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Software in the sixth Epoch of 
Distributed Computing

Tim Mattson          Human Learning Group



Five Epochs of Distributed Computing*: the first three

2

*The five Epochs of distributed computing, Amin Vahdat of Google: SIGCOMM Lifetime achievement award keynote, 2020.
https://www.youtube.com/watch?v=27zuReojDVw 

FTP: File Transfer Protocol,         MPP: Massively parallel processor,            RPC:  Remote Procedure Call

Epoch
starting date

Defining limitations Application Interaction time and 
Network performance

Capability

First
1970

Rare connections to 
expensive computers

FTP, telnet, email 100 ms
Low bandwidth 
High latency

People to computers

Second
1984

I/O wall, disks can’t 
keep up

RPC, 
Client Server

10 ms
10 mbps

Computer to computer

Third
1990

Networking wall MPP HPC, three-tier 
datacenter networks

1 ms
100 mbs à 1 Gbs

Services to services
People to static data

Fourth
2000

Dennard scaling wall 
… per core plateau

Web search, 
planet-scale services

100 𝜇s
10 Gbps
flash

People to people
People to interactive results

Fifth
2015

Per socket wall … 
accelerators take off

Machine Learning, 
data centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to insights



The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
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Where can we run HPC applications?

HW Granularity  ∝ amount of computing in time equal to mean network latencyCoarse 
grained

Fine 
grained

Loosely synchronous
Synchronous

Asynchronous
Embarrassingly Parallel
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Five Epochs of Distributed Computing*
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FTP: File Transfer Protocol,         MPP: Massively parallel processor,            RPC:  Remote Procedure Call

Epoch
starting date

Defining limitations Application Interaction time and 
Network performance

Capability

First
1970

Rare connections to 
expensive computers

FTP, telnet, email 100 ms
Low bandwidth 
High latency

People to computers

Second
1984

I/O wall, disks can’t 
keep up

RPC, 
Client Server

10 ms
10 mbps

Computer to computer

Third
1990

Networking wall MPP HPC, three-tier 
datacenter networks

1 ms
100 mbs à 1 Gbs

Services to services
People to static data

Fourth
2000

Dennard scaling wall 
… per core plateau

Web search, 
planet-scale services

100 𝜇s
10 Gbps
flash

People to people
People to interactive results

Fifth
2015

Per socket wall … 
accelerators take off

Machine Learning, 
data centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to insights



The cloud takes over
• On premises data centers give way to distributed resources  “in the cloud”.
• Starts with virtual machines (infrastructure as a service) and grows into a whole new 

architecture for software … microservices.

The old way: Monolithic applications The new, cool way: microservices

Single program composed of many functions 
interacting through memory/messages.

Many small independent programs interacting 
through remoter procedure calls (RPC).

Latencies O(milliseconds) to O(seconds) … 
the tail latency problem

Latencies O(microseconds) or less



Hardware in a cloud data center
• The unit of hardware replication is the server node with memory, I/O, and CPUs.  
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NIC: Network Interface Controller



Hardware in a cloud data center
• Applications composed of many (O(100)) small independent programs … ship 

functions as needed.  They interact through remote procedure calls (RPCs). 

NIC: Network Interface Controller

API

Logic

Microservice

API

Logic
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Logic
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Logic
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Logic

API

Logic

API

Logic

API

Logic

Apps@scale as 
collections of 
microservices
• Discrete units of functionality
• Continuous integration
• Continuous upgrades
• Resilient workflows

A Program 
embedded inside a 
microservice
• Tightly coupled 

parallelism. 
• Interacts directly with the 

Hardware



Programming Distributed computers

There is a clean split between 
applications that run in the cloud and 
those that need a dedicated HPC cluster.

This is reflected in the programming 
models used:

• Cloud: Remote Procedure Call (RPC), 
distributed object store distinct from 
tasks, execution flows as task graphs 
for Function as a service.  Heavy use 
of microservices.

• HPC Cluster: SPMD design pattern 
with MPI … also PGAS with SHMEM.

Distributed Computing today

HW Granularity  ∝ amount of computing in time equal to mean latencyCoarse 
grained

Fine 
grained

Loosely synchronous Synchronous
Asynchronous

Embarrassingly Parallel

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous
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3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

HPC Cluster

X



The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Laptop/server and cluster models 
work well together.   

An impenetrable wall separates 
them from the cloud-native world
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If you care about power, the world is heterogeneous?

