
On the Origin of Programming-Models
Tim Mattson, Human Learning Group

In the beginning, there
were few languages …

Fortran

C

C++

The fiery pit of doom

Pascal

Java Python

But then God intervened …

• Consider the Bible story of the tower of Babel.

– All developers used the same language. They gathered
together in the valley of Silicon to build great programs and
make a name for themselves, so funding would flow in great
measure unto them.

– God came down to look upon them and the programs they
wrote and remarked that with one language, nothing that
they sought would be out of their reach.

– Hence, God confounded them and gave them languages
each unto their own domain so they could not understand
each other.

– And the developers scattered and stopped building such
great programs.

– (from Genesis 11:1-9, Programmer’s Standard Edition).

*with thanks to Andrew Lumsdaine who shared this observation with me
http://www.chucksperry.net/tower-of-babel-art-print-noam-chomsky-
book-cover/

And the naked apes who write parallel programs got
carried away and created many languages

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
 Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
 SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
 XENOOPS
XPC
Zounds
ZPL

Parallel programming environments in the 90’s

55

Pe
rc
en
ta
ge

60

tr
y

40

tr
y

24 6

Is it bad to have so many languages?
Too many options can hurt you

• The Draeger Grocery Store experiment
consumer choice:
– Two Jam-displays with coupon’s for purchase

discount.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples at the
display?

– Of those who “tried”, how many bought jam?

3

bu
y

30

bu
y

The findings from this study show that an extensive array of options can at first seem highly appealing to consumers, yet can reduce their
subsequent motivation to purchase the product.

Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 76, 995-1006.

A path back to the promised land …

§ Software lasts decades … hardware only for a few years.

§ We need a small number of foundational languages we can depend on.

§ To understand which programming models succeed and which fail, let’s
start with the famous essay by Richard Gabriel … “The rise of worse is
better”
• An essay that tried to explain the failure of common LISP to become a dominant

programming model.

6

Design Philosophy:
“The Right Thing”

Sim
plicity: Im

plem
entation

Sim
plicity: Interface

Correctness

Consistency

Com
pleteness

Get it right!

Re
la

tiv
e

Pr
io

rit
y

Richard Gabriel:
“The rise of Worse is Better”
“https://www.jwz.org/doc/worse-is-better.html

Example: Common Lisp,
Schema, and supporting
infrastructure … The MIT
way

Design Philosophy:
“The Worse way”

Sim
plicity: Im

plem
entation

Sim
plicity: Interface

Correctness

Consistency

Com
pleteness

Get it right!

Re
la

tiv
e

Pr
io

rit
y

Richard Gabriel:
The rise of Worse is Better”
“https://www.jwz.org/doc/worse-is-better.html

Example: Unix and C
… The New Jersey way

Third party names are the property of their owners

Which Design Philosophy wins?

9

• History shows again and again … “Worse is better”.
– While “the right thing” community takes the time to “get it right”, the “worse is better” folks are busy

establishing a user base.
– “Worse is better” programmers are conditioned to sacrifice safety, convenience, and hassle to get good

performance.
– Since “worse is better” stresses implementation simplicity, its available everywhere.
– With a large user base, once “worse is better” has spread, there is pressure to improve it … so over

time it becomes good enough

C and Unix Common Lisp

Meanwhile, in the wacky world of
Parallel Computing…

History of MPI
Workstation

vendors wanted
into the HPC

market

PVM was great but
didn’t support quality
SW engineering

MPP
Vendors

Needed a common
foundation to build a
parallel SW industry

Fed-up recoding as
they moved
between platforms

User
Community

After several years of
informal discussions, the
MPI forum was created in
1992. A draft specification
was presented one year
later at SC’93.

1994

Many of us worked in the MPI forum … leadership came from the DOE National Labs. In particular, the reference
implementation from Bill Gropp and Rusty Lusk of Argonne national lab called MPIch helped us get it right in the 1.0
specification and made sure a working implementation of the standard was available right from the beginning.

Hardware:
By the early 90’s, massively
parallel processors (MPPs) and
the new trend with clusters
convinced even the skeptics that
the ”killer micros” had won.

12

History of OpenMP

SGI

Cray

Merged,
needed
commonality
across
products

KAI ISV - needed
larger market

was tired of
recoding for
SMPs. Urged
vendors to
standardize.

ASCI

Wrote a
rough draft
straw man
SMP API

DEC

IBM

Intel

HP

Other vendors
invited to join

1997
Third Party names are the property of their owners

Hardware:
late 90’s chipsets made
multiprocessor servers a mass-
market standard. And architects
realized multi-core chips would
arrive soon.

