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In the beginning, there 
were few languages … 

Fortran

C

C++

The fiery pit of doom

Pascal

Java Python



But then God intervened …

• Consider the Bible story of the tower of Babel.

– All developers used the same language. They gathered 
together in the valley of Silicon to build great programs and  
make a name for themselves, so funding would flow in great 
measure unto them.

– God came down to look upon them and the programs they 
wrote and remarked that with one language, nothing that 
they sought would be out of their reach. 

– Hence, God confounded them and gave them languages 
each unto their own domain so they could not understand 
each other.

– And the developers scattered and stopped building such 
great programs.

– (from Genesis 11:1-9, Programmer’s Standard Edition).

*with thanks to Andrew Lumsdaine who shared this observation with me 
http://www.chucksperry.net/tower-of-babel-art-print-noam-chomsky-
book-cover/



And the naked apes who write parallel programs got 
carried away and created many languages

ABCPL
ACE 
ACT++ 
Active messages 
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba 
ARTS
Athapascan-0b
Aurora
Automap
bb_threads 
Blaze
BSP
BlockComm 
C*. 
"C* in C 
C** 
CarlOS
Cashmere
C4
CC++ 
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran 
Converse
Code
COOL

CORRELATE 
CPS 
CRL
CSP
Cthreads 
CUMULVS
DAGGER
DAPPLE 
Data Parallel C 
DC++ 
DCE++ 
DDD
DICE.
DIPC 
DOLIB
DOME 
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel 
Eilean 
Emerald 
EPL 
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE 
Fork
Fortran-M
FX
GA 
GAMMA 
Glenda

GLU
GUARD
HAsL.
Haskell 
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE 
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma 
KOAN/Fortran-S
LAM
Lilac 
Linda
JADA 
WWWinda
ISETL-Linda 
ParLin 
Eilean 
P4-Linda
Glenda 
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie 
Manifold

Mentat
Legion
Meta Chaos 
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++ 
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE 
Panda 
Papers 
AFAPI.
 Para++
Paradigm

Parafrase2 
Paralation 
Parallel-C++ 
Parallaxis
ParC 
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP: 
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus 
POET.
Polaris 
POOMA
POOL-T
PRESTO
P-RIO 
Prospero
Proteus 
QPC++ 
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
 SAM

pC++ 
SCHEDULE
SciTL 
POET 
SDDA.
SHMEM 
SIMPLE
Sina 
SISAL.
distributed smalltalk 
SMI.
SONiC
Split-C.
SR
Sthreads 
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal 
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++ 
UNITY 
UC 
V 
ViC* 
Visifold V-NUS 
VPE
Win32 threads 
WinPar 
WWWinda 
 XENOOPS  
XPC
Zounds
ZPL

Parallel programming environments in the 90’s
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Is it bad to have so many languages?
Too many options can hurt you

• The Draeger Grocery Store experiment 
consumer choice:
– Two Jam-displays with coupon’s for purchase 

discount.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples at the 
display?

– Of those who “tried”, how many bought jam?

3

bu
y

30

bu
y

The findings from this study show that an extensive array of options can at first seem highly appealing to consumers, yet can reduce their 
subsequent motivation to purchase the product.

Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 76, 995-1006. 



A path back to the promised land …

§ Software lasts decades … hardware only for a few years.

§ We need a small number of foundational languages we can depend on.

§ To understand which programming models succeed and which fail, let’s 
start with the famous essay by Richard Gabriel … “The rise of worse is 
better”
• An essay that tried to explain the failure of common LISP to become a dominant 

programming model.

6



Design Philosophy:
“The Right Thing”

Sim
plicity: Im

plem
entation

Sim
plicity: Interface

Correctness

Consistency

Com
pleteness

Get it right!

Re
la

tiv
e 

Pr
io

rit
y

Richard Gabriel:
“The rise of Worse is Better”
“https://www.jwz.org/doc/worse-is-better.html 

Example: Common Lisp, 
Schema, and supporting 
infrastructure … The MIT 
way



Design Philosophy:
“The Worse way”

Sim
plicity: Im

plem
entation

Sim
plicity: Interface

Correctness

Consistency

Com
pleteness

Get it right!

