Multiple Stages Ring Oscillators Vernier-Based TDC to Optimize Jitter, Power Consumption and Conversion Time

<u>Guillaume Théberge-Dupuis</u>, Robin Scarpellini, Frédérik Dubois, Frédéric Nolet, Nicolas Saint-Jean, Tommy Rossignol, Nicolas Roy, Serge A. Charlebois and Jean-François Pratte

- Pixelated digital SiPM individually quenched
 - 1-to-1 coupling SPAD Readout electronics
- 3D integration
 - Dedicated process for CMOS and SPAD

2D pixel optimized for SPAD area

3D pixel optimized for SPAD area and electronic functionalities

2D pixel optimized for electronic functionalities

- Particles physics
 - Background rejection (α)
 - To detect cluster of events
- Medical imaging
 - To detect the point of annihilation in PET
 - Time correlated photon counting computed tomography
- Quantum key distribution cryptography
 - Time-bin QKD [2]

Precise time of detection for <u>each pixel in the PDC</u>

- Quantum Key Distribution (QKD)
- Positron Emission Tomography (PET)
- Time-of-flight computed tomography
- Targeted precision < 4.25 ps RMS

 [1] J.-F. Pratte *et al.*, "3D Photon-To-Digital Converter for Radiation Instrumentation: Motivation and Future Works," *Sensors (Basel)*, vol. 21, no. 2, p. 598, Jan. 2021, doi: <u>10.3390/s21020598</u>.

Uds

Precise time of detection for each PDC

- Neutron imaging
- Particle physics experiments (nEXO, Argo, etc.)
- Target resolution ≈ 100 ps

Vernier-based TDC

Ring Oscillators Vernier-based TDC – Principle

- Finer resolution and larger dynamic range → More cycles
- More cycles induce
 - More jitter accumulation
 - Increased conversion time
 - Increased power consumption

[3] F. Nolet *et al.*, "A 256 Pixelated SPAD readout ASIC with in-Pixel TDC and embedded digital signal processing for uniformity and skew correction," *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, vol. 949, p. 162891, Jan. 2020, doi: <u>10.1016/j.nima.2019.162891</u>.

Guillaume.Theberge-Dupuis@USherbrooke.ca

[4] N. Roy et al., "Low Power and Small Area, 6.9 ps RMS Time-to-Digital Converter for 3-D Digital SiPM," in *IEEE Transactions on Radiation and Plasma Medical Sciences*, vol. 1, no. 6, pp. 486-494, Nov. 2017, doi: 10.1109/TRPMS.2017.2757444.

8

Vernier-based TDC from single to multiple

How to reduce the total cycle count

Consecutive Vernier-based TDC – Principle

Guillaume.Theberge-Dupuis@USherbrooke.ca

Ring Oscillators Vernier-based TDC – Single Vernier

The LSB of the first Vernier is the dynamic range of the second Vernier

Cascaded Vernier-based TDC with feedthrough – Our innovation/contribution

• Dynamic Range to Resolution Ratio (DR_3)

$$DR_3 = \frac{Dynamic Range}{Resolution} = Number of different timestamps$$

• Minimize the total cycle count \Rightarrow Each stage has the same cycle count

Optimal cycle count per stage =
$$\sqrt[(VernierStages+1)]{DR_3}$$

Total reference cycles = $(VernierStages + 1) \times Optimal cycle count per stage$

• Case 1:

Dynamic range of 4 ns and resolution of 50 ps \Rightarrow Dynamic range to resolution ratio = 80

• Case 2:

Dynamic range of 20 ns and resolution of 50 ps \Rightarrow DR₃= 400 Dynamic range of 4 ns and resolution of 10 ps \Rightarrow DR₃= 400

• Case 3:

Dynamic range of 100 ns and resolution of 10 ps \Rightarrow DR₃= 10 000

Implementation in TSMC 180 nm

System implementation

11.0 <mark>4.3</mark>	54.3		Single Vernier		Ring oscillator TDC logic Dummy ring
16.5	7.1	65.1		Double Vernier	
21.9	13.4	6	5.1	Triple Vernier	
27.4	17.7		81.3		Quadruple Vernier

