

Fast Timing with ALTIROC and LIROC

Christophe de LA TAILLE (OMEGA

2019

2016 Altiroc0

2 x 2 mm2 2 x 2 pixels PA + discri

> Altiroc0 and 1: No digital, To validate the FE part at system level (= ASIC bumpbonded onto a sensor)

2017

Altiroc' 7 x 7 mm2

5x5 pixels

PA+ discri +

TDC + SRAM

ALTIROC2:

First full size chip with 15 x 15 channels – 2 x 2 cm2 To demonstrate the functionality/performance of the ASIC (time resolution + luminosity counting) alone and bumpbonded onto a sensor

But NOT to be fully radiation hard (against SEE) CdLT FEE 2023

ALTIROC3:

Last full chip prototype before pre-production Same as Altiroc2 but fully triplicated

ALTIROC2's pixel integrates :

- A voltage (VPA) or trans-impedance (TZ) 1 GHz preamplifier followed by a high-speed discriminator:
 - Time walk correction made with a Time over Threshold (TOT) architecture
 - Main challenge = small jitter (low noise/capacitance) down to 4 fC
 - ⇒ Analog FE performance crucial

- TOA TDC: bin of 20 ps (7 bits), range of 2.5 ns, to be centered on the bunch crossing
- TOT TDC: bin of 120 ps (8 bits), range of 20 ns

• Hit buffer: SRAM 1536 x 19 bit

- Circular buffer to store timing data for each bunch-crossing, until a L1 trigger arrives
- Data = TOT and TOA bits, only in case of hit to save power ; with zero suppress.
- Depth of about 38 µs

• Trigger Hit Selector:

- Each received trigger associated to a trigger tag
- If data stored in Hit buffer related to received trigger, TOA/TOT data + trig tag stored into Matched Hit Buffer
- Matched Hit Buffer: 32 positions FIFO
 - Control Unit: looks for data related to a trigger event when requested by the End Of Column
 - Matched flag handled through a priority OR chain. Pixel at the top of the column with highest priority
 - Synchronous readout at 40 MHz
- Luminosity process unit
 - checks if hits are within 2 programmable windows
- I2C configuration registers

L0/L1

ALTIROC1 : voltage and TZ preamps, test pulse

Omega

- « voltage » PA (VPA)
 - Rf = 12k/25k
 - G0 ~ 26 dB
 - Less parallel noise
- Transimpedance PA (TZ)
 - Rf = 4k (+opt Cf)
 - G0 ~ 50 dB
 - Shorter occupancy
 - Better ToT
- Test-pulse
 - « delta » via Ctest : optimistic
 - Rtest added in series
 - Slower rise-time (matche to LGAD pulse)

CdLT FEE 2023

Testbench for ALTIROC2

- Setup = ASIC board (ASIC alone or bump bonded onto sensor) + interface board + FPGA board
- Front-end calibration : charge injection (0 up to 50 fC) using ASIC internal calibration pulser, controlled by the FPGA, synchronous to 40 MHz clock, ASIC alone: Cd=3,5 pF can be set by SC to mimic sensor capacitor
- **TOA/TOT TDC calibration :** ASIC periphery generates a trigger with tunable width and delay thanks to the phase shifted 640 MHz clock from the PLL + Random Phase Generator for DNL

Comparing measured time-of-arrival jitter with simulation

Jitter depends on the charge, but also on the discriminator thres.

Threshold trade-off to maximise pulse slope (dV/dt), thus minimize jitter.

Is the internal detector capacitance equivalent to an LGAD's ?

Pulse reconstruction of a voltage preamplifier, between ASIC alone and ASIC + sensor :

Showing same amplitude & falling edge decay time \rightarrow the internal LGAD-like capacitance corresponds to 3.5 pF. Showing slightly slowly rising time \rightarrow partially explains worst jitter with sensor.

nega

What is the minimum detectable charge ? (Median at 50%)

Fighting against digital activity

Omega

CdLT FEE 2023

Sensor effect on noise

Digital noise injected on the preamplifier ground gets amplified only when the impedance between the detector capacitance and the non-inverting preamplifier input is not zero : when the sensor is connected !

Effect of HV decoupling : where is the AC current flowing back to ground ?

Multiple channels

Optimal HV impedance is very different for 5x5 and 15x15 sensor

HV resistance :

- varied from 0 to 1kOhm
- Effect on gnd_pa noise amplification
 - Goes from 20 to 1
 - ~1 for R>100 Ohm
- Current return ensured by the 224 spectator channels
 - · Was not the case with smaller sensor
- HV parasitic inductance :
 - Effect of 10 nH in HV
 - 1 channel, 25 channels, 225 channels
 - = Altiroc0/Altiroc1/Altiroc2

Altiroc2 doesn't suffer from HV parasitic inductance !