Specialized 
processors doing 

operations suited to 
their architecture 
are more efficient 

than general 
purpose 

processors. 0

5

10
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20

25

30 SGEMM GFLOP/Watt for different 
architectures

Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2.   IEEE International 
Symposium on Computer Architecture and High Performance Computing, 2020  

Intel® MovidiusTM 
MyriadTM 2 VPU

Intel® Xeon® 
E5-2697v2 CPU, 

3.5 GHz, 12 cores

Nvidia® 
K40TM GPU

Hence, future systems will be increasingly heterogeneous … GPUs, CPUs, 
FPGAs, and a wide range of accelerators
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Intel® AgilexTM FPGAs

Habana® Gaudi® 2
 deep learning accelerator

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

A New Golden Age for Computer Architecture

15

13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency 

cores and 8 performance cores + 
integrated GPU

Image sources: Intel

Intel® Xe HPC GPU



A New Golden Age for Computer Architecture

Source: uciexpress.org white paper, 

• Chiplet-based architectures … building a 
package placed in a socket composed of 
distinct little chips (the “chiplet”).

• Connected by high speed in package 
interconnects … lets chiplets from multiple 
fabs fit into one package.

• The Universal Chiplet Interconnect Express 
effort defines a standard for how to 
connect chiplets.

• The result … multi-chiplet packages in a 
socket with heterogeneous devices from 
multiple vendors.

https://www.uciexpress.org/_files/ugd/0c1418_c5970a68ab214ffc97fab16d11581449.pdf
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• Chiplet-based architectures … building a 
package placed in a socket composed of 
distinct little chips (the “chiplet”).

• Connected by high speed in package 
interconnects … lets chiplets from multiple 
fabs fit into one package.

• The Universal Chiplet Interconnect Express 
effort defines a standard for how to 
connect chiplets.

• The result … multi-chiplet packages in a 
socket with heterogeneous devices from 
multiple vendors.Standard (2D)  and Advanced (2.5D) packaging

Membership includes Intel, Nvidia, Samsung, 
Qualcomm, Alibaba, Google, Microsoft, Meta, Arm …
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Intel® AgilexTM FPGAs

Habana® Gaudi® 2
 deep learning accelerator

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

A New Golden Age for Computer Architecture
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13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency 

cores and 8 performance cores + 
integrated GPU

Multi-chiplet packages with 
components from multiple 

vendors

Image sources: Intel, TPU from https://cloud.google.com/tpu Third Party Names and logos are the property of their owners.

Intel® Xe HPC GPU

Many of Intel’s products already 
use chiplet technology



Intel® AgilexTM FPGAs

Habana® Gaudi® 2
 deep learning accelerator

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

A New Golden Age for Computer Architecture
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13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency 

cores and 8 performance cores + 
integrated GPU

Multi-chiplet packages with 
components from multiple 

vendors

Google® Tensor 
Processing Unit

Image sources: Intel, TPU from https://cloud.google.com/tpu

• CPUs
• Discreate GPU
• CPU + integrated 

GPU

Third Party Names and logos are the property of their owners.

Intel® Xe HPC GPU



Intel® AgilexTM FPGAs

Habana® Gaudi® 2
 deep learning accelerator

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

A New Dark Age for Computer Programmers
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13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency 

cores and 8 performance cores + 
integrated GPU

Multi-chiplet packages with 
components from multiple 

vendors

Google® Tensor 
Processing Unit

Image sources: Intel, TPU from https://cloud.google.com/tpu

• CPUs
• Discreate GPU
• CPU + integrated 

GPU

Third Party Names and logos are the property of their owners.

Intel® Xe HPC GPU



Hardware in a cloud data center
• The unit of hardware replication is the server node with memory, I/O, processors, and accelerators.
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Inf. Accel.

NIC: Network Interface Controller

Heterogeneous nodes  
across the system

Heterogeneous 
processors on a node

CPU

CPU



… But there are problems in our 
cloudy paradise

22



Wasted Resources in the cloud
How resources are made 
available is associated with 
hardware on a node.  

For example, if all the cores are 
allocated to customer VMs, memory 
on the node not used by the VMs is 
unavailable for other jobs.   It is 
stranded.