Re
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tiv
e 
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y

Richard Gabriel:
The rise of Worse is Better”
“https://www.jwz.org/doc/worse-is-better.html 

Example: Unix and C 
… The New Jersey way

Third party names are the property of their owners



Which Design Philosophy wins?
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• History shows again and again … “Worse is better”.
– While “the right thing” community takes the time to “get it right”, the “worse is better” folks are busy 

establishing a user base.
– “Worse is better” programmers are conditioned to sacrifice safety, convenience, and hassle to get good 

performance.
– Since “worse is better” stresses implementation simplicity, its available everywhere.
– With a large user base, once “worse is better” has spread, there is pressure to improve it … so over 

time it becomes good enough

C and Unix Common Lisp



Meanwhile, in the wacky world of 
Parallel Computing…



History of MPI
Workstation 

vendors wanted 
into the HPC 

market

PVM was great but 
didn’t support quality 
SW engineering

MPP 
Vendors

Needed a common 
foundation to build a 
parallel SW industry

Fed-up recoding as 
they moved 
between platforms 

User 
Community

After several years of 
informal discussions, the 
MPI forum was created in 
1992.  A draft specification 
was presented one year 
later at SC’93.

1994

Many of us worked in the MPI forum … leadership came from the DOE National Labs.  In particular, the reference 
implementation from Bill Gropp and Rusty Lusk of Argonne national lab called MPIch helped us get it right in the 1.0 
specification and made sure a working implementation of the standard was available right from the beginning. 

Hardware:
By the early 90’s, massively 
parallel processors (MPPs) and 
the new trend with clusters 
convinced even the skeptics that 
the ”killer micros” had won.
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History of OpenMP

SGI

Cray

Merged, 
needed 
commonality 
across 
products

KAI ISV - needed 
larger market

was tired of 
recoding for 
SMPs.  Urged 
vendors to 
standardize.

ASCI

Wrote a 
rough draft 
straw man 
SMP API

DEC

IBM

Intel

HP

Other vendors 
invited to join

1997
Third Party names are the property of their owners

Hardware:
late 90’s chipsets made 
multiprocessor servers a mass-
market standard.  And architects 
realized multi-core chips would 
arrive soon. 



The origins of OpenCL

AMD

ATI

NVIDIA

Intel

Apple

Merged, needed 
commonality 
across products

GPU vendor –
wants to steal 
market share 
from CPU

CPU vendor –
wants to steal 
market share 
from GPU

Was tired of recoding for 
many core, GPUs.
Pushed vendors to 
standardize.

Wrote a rough draft 
straw man API

Khronos Compute 
group formed

ARM
Nokia
IBM
Sony
Qualcomm
Imagination
TI

Third party names are the property of their owners.

+ many 
more

Hardware:
2006 GPUs became fully 
programmable with CUDA.

2009



25+ years later, OpenMP rules along side MPI

• Over 80% of all explicitly parallel 
code (C/C++/Fortran) publicly visible 
in github uses the core trio of key 
parallel programing languages from 
the 1990’s

Programming models for C/C++/Fortran in publicly visible 
repositories in GitHub as of spring 2023*

*Quantifying OpenMP: Statistical insights into usage and adoption, T. Kadosh, N. 
Hasabnis, T. Mattson, Y. Pinter, and G. Oren, submitted to HPEC 2023



Two key lessons from the history of 
Parallel Computing…



Lesson 1: hardware changes dictate when new languages successfully emerge

• The first multiprocessor: Burroughs B5000, 1961
• SMP goes mainstream: the Intel Pentium technology in 1995 (up to two 

processors) and the Pentium Pro (up to four processors).

16

Dual socket Pentium pro board 
(~1997)

• MPPs (e.g. Paragon, TMC CM5, Cray T3D) in early 90’s,
• Clusters (Stacked Sparc pizza boxes late 80’s) and Linux clusters 

starting with Beowulf in 1994.

NVIDIA GeForce 8800/HD2900 
(~2006)

• GPGPU programming starts in early 2000’s but using primitive shader 
language

• NVIDIA innovations lead to fully programmable GPUs

NCSA super-cluster (1998) and 
Paragon XPS 140 (1994)

https://en.wikipedia.org/wiki/Pentium_Pro


Lesson 1: hardware changes dictate when new languages successfully emerge

• The first multiprocessor: Burroughs B5000, 1961
• SMP goes mainstream: the Intel Pentium technology in 1995 (up to two 

processors) and the Pentium Pro (up to four processors).

17

Dual socket Pentium pro board 
(~1997)

• MPPs (e.g. Paragon, TMC CM5, Cray T3D) in early 90’s,
• Clusters (Stacked Sparc pizza boxes late 80’s) and Linux clusters 

starting with Beowulf in 1994.