Noise amplified by PA as signal Noise **x20** when $R_{HV} = 0 \Omega$ 1.1 $\lesssim ^{10}$ e ~ 9.0 61.13 6.13 Noise **x1** when $R_{HV} \equiv 1 k\Omega$ 61.52 4.0 C.E 2.0 13.13 -1...19 2.5 ບັກນາຍ ປົນໜຶ່ 20.0 75.0 channe Pulse Jt_tz 65.0 225 channels 55.0 45.0 35.0 25 channels 9 25.0 15.05.0 -5.0 -15.0 -25.014

Signal injected still intact :

No difference on signal shape with $R_{HV} = 1 \Omega$ and $R_{HV} = 1 k\Omega$

Negligible crosstalk on neighbour preamplifier :

Current return induces -1/225 crosstalk in all neighbours

HV impedance (resistance/inductance) is very different for 5x5 and 15x15 sensor

- For small sensor, high impedance leads to deformed signals => the smallest L, the better !
- For large sensor, the low impedance is no longer required as « spectator channels » ensure a low impedance current return
- Higher HV impedance (>100 Ohm) minimizes the gain on gnd_pa => better digital noise

Jitter and minimum threshold

- Jitter optimum is rather shallow with preamp risetime
- But noise and minimum threshold goes up quickly with speed (as sqrt)

ASIC+HPK LGAD biased at -80V (B16) All TZ ON

mega

- Time-walk = convolution of the preamplifier rise time (300 ps) with LGAD rise time (600 ps)
- Skew between bottom and top of the column pixel : due to clock tree distribution

Offline time-walk correction using TOT

Main challenges: organizational difficulties

- Organization: Design done by engineers spread in 6 labs ~ 7.5 FTE
 - SOS, Trello and Mattermost: to ensure quick/"easy" communication but some drawbacks too
- Analog 30 % of the chip
 - Analog performance and Floorplan crucial to guarantee analog performance at system level
 - 2.5 FTE: Omega (1.8 FTE), Clermont (0.7 FTE), SLAC (< 0.1 FTE for TDC), SMU (< 0.1 FTE for Phase shifter)
- Digital 70 % of the chip
 - Clock Domain Crossing, timings, SEE robustness
 - 5 FTE: Clermont (2.2 FTE) , Chips (2 FTE) , IFAE (0.8 FTE)
- Assembly done Full Digital on Top + UVM verification
 - Top level assembled with INNOVUS
 - Verilog models and lib files to be done for all analog/mixed blocks
 - Analog periphery treated as a macro block

\Rightarrow Difficulties:

- Design driven by digital while analog floor plan crucial for the performance
- UVM manpower: mainly at CERN, difficult to recruit UVM engineers at IN2P3
- Any modification, even very minor ones, in the analog or digital part implies that the implementation (layout) of the full chip must be redone + verifications to be redone from the beginning (frequencies)

Main challenges: technical difficulties

- Large chip (2 x 2 cm2) powered on one side only => sensitivity to IR drops
- Very delicate floorplan to be done to guarantee the analog performance
 - Ultra Low impedance for the ground of the preamp crucial
 - Several power domains:
 - Specific power lines for each analog/mixed block: vdd_pa/gnd_pa, vdd_disc/gnd_disc, vdd_toa/gnd_toa, vdd_tot/gnd_tot
 - For Altiroc3: Vdd_toa, vdd_tot, gnd_toa, gnd_tot per column and then distribution of powers/grounds to each pixel with same R to avoid LSB dependency with activity
 - Specific power lines for digital blocks: vddd/gndd, vddd1/gndd1, vddd2/gndd2

An ATTRACT project which aims at demonstrating :

- + Single Photon Time Resolution better than 20 ps RMS with 100 pF detector capacitance
- + 3 ns double pulse separation
- + Photon counting up to 300 MHz

Key functionalities

- Pole-zero cancellation
- Channel-wise Input DAC
- 1 GHz bandwidth preamplifier
 - High-speed discriminator
 - Native interface to picoTDC

=	weeroc
-	
_	
_	
-	
-	
-	
-	

Detector Read-Out	SiPM, SiPM array			
Number of Channels	64			
Signal Polarity	Positive or Negative (selectable ASIC-wise)			
Sensitivity	Trigger on 1/3 of photo-electron			
Timing Recolution	Better than 20 ps RMS on single photo-electron			
	Better than 3 ns double-peak separation on single photo-electron			
Dynamic Range	Over 300 MHz photon counting rate			
Deckeding & Dimension	BGA 20x20 mm ²			
	Flip-Chip low inductance packaging technology			
Power Consumption	180 mW (2,9 mW per channel) – Supply voltage : 1.2 V			
Inputs	64 analogue inputs with independent SiPM HV adjustments			
	64 low-common-mode LVDS triggers (CLPS) – compatible with CERN			
Outputs	picoTDC and all LVDS FPGA I/Os			
	64 HV adjustment for SiPM (64 x 6 bit), trigger threshold programming			
Internal Programmable Features	(10bits), 64 x 7 bit channel-wise threshold adjustment, ASIC-wise polarity			
(l ² C)	selector, preamp pole-zero cancellation adjustment, individual trigger			
	masking and cell powering.			
	Rely on TSMC 130nm MS-RF technology, « CERN qualified » for irradiation,			
Radiation Hardness	as ASIC design blocs are used for LHC and have been tested up to 300			
	Mrad			

RMS jitter performance with input charge (test pulse)

Omega

A fast-rising edge pulser is used to inject voltage steps into a capacitor to mimic charge deposited inside an SiPM.