* “Pond: CXL based memory pooling system for cloud platforms” Huaicheng Lie, et. al. https://arxiv.org/abs/2203.00241
$ “Borg: the Next Generation”, Muhammad Tirmazi, et. al., https://storage.googleapis.com/pub-tools-public-publication-data/pdf/5bf4ebfbf98ead7f6ee1552860fab88e75a5ed7e.pdf
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Analysis of production traces from Azure, shows that stranding is the dominant 
source of memory waste. They found that up to 25% of DRAM at any time is 
stranded (i.e. wasted).*

A similar analysis$ of traces from Google’s data centers found the average DRAM 
utilization was only 40%. 



Cost break down for a 
typical server node

*Dylan Patel and Gerald Wong, May 29, 2023. 
https://www.semianalysis.com/p/ai-server-cost-analysis-memory-is

For Azure, DRAM can be 50% of 
server cost*

* “Pond: CXL based memory pooling system for cloud platforms” 
Huaicheng Lie, et. al. https://arxiv.org/abs/2203.00241

Other analyses finds it at 40% of 
the cost

Whether its 40% or 50% of total 
cost, it is still an expensive 
resource to waste



Disaggregated Computing for SW Defined Servers (SDS)
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Consider a Rack composed of multiple pools

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

CPU pool

GPU pool

FPGA pool

SSD pool

DRAM pool

NVRAM pool

Dynamically compose across pools to match 
a software defined server to the workload

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:
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Consider a Rack composed of multiple pools
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SSD SSD SSD SSD

CPU pool

GPU pool

FPGA pool

SSD pool

DRAM pool

NVRAM pool

Dynamically compose across pools to match 
a software defined server to the workload

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:

The idea of disaggregated computing for SDS is so 
ridiculous, I can’t believe anyone would suggest it. 

 It reduces operational costs and improves utilization 
of system components, but the performance would be 
terrible for anything other than totally compute bound 

problems!!!

The network overheads would kill you!!!



The sixth Epoch of Distributed Computing
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Epoch
starting date

Defining limitations Application Interaction time and 
Network performance

Capability

First
1970

Rare connections to 
expensive computers

FTP, telnet, email 100 ms
Low bandwidth 
High latency

People to computers

Second
1984

I/O wall, disks can’t 
keep up

RPC, 
Client Server

10 ms
10 mbps

Computer to computer

Third
1990

Networking wall MPP HPC, three-tier 
datacenter networks

1 ms
100 mbs à 1 Gbs

Services to services
People to static data

Fourth
2000

Dennard scaling wall 
… per core plateau

Web search, 
planet-scale services

100 𝜇s
10 Gbps
flash

People to people
People to interactive results

Fifth
2015

Per socket wall … 
accelerators take off

Machine Learning, 
data centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to insights

Sixth
2025

Speed of light Dynamic, real-time AI  
from data-center to the 
edge with SDE*

100 ns
10 Tbs 

People to experiences

* SDE:  Software defined Everything, i.e. software defined networking, software defined infrastructure, software 
defined servers ... All at the same time  … to dynamically construct systems to meet the needs of workloads.



Networking technology… replace generic data center 
network with a cluster of cliques
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SSD N
IC

SSD N
IC

SSD N
IC

SSD N
IC

SSDN
IC

SSDN
IC

SSDN
IC

SSDN
IC

A clique:  A graph where every vertex is 
connected to every other vertex

A  Clique: a network of 
diameter one with 

O(¼N2) bisection bandwidth

Combine with next 
generation optical networks 

to hit latencies close to 
DRAM latencies (100 ns)



Future: scale networks across the 
data center with next generation,  
point-to-point optical networks

29

PolarFly network: Over 150 nodes connect by 
a network of diameter 2 … that is, any pair of 
nodes can be reached by two hops on the 
network

PolarFly: A cost-effective and Flexible Low-Diameter Toploty, K. Lakhotia, M. Besta, L. 
Monroe, K. Isharm, P. Iff, T. Hoefler, and F. Petrini, arXiv:2208.01695v4, 2023 



Latencies every engineer should know … 
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L1 cache reference 1.5 ns 
L2 cache reference 5 ns 
Branch misprediction 6 ns 
Uncontended mutex lock/unlock 20 ns 
L3 cache reference 25 ns 
Main memory reference 100 ns 
“Far memory”/Fast NVM reference 1,000 ns (1us) 
Read 1 MB sequentially from memory 12,000 ns (12 us) 
SSD Random Read 100,000 ns (100 us) 
Read 1 MB bytes sequentially from SSD 500,000 ns (500 us) 
Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms) 
Read 1 MB sequentially from disk 10,000,000 ns (10 ms) 
Disk seek 10,000,000 ns (10 ms) 
Send packet California→Netherlands→California (150 ms) 

Source: The Datacenter as a Computer: 
Designing Warehouse-Scale Machines, 
Luiz Andre Barroso, Urs Holzle, 
Parthasarathy Ranganathan, 3rd edition, 
Morgan & Claypool, 2019.