NVIDIA GeForce 8800/HD2900 
(~2006)

• GPGPU programming starts in early 2000’s but using primitive shader 
language

• NVIDIA innovations lead to fully programmable GPUs

NCSA super-cluster (1998) and 
Paragon XPS 140 (1994)

CUDA

https://en.wikipedia.org/wiki/Pentium_Pro


Lesson 2: Success only happens when end users drive the change

• Application programmers in the Accelerated Strategic Computing Initiative 
worked with vendors to define OpenMP and then used the funding power of 
the ASCI program to force rapid adoption.   Within one year of the 1.0 
specification release, the main HPC shared memory systems all supported 
OpenMP
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• MPI is a library to coordinate processes.  It did not need compiler vendors 
and could be created entirely by applications programmers.  That is what 
happened with MPIch.   Application programmers demanded support from 
vendors and they ALL adopted the standard.

• Outside HPC, applications community demanded OpenCL and it has been 
successful.   In HPC, however, the applications community was happy to sell 
their soul to Nvidia and Nvidia eagerly took them … locking people in a 
blissful “walled garden”



What is a “walled garden”?
• Walled Garden is an industry term.  It is both a compliment and an insult.

• A vendor builds a Walled Garden by creating a platform (SW + HW) that solves a 
need in the market ... often quite well.   People enjoy the Garden as the vendor 
builds a wall around the garden to lock people to their platform.

• Software tied to the Garden is of little use outside the garden.   People are trapped 
and consigned to paying the vendor whatever the vendor wants so they can sustain 
themselves in the garden.

• I am pissed-off at vendors who do this … but at the same time, building walled 
garden is what ALL vendors want to do.  The ones who don’t do so are the ones 
who can’t get away with it.

19

Ultimate responsibility for being trapped in a walled garden rests with the 
programmers who willingly enter the garden and let themselves be trapped.



What is a “walled garden”?
• Walled Garden is an industry term.  It is both a compliment and an insult.

• A vendor builds a Walled Garden by creating a platform (SW + HW) that solves a 
need in the market ... often quite well.   People enjoy the Garden as the vendor 
builds a wall around the garden to lock people to their platform.

• Software tied to the Garden is of little use outside the garden.   People are trapped 
and consigned to paying the vendor whatever the vendor wants so they can sustain 
themselves in the garden.

• I am pissed-off at vendors who do this … but at the same time, building walled 
garden is what ALL vendors want to do.  The ones who don’t do so are the ones 
who can’t get away with it.
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For HPC, Nvidia is the master of the walled garden!!

It pisses me off … but I have to admit they are the best 
software company for HPC we’ve ever seen.  CUDA 

and Rapids are really great.

But remember … ultimately it is the programmer’s 
fault.  Every time you choose an Nvidia language, you 

are supporting their work to trap you.
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Third Party Names are the Property of their owners



The solution …
• The user community need to band together … when you join forces (as happened 

with MPI and OpenMP) you can make the vendors do the right thing.

• If you fragment the market by using many specialized languages, you weaken your 
voice.  Converge around a small number of parallel programming languages, 
demand them from the vendors and you will win.

• For GPUs, OpenMP is a great option and support the growing segment of merged 
CPU/GPU systems (consider the amazing Grace Hopper product from Nvidia).

• Eventually, native C++ will have everything needed for parallel programming of 
CPUs and GPUs.   But it could be 10 years before the spec defines these changes 
and they become broadly supported.

22



What’s the next great inflection point 
that will push the development of new 

software APIs for parallel 
programming?
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The changing pool of software developers

The number of Software developers is growing rapidly …

But look what the U.S. Bureau of 
Labor Statistics says …

Quick Facts: Computer Programmers

2022 Median Pay $97,800  per year

Entry-level Education Bachelor’s degree

Number of jobs, 2022 147,400

Job Outlook, 2022-2032 -11% (Decline)

Employment Change, 2022-2032 -16,600

How can both of these trends be correct?
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm

https://www.computersciencezone.org/developers.   2013 à 2019
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class. Update to 2032

2013 2019 2032

18.2
million

26.4
million

45
million

https://www.computersciencezone.org/developers
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class
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The most popular programming languages…

6.7%
15.9%
9.4%
28.0%

Log share of popularity score

2016

Professional programmers use Java, C, and C++.   
Professionals who program use Python

http://pypl.github.io/PYPL.html

Share of 
total scores

2020
8%
25%
7%
12%



Source: Table 1 from “There’s plenty of room at the Top”, 
Leiserson, Thompson, Emer, Kuszmaul, Lampson, Sanchez, and 
Schardl,  Science Vol 368, June 5, 2020.