Laser testbench setup

Compilation results from Roberta Pillera (INFI

Device	HV - OV	Oscilloscope SPTR FWHM (ps) (measured)	Liroc SPTR FWHM (ps) (measured)	SiPM characteristics
Hamamatsu S13360-1350CS	58.6V - 6 ov	150.22	162.02	1,3 x 1,3 mm - 50 µm
Hamamatsu S14160-1315PS	46V - 8 ov	372.77	354.44	1,3 x 1,3 mm - 15 µm
Broadcom AFBR-S4N33C013	34.9V - 8 ov	304.41	300.02	3,14 x 3,14 mm - 30 µm
AdvanSiD ASD-NUV1S-P	32V - 6 ov	109.29	135.85	1 x 1 mm - 40 µm

LIROC + FBK NUV UHD DA SiPM

Omega

Double pulse separation measured

- ALTIROC2 (ATLAS HGTD LGADs) extensively measured
 - Good performance : 30 ps at 10 fC
 - Digital noise increases with sensor
- ALTIROC3 just received
 - Already indications of improved performance : better uniformity, digital noise...
 - Tests with sensor delayed by TSMC/IMEC bug on polymide openings
- LIROC : SiPM high speed preamp and discriminator
 - 64 ch, native interface to picoTDC
 - 34 ps rms SPTR

High speed amplifiers

- Response to very short pulse
- Broadband
 - Zin=Rs (50 Ohm)
 - Vin = Q/Cin
 - $V_{OUT} = -G_m R_F \frac{Q_{IN}}{C_d}$
- Transimpedance
 - Zin ~ Zf/G ~ 1/gm

$$- \mathbf{V}_{\mathbf{OUT}} = \frac{\frac{1}{G_{\mathrm{m}}} - \mathbf{R}_{\mathrm{F}}}{1 + j\omega \frac{C_{\mathrm{d}}}{G_{\mathrm{m}}}} \mathbf{I}_{\mathrm{IN}} \approx -\mathbf{G}_{\mathrm{m}} \mathbf{R}_{\mathrm{F}} \frac{\mathbf{Q}_{\mathrm{IN}}}{\mathbf{C}_{\mathrm{d}}}$$

- Same response at High Frequency
- For highest speed : go to broadband. Faster, less stability issues

ega

High speed amplifiers

• Jitter is given by [details in backup] :

$$\sigma_t^{J} = \frac{N}{dV/dt} = \frac{e_n}{\sqrt{2t_{10-90_PA}}} \frac{C_d \sqrt{t_{10-90_PA}^2 + t_d^2}}{Q_{in}} = \frac{e_n C_d}{Q_{in}} \sqrt{\frac{t_{10-90_PA}^2 + t_d^2}{2t_{10-90_PA}}}$$

• Optimum value: $t_{10-90_{PA}} = t_d$ (current duration)

 $\sigma_t^{J} = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$

Cd: detector capacitance t $_{10_{-10_{-}PA}}$: rise time of the PA t_d= drift time of the detector e __n preamp noise density

- Gives ps/fC as scales with 1/Qin
- Electronics noise e_n given by the input transistor transconductance g_m:

$$e_n = \sqrt{\frac{2kT}{g_m}} \approx \frac{2kT}{\sqrt{qI_D}}$$

Jitter and minimum threshold

- Jitter optimum is rather shallow with preamp risetime
- But noise and minimum threshold goes up quickly with speed (as sqrt)

mega

Jitter stability under TID irradiation

ASIC alone (B7) Pixels ON : Col 7 (VPA) or 8 (TZ)

TID : 220 Mrad Dose rate : 3 Mrad/h Temperature : 22°C

All DC values and TDC bin remain constant along irradiation.

TOA TDC

TDC Power consumption 0.4 mA *1.2 V = 0,5 mW @ 10%

Differential shunt capacitor voltage-controlled delay cells

- **START** pulse comes first and initializes the TDC operation. **STOP** pulse follows the **START** with a delay that represents the time interval to be digitalized.
- At each tap of the Delay Line, STOP signal catches up to the START signal by the difference of the propagation delays
 of cells in Slow and Fast branches: i.e. 140ps 120ps = 20ps (LSB).
- The number of cells necessary for **STOP** signal to surpass the **START** signal represents the result of TDC conversion
- Cycling configuration used in order to reduce the total number of Delay Cells.
- TDC range is equal to **128** * **20 ps = 2.56 ns**

Natural TDC LSB fluctuation of TZ with temperature

b16

21.6 25 1.7

24

23 [23 [22 [22] [22] [22] [22]

20

19

18

130

125 [sc] [sc] [120 tot [120 tot

115

110

b16

120.4 5.9