Test platform

Xilinx Zynq-7000 System on chip

Five (5) reference oscillators for phase locked-loop

Correlated and uncorrelated Start and Stop

Results

Uncorrelated measurement – Histogram at LSB = 50 ps and dynamic range = 20 ns

Guillaume.Theberge-Dupuis@USherbrooke.ca

Uncorrelated measurement – Linearity at LSB = 50 ps and dynamic range = 20 ns

Uncorrelated measurement – Conversion time at LSB = 50 ps and dynamic range = 20 ns

Guillaume.Theberge-Dupuis@USherbrooke.ca

Improvement for the cascaded Vernier (dynamic range = 20 ns)

Dependence of the average conversion time for the different architectures on resolution (DR = 20ns)

Average conversion time

Guillaume. The berge-Dupuis @USherbrooke.ca

Relation between precision and resolution (65 nm¹ vs 180 nm²)

Origin of the power consumption for different implementations (simulation at 1 Mcps and LSB = 50 ps)

- Flexible architecture that can be optimized for
 - Dynamic range to resolution ratio
 - Available area
- Each stage requires a calibration system
 - PLL or DAC
 - Other solutions are under investigation
- More stages = more logic power consumption
- Reduce the number of cycles
 - Reduce conversion time
 - Less cycles = less accumulated jitter
 - Reduce dynamic power consumption

- Cascaded double Vernier for array integration
 - Design in 65 nm
 - 4096 SPAD array
 - 1024 TDC
 - Sub-4.25 ps RMS precision
 - SPAD pitch of 78 µm
 - ASIC size 5.3 × 5.85 mm²
 - Rad-Hard (quantum key distribution low earth orbit satellite)

Acknowledgment

Philippe Marcoux¹ Caroline Paulin¹ Gabriel Martin-Hardy¹ Nicolas Viscogliosi¹ Julien Rossignol¹ Charles Bourcier-Guérette¹ Lorenzo Fabris² Paul Hausladen²

CANADA

FIRST

FUND

RESEARCH

EXCELLENCE

¹ Université de Sherbrooke

²Oak Ridge National Laboratory

Université de Sherbrooke **Fonds de** sur la national de sur la sur

APOGÉE

CANADA

D'EXCELLENCE EN RECHERCHE

FONDS

Fonds de recherche sur la nature et les technologies Québec 🔹 🔹

NSERC CRSNG CAK RIDGE

Institut interdisciplinaire d'innovation technologique

Thank you for your attention

CANADA FIRST

RESEARCH

FUND

EXCELLENCE

Université de Sherbrooke

APOGÉE

CANADA

D'EXCELLENCE EN RECHERCHE

FONDS

Fonds de recherche sur la nature et les technologies

NSERC CRSNG

South Content of Conte

[1] J.-F. Pratte *et al.*, "3D Photon-To-Digital Converter for Radiation Instrumentation: Motivation and Future Works," *Sensors (Basel)*, vol. 21, no. 2, p. 598, Jan. 2021, doi: <u>10.3390/s21020598</u>.

[2] S. Carrier, et al., "Towards a Multi-Pixel Photon-to-Digital Converter for Time-Bin Quantum Key Distribution", *Sensors* **2023**, *23*, 3376. <u>https://doi.org/10.3390/s23073376</u>

[3] F. Nolet et al., "A 256 Pixelated SPAD readout ASIC with in-Pixel TDC and embedded digital signal processing for uniformity and skew correction," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 949, p. 162891, 2020, doi: 10.1016/j.nima.2019.162891.

[4] N. Roy, *et al.*, "Low Power and Small Area, 6.9 ps RMS Time-to-Digital Converter for 3-D Digital SiPM," *IEEE Trans. Radiat. Plasma Med. Sci.*, vol. 1, no. 6, pp. 486–494, 2017, doi: 10.1109/TRPMS.2017.2757444.

[5] F. Nolet *et al.*, "22 μW, 5.1 ps LSB, 5.5 ps RMS jitter Vernier time-to-digital converter in CMOS 65 nm for single photon avalanche diode array," Electronics Letters, vol. 56, no. 9, pp. 424–426, 2020, doi: 10.1049/el.2019.4105.

[6] F. Nolet, *et al.*, "Time to Digital Conversion," Dec. 09, 2021 Accessed: Mar. 07, 2022. [Online]. Available: <u>https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021243451&_cid=P12-L0H3AU-76121-1</u>

[7] V. Sesta, *et al.*, "A novel sub-10 ps resolution TDC for CMOS SPAD array," 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 2018, pp. 5-8, doi: 10.1109/ICECS.2018.8617859.

