10^{16} n_{eq}/cm^2$

Radiation hardness of SiGe HBTs

Excellent news from radiation tolerance studies:

ASIC work even at 1×10¹⁶ n_{eq}/cm² and present large *i*_{feedback} plateaux. The electronics time jitter increases from ≈16ps to ≈40ps with HV increased only by 50 V (200→250 V)

Efficiency & time resolution with mips from testbeam this summer

Monolith Prototype 3 – 50 µm pitch

- New prototype: pixels with 50µm pitch
 - smaller capacitance
 - same timing performance with less power

• improved FE electronics

- 3 different configurations:
 - ➡ analog output with FE in pixel
 - ➡ analog output with FE off pixel
 - discriminated output with FE and discriminator in pixel
- reduced inter-pixel distance from 10µm to 6µm to maintain time resolution at pixel edges

Recently back from the foundry

Monolith Prototype 3 – in pixel discriminator

In pixel front-end and discriminator

Cdet = 40 fFIpreamp = 50 μ A Ibias_disc = $5\mu A$ Qin = 6250 e

Towards a full reticle size sensor

Low hit rate application Power Budget < 150 mW/cm² Periphery TDC with 150 ps bin

First prototype of sub-picosecond TDC based on a novel design. Free running oscillator based on calibration during measurement

> © R. Cardarelli, L. Paolozzi, P. Valerio and G. Iacobucci, European Patent Application / Filing - UGKP-P-001-EP, Europe Patent EP 18181123.3. 2 July 2018

4 mW/channel

- Experience on large scale desing in IHP BiCMOS 130 nm Imaging chip for electromagnetic showers (FASER experiment at CERN)

PicoAD:

Multi-Junction Picosecond-Avalanche Detector[©]

with <u>continuous and deep gain layer</u>:

- De-correlation from implant size/geometry high pixel granularity and full fill factor (high spatial resolution and efficiency)
- Only small fraction of charge gets amplified reduced charge-collection noise

(enhance timing resolution)

gain 60–70 for a MIP

© G. Iacobucci, L. Paolozzi and P. Valerio. Multi-junction pico-avalanche detector; European Patent EP3654376A1, US Patent US2021280734A1, Nov 2018

Front End Electronics Workshop 2023, Torino – June 13, 2023

PicoAD Testbeam results: dependence on position

Signal MPV amplitude

Efficiency

Time resolution

PicoAD proof-of-concept: stronger dependence on hit position than for prototype 2

Summary and outlook

The PicoAD[©] sensor works. Testbeam of the monolithic proof-of-concept ASIC provided:

- Efficiency = 99.9 % including inter-pixel regions
- Time resolution $\sigma_t = (17.3 \pm 0.4)$ ps : 13 ps at center and 25 ps at pixel edge (although sensor not yet optimized for timing)

Testbeam of second prototype ASIC, without gain layer, provided:

- Efficiency = 99.8% and $\sigma_t = (20.7 \pm 0.3)$ ps
- Laser measurement: down to 2.5 ps. Contributions from Landau noise studied
- Irradiation with protons (together with KEK) shows radiation tolerance up to 10¹⁶ n_{eq}/cm²
- PicoAD sensor based on this prototype to be delivered in September 2023,
- optimised for timing with TCAD to achieve ≈ 10 ps (thicker drift layer; improved inter-pixel region) Low power picosecond TDC development for fully monolithic chip ongoing

Deliverable of MONOLITH ERC project:

Full-reticle monolithic ASIC in Summer 2025 with 50µm pitch and sub-10ps timing

Extra Material

HBT Current gain and power consumption

	$f_t = 10 \; GHz$	$f_t = 100 \ GHz$
β_{max} at 200 MHz	50	500
β_{max} at 1 GHz	10	100
β_{max} at 5 GHz	2	20

 $f_t > 100 \ GHz$ technologies are necessary for fast, low-power amplification.

Radiation hardness of SiGe HBTs

Radiation hardness of SiGe HBTs

S. Díez et al, IEEE Nuclear Science Symposium & Medical Imaging Conference, Knoxville, TN, 2010, pp. 587-593, doi: 10.1109/NSSMIC.2010.5873828.