Why Python scares me … 
We have problems with Python …  Consider multiplication of 2 matrices of order 4096.

Implementation GFLOPS Absolute 
Speedup

Relative 
speedup

Fraction 
of peak

Python 2.7.9 0.005 1 -- 0.00

Java (OpenJDK 1.80_51) 0.058 11 10.8 0.01

C (GCC 5.2.1 20150826) 0.253 47 4.4 0.03

Parallel Loops 1.969 366 7.8 0.24

Cache oblivious (div&conq) 36,180 6,727 18.4 4.33

+ vectorization 124,914 23,224 3.5 14.96

+ AVX intrinsics 337,812 62,806 2.7 40.45

for i in xrange(4096): 
   for j in xrange(4096):
      for k in xrange(4096):
         C[i][j] += A[i][k] * B[k][j] 

Amazon AWS c4.8xlarge spot instance. Dual-socket Intel® Xeon® E5-2666 v3 CPU with 18 cores each. 60 
gibibytes of memory, shared 25-megabyte L3-cache and per-core 32–kibibyte (KiB) L1-data-cache and  256-
KiB private L2-cache. Fedora 22 with version 4.0.4 of the Linux kernel. Runtimes are best of five runs.

How do we get 
SW developers 
who write code 

like this

To get 
performance 

like this

Numba with 
Parallel 

Accelerator might 
get us this far

But it won’t do the 
algorithm 

restructuring 
required for this

Original  python code
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Hardware complexity is growing!!!
As the level of Hardware expertise among 
programmers has fallen, the complexity of 
systems has exploded. 

We need a fundamental shift on now we 
map SW onto HW

Ideally with declarative semantics … 
Core Patterns + coordination language/API

Application source code written with a 
high-level language such as Python:

Cloud Native HPC Laptop/serverHPC Cluster

• Application task-groups à  microservices
• Data structures à distributed object store
• Durable store: Persistent cloud store (e.g. S3)

• Application task-groups à processes
• Data  structures à in process memory
• Durable Store: Cluster file system

• Applications task-groups à threads
• Data  structures à process heap
• Durable store: local file system

Software generator Hardware cost 
model

Machine Programming
Intention Adaptation

InventionData Data

Data



What is Machine Programming?
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Traditional programming

• Three fundamental aspects of software development:
• Express the intent of their program

• Invent algorithms/data-structures

• Adapt the software to the details of the hardware for high performance

• Programmers do all this together when they write code.

Third party names are the property of their owners.

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code

Past attempts to automatically generate code have failed since 
they tried to “do it all” together (just as a human would).
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Separation of concerns
• Let’s break up the software development process and consider each aspect 

Separately

Third party names are the property of their owners.

Intention Adaptation

Invention

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code
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Separation of concerns

Third party names are the property of their owners.

Intention Adaptation

Invention

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code

Programmers should just worry about expressing their intent.   We will 
automate the Invention and Adaptation work

• Let’s break up the software development process and consider each aspect 
Separately



The Three Pillars of Machine Programming
MAPL/PLDI’18

322nd ACM SIGPLAN Workshop on Machine Learning and Programming  Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

Justin Gottschlich, Intel
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel
Michael Carbin, MIT
Martin, Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenebaum, MIT
Tim Mattson, Intel

A position paper laying out our vision for how to solve the machine 
programming problem. The three Pillars:
– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaption: Evolve in a changing hardware/software world

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation



Three Pillar Examples*
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*2nd ACM SIGPLAN Workshop on Machine Learning and Programming  
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism, 

locality, and recomputation in image processing pipelines” 
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and 
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang, 

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random 

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi, 
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley) 
SIGGRAPH 2019

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT



Three Pillar Examples*
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*2nd ACM SIGPLAN Workshop on Machine Learning and Programming  
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism, 

locality, and recomputation in image processing pipelines” 
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and 
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang, 

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random 

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi, 
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley) 
SIGGRAPH 2019

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT
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Halide: Focusing on programmer intent

Func blur_3x3(Func input) {
  Func blur_x, blur_y;
  Var x, y, xi, yi;

  // The algorithm - no storage or order
  blur_x(x, y) = (input(x-1, y)  + input(x, y)  + input(x+1, y))/3;
  blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