SSD NI
C

SSD NI
C

SSD NI
C

SSD NI
C

SSDNI
C

SSDNI
C

SSDNI
C

SSDNI
C

A cluster of nodes with a 
Clique network topology and 
low latency optical network…

Yields one hop network 
latencies on par with DRAM 
access latencies.



Take out the big stuff & you’re left with lots of µs overheads

31Source: Fig 1 from “Attack of the Killer Microseconds”, Barroso, Marty, Patterson, and Ranganathan, Comm ACM vol 60, # 4, p. 48, 2017

All those SW overheads add up … like bricks that combine to build a networking-wall … 
turning a 2 µs network into a 100 µs network…

Computer Scientists need to rethink system SW stacks to minimize latencies … 
fast RDMA, reduce sync contention, low latency interrupt handlers, and more …. 

All to hit O(µs) latencies. 



Disaggregated Computing for SW Defined Servers (SDS):
This idea works in the sixth Epoch
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Consider a Rack composed of multiple pools

ICache
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GPU pool
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Dynamically compose across pools to match 
a software defined server to the workload
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Scheduler

SSD SSD SSD SSD

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:



Low latency, high bandwidth network between cliques

SW Defined clusters of SW defined Servers
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ICache
Scheduler
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Scheduler
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SSD SSD SSD SSD

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

…

• Dynamic … changing 
from one job to the next.

• SW defined severs 
composed of 
heterogeneous 
components 

• Dynamically composed 
into a cluster

• Integrated over a 5G 
network to devices (and 
people) at the edge



The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Advances in networking technology plus low-
overhead software stacks optimized to reduce tail-

latency will shatter the wall between cloud 
computing and t5he other domains



Six Epochs of Distributed Computing  … SW implications
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Epoch
starting date

Defining limitations Application Interaction time and Network 
performance

Capability

First
1970

Rare connections to 
expensive computers

FTP, telnet, email 100 ms
Low bandwidth high latency

People to 
computers

Second
1984

I/O wall, disks can’t 
keep up

RPC, 
Client Server

10 ms
10 mbps

Computer to 
computer

Third
1990

MPP HPC, three-tier 
datacenter networks

1 ms
100 mbs à 1 Gbs

Services to 
services

Fourth
2000

Dennard Scaling Wall 
… per core plateau

Web search, planet-scale 
services

100 𝜇s
10 Gbps
flash

People to 
people

Fifth
2015

Per socket wall … 
accelerators take off

Machine Learning, data 
centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to 
insights

Sixth
2025

Speed of light Dynamic AI, integrated from 
data-center to the edge.

100 ns
10 Tbs 

People to 
experiences

The five Epochs of distributed computing, Amin Vahdat of Google: SIGCOMM Lifetime achievement award keynote, 2020. 

Concurrency: none

Concurrency: event driven

Concurrency: Multithreaded for latency hiding

Concurrency: Multithreaded for performance

Concurrency: Multi-server, multi-threaded

Concurrency: real-time, hierarchical & heterogenous



Intention Adaptation

InventionData Data

Data

Writing Parallel Distributed Applications

Network technology evolution:
• Lower and more predictable latencies
• Erase distinctions between HPC clusters & the cloud

In response … we must support:
• One code base à multiple execution models

Software generator Hardware 
cost model

Cloud Native HPC Laptop/serverHPC Cluster

• Application task-groups à  microservices
• Data structures à distributed object store
• Durable store: Persistent cloud store (e.g. S3)

• Application task-groups à processes
• Data  structures à in process memory
• Durable Store: Cluster file system

• Applications task-groups à threads
• Data  structures à process heap
• Durable store: local file system

We call this machine programming

Ideally with declarative semantics … 
Core Patterns + coordination language/API

Application source code written with a 
high-level language such as Python:



Conclusion

• We are on the threshold of the sixth Epoch of distributed computing.

• This will shatter the wall separating traditional HPC from the cloud.

• As optical networks become the norm, much of what we do in  HPC 
will be driven to the cloud.

• The issue for the HPC community … will our software be ready for 
this brave new world?