DC characteristics of SiGe BJT: radiation hard up to 10¹⁴ n_{eq}/cm², well above yearly integrated doses of e^+e^- and $\mu^+\mu^-$ colliders. AC characteristics: still to be explored beyond 10¹⁴ n_{eq}/cm²

From: J.D. Cressler, IEEE transactions on nuclear science, vol. 60, n. 3 (2013)

Front End Electronics Workshop 2023, Torino – June 13, 2023

Monolith Prototype 2 – Efficiency vs Position

Efficiency \approx 99.8% even in the inter-pixel region, for all working points

2022 prototype — no gain layer

MONOLITH prototype (2022) - no gain layer

Efficiency at the external edges affected by the telescope resolution of 10 μ m

MONOLITH prototype (2022) - no gain layer

Full efficiency (yellow is 99.8%) in the two triangles unaffected by telescope resolution

Front End Electronics Workshop 2023, Torino – June 13, 2023

P _{density} [W/cm ²]	$\sigma_V [mV]$	σ_{scope} [mV]	$A_q [\text{mV/fC}]$	ENC [electrons]
2.7	1.45 ± 0.02	0.39 ± 0.01	89.4 ± 1.1	93 ± 2
0.9	1.06 ± 0.02	0.39 ± 0.01	67.4 ± 0.8	84 ± 1
0.36	0.89 ± 0.01	0.39 ± 0.01	45.3 ± 0.8	97 ± 2
0.13	0.58 ± 0.01	0.16 ± 0.01	26.6 ± 0.5	125 ± 5
0.04	0.67 ± 0.01	0.16 ± 0.01	27.0 ± 0.5	145 ± 8

Table 1. Charge gain and ENC measured with a 55 Fe source at five different values of the front-end power density. The standard deviations of the voltage noise and of the oscilloscope noise used for the calculation of the ENC are also reported.

PicoAD proof-of-concept prototype (2022)

Apparent degradation at the external edges of the four pixels is due to the telescope pointing resolution of $\approx 10 \, \mu m$

Efficiency

Testbeam results: Detection Efficiency

MONOLI

Radiation hardness of SiGe HBTs

Thanushan Kugathasan – Université de Genève

Characterisation with ⁹⁰Sr source of the four pixels of the board M16 irradiated at 10¹⁶ n_{eq}/cm²

The different behaviour of pixel OA0 was present also pre-irrad. before irradiation ₈₀ characterisation with ⁵⁵Fe 60 Time Jitter [ps] 40 20 0 -M15 M16 M17 M18 M

probably due to electronics mismatch (will be reduced in future submission)

MONOLITH

36

Multi-Junction Picosecond-Avalanche Detector

with <u>continuous and deep gain layer</u>:

De-correlation from implant size/geometry → high pixel granularity and full fill factor

Only small fraction of charge gets amplified

→ reduced charge-collection noise

(enhance timing resolution)

stablished by the European (

Sensor growth on low resistivity wafers:

- 1. No dedicated backside processing needed
- 2. Low resistivity important to end depleted active region of sensor and minimise coupling to FE integrated in pixel

Thin 'absorbtion region', 1st epitaxial layer:

- Region where primary charge charge drifting 1. towards topside gets amplified is produced
- 2. Thin layer (~5µm) to **minimise charge** collection noise

Thin and uniform deep gain layer:

Same doping of gain layer over full pixel cell (full ullet'fill-factor'):

ATTRACT

- **Uniform gain** and minimisation of pixel edge effects
- Gain layer physically seperated from pixel \bullet implant:
 - Can decrease absorbtion region to minimise ulletcharge collection noise without increasing sensor capacitance (coupling to backside substarte p+)
 - Can integrate FE electronics inside pixel \bullet implant (fully monolithic CMOS)

Thicker 'drift region', 2nd epiaxial layer:

- Constrains: \bullet
 - Not too thick:
 - Maximise weighting field (\propto ۲ 1/depletion)
 - Maximise drift field \bullet
 - Not too thin: \bullet
 - Minimize capacitance ullet
 - Minimize impact of pixel implants on \bullet gain layer uniformity

Fully monolithic CMOS processing:

- Implemented in large collection electrode • design to maximise weighting field over full pixel cell
- **Pixel implant size can be minimised** while • maintaining gain layer uniformity!
- Hexagonal design to minimise edge effects • (impact on gain layer + high field breakdown between pixels)

Gain Measurement with ⁵⁵Fe source

Average amplitudes of h+ and e- gains extracted via gaussian fit around local maxima

Assumption of no gain multiplication when:

- photon absorbed in drift region \searrow
- lowest voltage (85 V)
- lowest dose (dose 1)

value

Gain Measurement with ⁵⁵Fe source

X-rays from ^{55Fe} radioactive source:

- mainly ~5.9 keV photons
- point-like charge deposition

Characteristic double-peak spectrum

- photon absorbed in drift region
 holes drift through gain layer & multiplied
 first peak in the spectrum
- photon absorbed in absorption region
 electrons through gain layer & multiplied
 second peak in the spectrum

Gain Measurement with ⁵⁵Fe source

We estimated that ⁵⁵Fe gain of \approx 23 corresponds to gain 60–70 for a MIP