  // The schedule - defines order, locality; implies storage
  blur_y.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);
  blur_x.compute_at(blur_y, x).vectorize(x, 8);

  return blur_y;
}

§ Algorithm:
• What the program does, 

• Written by a domain specialist

§ Schedule:
• How the program runs

• Written by SW/HW expert

Halide 
separates the 

Algorithm
 

from the

 Schedule

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines, J Ragan-Kelley, C. Barnes, A. 
Adams, S. Paris, F. Durand, and S. Amarasinghe, PLDI, 2013, https://doi.org/10.1145/2491956.2462176

Intention Adaptation

InventionData Data

Data

https://doi.org/10.1145/2491956.2462176


Three Pillar Examples*
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*2nd ACM SIGPLAN Workshop on Machine Learning and Programming  
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism, 

locality, and recomputation in image processing pipelines” 
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and 
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang, 

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random 

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi, 
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley) 
SIGGRAPH 2019

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT
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Halide Learned Schedules

“Learning to Optimize Halide with Tree Search and Random Programs” Intel CAPA funded,  SIGGRAPH 2019 
(https://dl.acm.org/citation.cfm?id=3322967)

Credit: Andrew Adams et al.

Productivity / 
Performance

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-
Kelley. Learning to Optimize Halide with Tree Search and Random Programs  ACM Transactions on Graphics 38(4) (Proceedings of ACM SIGGRAPH 2019)

Invention

AdaptationIntention

Data Data

Data

https://dl.acm.org/citation.cfm?id=3322967
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Superhuman Performance

“Learning to Optimize Halide with Tree Search and Random Programs” Intel CAPA funded,  SIGGRAPH 2019 
(https://dl.acm.org/citation.cfm?id=3322967)

Credit: Andrew Adams et al.Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-
Kelley. Learning to Optimize Halide with Tree Search and Random Programs  ACM Transactions on Graphics 38(4) (Proceedings of ACM SIGGRAPH 2019)

Invention

AdaptationIntention

Data Data

Data

https://dl.acm.org/citation.cfm?id=3322967


Three Pillar Examples*
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*2nd ACM SIGPLAN Workshop on Machine Learning and Programming  
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism, 

locality, and recomputation in image processing pipelines” 
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and 
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang, 

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random 

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi, 
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley) 
SIGGRAPH 2019

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT



ScaMP: Scalable Machine Programming
A five-year research program at MIT funded by Intel and NSF (Launched Oct 2022)
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Intention Adaptation

InventionData Data

Data

I want to build a 
web based 
workflow 

management 
system for fluid 

dynamics 
simulations

Source code 
expressed in 

terms of 
composable  

DSLs

Correct by 
construction code 

generators

Verified DSL 
compilers

Learned 
autoschedulers

Learned cost 
models

Performance 
History database

Clusters of 
heterogeneous 

nodes

Conversation 
(iterative 

refinement)

Initial “spec”

Source: https://www.intel.com/content/www/us/en/research/news/new-machine-programming-research-at-mit.html?cid=iosm&source=linkedin&campid=intel_ai_-
_@intelai_social_media_content_calendar&content=100003476010351&icid=always-on&linkId=100000158650577

executable

MIT Pis
• Saman Amarasinghe
• Michael Carbin
• Adam Chlipala
• Jonathan Ragan-Kelley
• Armondo Solar-Lezama



Long Term Goal: Full Automation Conversational 
Computing
§ Scotty programs by talking to his computer.

§ Why can’t we?

• Intention: Natural language processing 
plus visual information

• Invention: Lifting into a DSL, ML to invent 
algorithms, Theorem prover to verify.

• Automation: Autotuning + ML to optimize 
for “any” HW

§ The process would be iterative (hence why it’s 
called “conversational” computing.
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source: Star Trek IV: the journey home.

This is a 10 year+ agenda.   The programming community can’t keep up with the pace of hardware innovation.  
Ultimately, we have no choice but to make machine programming work.



Conclusion/Summary
§ Programming models change when external factors (usually HW changes) for a change … not because 

people want something more “elegant”
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§ Application developers have a great deal of 
power to shape the programming models they 
have to work with … but only if they work 
together to speak with one voice and push 
vendors to do the right thing.

§ If you become “trapped under one vendor’s rule” 
its your own fault.  REFUSE to use proprietary 
programming models.

§ Changes in programmers and their training will 
force us to develop machine programing.  We can 
do this if we separate our concerns between 
intention, invention and adaptation and build 
tools for each concern and generate the right 
solutions.