Backup

- 1. Subtract the results of the two TDCs
 - Remove the common noise of the acquisition chain
- 2. Extract the distribution of the subtractions
 - The standard deviation is the combine jitter of the two TDCs
- 3. Calculate the quadratic average from the combine jitters to get the average precision of the two TDCs

Average precision
$$=\frac{\sqrt{\sigma_1^2 + \sigma_2^2}}{\sqrt{2}} = \frac{\sigma_{global}}{\sqrt{2}}$$

The targeted project – Neutron detection

UdS

ORNL-developed panel, PMT based (100s W power)

Multiple Stages Vernier-based TDC – Forward Vs Backward

UDS

	LSB	LSB DNL (LSB)		INL (LSB)		Precision	Jitter	Quantization	Conversion time (ns)	
	(ps)	Max	RMS	Max	RMS	(ps RMS)	(ps RMS)	(ps RMS)	Average	Sigma
Single	50	0.53	0.08	1.23	0.08	32.19	28.77	14.43	264.2	139.4
Double	50	0.13	0.04	0.14	0.05	16.16	7.26	14.43	77.5	19.3
Triple	50	0.10	0.03	0.14	0.04	24.05	19.24	14.43	74.2	11.9
Quadruple	46.4	0.32	0.09	0.36	0.14	17.27	10.91	13.39	109.2	11.6

Double Vernier	Area (µm²)
Ring oscillators	16 463
Dummy ring oscillators	65 131
TDC logic	7 067
Area for 1 TDC	

Single Vernier	Area (µm²)
Ring oscillators	21 952
Dummy ring oscillators	65 069
TDC logic	13 410

Area for 1 TDC

Single Vernier	Area (µm²)
Ring oscillators	27 438
Dummy ring oscillators	81 306
TDC logic	17 709
Area for 1 TDC	

Guillaume.Theberge-Dupuis@USherbrooke.ca

43

UDS

		Active		Dummy			
-	Ring oscillator (µm²)	TDC logic + (µm²) =	Subtotal (µm²)	+	ring (µm²)	=	Total (µm²)
Single Vernier	10 975	4 334	15 309		54 322		69 631
Double Vernier	16 463	7 067	23 530		65 131		88 661
Triple Vernier	21 952	13 410	35 360		65 069		100 429
Quadruple Vernier	27 438	17 709	45 470		81 306		126 453

Evolution of DNL and INL on resolution for the different architectures (dynamic range = 20ns)

Power (mW)	Logic	Ring oscillator (active)	Ring oscillator (static)	Total (active)	Total
Single Vernier	0.26	0.47	1.16	0.73	1.89
Double Vernier	0.25	0.13	1.81	0.38	2.19
Triple Vernier	0.31	0.14	2.48	0.45	2.93
Quadruple Vernier	0.41	0.16	3.26	0.57	3.83

The constraint we want to minimize is the summation of turns of each stage, so we have:

$$f(x, y, z, \cdots, n) = x + y + z + \cdots + n$$

where each variable is the cycle count of the stage

The other constraint is the total different codes (C), which is given by: $g(x, y, z, \dots, n) = x \times y \times z \times \dots \times n = C$

By the Lagrange theorem, we know that we are at a maxima or minima when: $\nabla f = \lambda \nabla g$

For 2 stages and 1 coarse counter (3 total stages) we have:

$$\nabla f = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} yz \\ xz \\ xy \end{bmatrix} and xyz = C$$

To minimize f(x, y, z), we have $x = y = z = \sqrt[3]{C}$

For 3 stages and 1 coarse counter (4 total stages) we have:

$$\nabla f = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \lambda \begin{bmatrix} xyz\\wyz\\wyz\\wxz\\xyw \end{bmatrix} and wxyz = C$$

To minimize f(x, y, z), we have $w = x = y = z = \sqrt[4]{C}$

For 4 stages and 1 coarse counter (5 total stages) we have:

$$\nabla f = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} wxyz \\ vxyz \\ vwyz \\ vwyz \\ vwxz \\ vxyw \end{bmatrix} and vwxyz = C$$

To minimize f(x, y, z), we have $w = x = y = z = \sqrt[5]{C}$