The origins of OpenCL

AMD

ATI

NVIDIA

Intel

Apple

Merged, needed
commonality
across products

GPU vendor –
wants to steal
market share
from CPU

CPU vendor –
wants to steal
market share
from GPU

Was tired of recoding for
many core, GPUs.
Pushed vendors to
standardize.

Wrote a rough draft
straw man API

Khronos Compute
group formed

ARM
Nokia
IBM
Sony
Qualcomm
Imagination
TI

Third party names are the property of their owners.

+ many
more

Hardware:
2006 GPUs became fully
programmable with CUDA.

2009

25+ years later, OpenMP rules along side MPI

• Over 80% of all explicitly parallel
code (C/C++/Fortran) publicly visible
in github uses the core trio of key
parallel programing languages from
the 1990’s

Programming models for C/C++/Fortran in publicly visible
repositories in GitHub as of spring 2023*

*Quantifying OpenMP: Statistical insights into usage and adoption, T. Kadosh, N.
Hasabnis, T. Mattson, Y. Pinter, and G. Oren, submitted to HPEC 2023

Two key lessons from the history of
Parallel Computing…

Lesson 1: hardware changes dictate when new languages successfully emerge

• The first multiprocessor: Burroughs B5000, 1961
• SMP goes mainstream: the Intel Pentium technology in 1995 (up to two

processors) and the Pentium Pro (up to four processors).

16

Dual socket Pentium pro board
(~1997)

• MPPs (e.g. Paragon, TMC CM5, Cray T3D) in early 90’s,
• Clusters (Stacked Sparc pizza boxes late 80’s) and Linux clusters

starting with Beowulf in 1994.

NVIDIA GeForce 8800/HD2900
(~2006)

• GPGPU programming starts in early 2000’s but using primitive shader
language

• NVIDIA innovations lead to fully programmable GPUs

NCSA super-cluster (1998) and
Paragon XPS 140 (1994)

https://en.wikipedia.org/wiki/Pentium_Pro

Lesson 1: hardware changes dictate when new languages successfully emerge

• The first multiprocessor: Burroughs B5000, 1961
• SMP goes mainstream: the Intel Pentium technology in 1995 (up to two

processors) and the Pentium Pro (up to four processors).

17

Dual socket Pentium pro board
(~1997)

• MPPs (e.g. Paragon, TMC CM5, Cray T3D) in early 90’s,
• Clusters (Stacked Sparc pizza boxes late 80’s) and Linux clusters

starting with Beowulf in 1994.

NVIDIA GeForce 8800/HD2900
(~2006)

• GPGPU programming starts in early 2000’s but using primitive shader
language

• NVIDIA innovations lead to fully programmable GPUs

NCSA super-cluster (1998) and
Paragon XPS 140 (1994)

CUDA

https://en.wikipedia.org/wiki/Pentium_Pro

Lesson 2: Success only happens when end users drive the change

• Application programmers in the Accelerated Strategic Computing Initiative
worked with vendors to define OpenMP and then used the funding power of
the ASCI program to force rapid adoption. Within one year of the 1.0
specification release, the main HPC shared memory systems all supported
OpenMP

18

• MPI is a library to coordinate processes. It did not need compiler vendors
and could be created entirely by applications programmers. That is what
happened with MPIch. Application programmers demanded support from
vendors and they ALL adopted the standard.

• Outside HPC, applications community demanded OpenCL and it has been
successful. In HPC, however, the applications community was happy to sell
their soul to Nvidia and Nvidia eagerly took them … locking people in a
blissful “walled garden”

What is a “walled garden”?
• Walled Garden is an industry term. It is both a compliment and an insult.

• A vendor builds a Walled Garden by creating a platform (SW + HW) that solves a
need in the market ... often quite well. People enjoy the Garden as the vendor
builds a wall around the garden to lock people to their platform.

• Software tied to the Garden is of little use outside the garden. People are trapped
and consigned to paying the vendor whatever the vendor wants so they can sustain
themselves in the garden.

• I am pissed-off at vendors who do this … but at the same time, building walled
garden is what ALL vendors want to do. The ones who don’t do so are the ones
who can’t get away with it.

19

Ultimate responsibility for being trapped in a walled garden rests with the
programmers who willingly enter the garden and let themselves be trapped.

What is a “walled garden”?
• Walled Garden is an industry term. It is both a compliment and an insult.

• A vendor builds a Walled Garden by creating a platform (SW + HW) that solves a
need in the market ... often quite well. People enjoy the Garden as the vendor
builds a wall around the garden to lock people to their platform.

• Software tied to the Garden is of little use outside the garden. People are trapped
and consigned to paying the vendor whatever the vendor wants so they can sustain
themselves in the garden.

• I am pissed-off at vendors who do this … but at the same time, building walled
garden is what ALL vendors want to do. The ones who don’t do so are the ones
who can’t get away with it.

20

For HPC, Nvidia is the master of the walled garden!!

It pisses me off … but I have to admit they are the best
software company for HPC we’ve ever seen. CUDA

and Rapids are really great.

But remember … ultimately it is the programmer’s
fault. Every time you choose an Nvidia language, you

are supporting their work to trap you.

21
Third Party Names are the Property of their owners

The solution …
• The user community need to band together … when you join forces (as happened

with MPI and OpenMP) you can make the vendors do the right thing.

• If you fragment the market by using many specialized languages, you weaken your
voice. Converge around a small number of parallel programming languages,
demand them from the vendors and you will win.

• For GPUs, OpenMP is a great option and support the growing segment of merged
CPU/GPU systems (consider the amazing Grace Hopper product from Nvidia).

• Eventually, native C++ will have everything needed for parallel programming of
CPUs and GPUs. But it could be 10 years before the spec defines these changes
and they become broadly supported.

22

What’s the next great inflection point
that will push the development of new

software APIs for parallel
programming?

24

The changing pool of software developers

The number of Software developers is growing rapidly …

But look what the U.S. Bureau of
Labor Statistics says …

Quick Facts: Computer Programmers

2022 Median Pay $97,800 per year

Entry-level Education Bachelor’s degree

Number of jobs, 2022 147,400

Job Outlook, 2022-2032 -11% (Decline)

Employment Change, 2022-2032 -16,600

How can both of these trends be correct?
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm

https://www.computersciencezone.org/developers. 2013 à 2019
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class. Update to 2032

2013 2019 2032

18.2
million

26.4
million

45
million

https://www.computersciencezone.org/developers
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class

25

The most popular programming languages…

6.7%
15.9%
9.4%
28.0%

Log share of popularity score

2016

Professional programmers use Java, C, and C++.
Professionals who program use Python

http://pypl.github.io/PYPL.html

Share of
total scores

2020
8%
25%
7%
12%

Source: Table 1 from “There’s plenty of room at the Top”,
Leiserson, Thompson, Emer, Kuszmaul, Lampson, Sanchez, and
Schardl, Science Vol 368, June 5, 2020.

Why Python scares me …
We have problems with Python … Consider multiplication of 2 matrices of order 4096.

Implementation GFLOPS Absolute
Speedup

Relative
speedup

Fraction
of peak

Python 2.7.9 0.005 1 -- 0.00

Java (OpenJDK 1.80_51) 0.058 11 10.8 0.01

C (GCC 5.2.1 20150826) 0.253 47 4.4 0.03

Parallel Loops 1.969 366 7.8 0.24

Cache oblivious (div&conq) 36,180 6,727 18.4 4.33

+ vectorization 124,914 23,224 3.5 14.96

+ AVX intrinsics 337,812 62,806 2.7 40.45

for i in xrange(4096):
 for j in xrange(4096):
 for k in xrange(4096):
 C[i][j] += A[i][k] * B[k][j]

Amazon AWS c4.8xlarge spot instance. Dual-socket Intel® Xeon® E5-2666 v3 CPU with 18 cores each. 60
gibibytes of memory, shared 25-megabyte L3-cache and per-core 32–kibibyte (KiB) L1-data-cache and 256-
KiB private L2-cache. Fedora 22 with version 4.0.4 of the Linux kernel. Runtimes are best of five runs.

How do we get
SW developers
who write code

like this

To get
performance

like this

Numba with
Parallel

Accelerator might
get us this far

But it won’t do the
algorithm

restructuring
required for this

Original python code

Intel Labs | The Future Begins Here 27

Hardware complexity is growing!!!
As the level of Hardware expertise among
programmers has fallen, the complexity of
systems has exploded.

We need a fundamental shift on now we
map SW onto HW

Ideally with declarative semantics …
Core Patterns + coordination language/API

Application source code written with a
high-level language such as Python:

Cloud Native HPC Laptop/serverHPC Cluster

• Application task-groups à microservices
• Data structures à distributed object store
• Durable store: Persistent cloud store (e.g. S3)

• Application task-groups à processes
• Data structures à in process memory
• Durable Store: Cluster file system

• Applications task-groups à threads
• Data structures à process heap
• Durable store: local file system

Software generator Hardware cost
model

Machine Programming
Intention Adaptation

InventionData Data

Data

What is Machine Programming?

Intel Labs | The Future Begins Here 29
29

Traditional programming

• Three fundamental aspects of software development:
• Express the intent of their program

• Invent algorithms/data-structures

• Adapt the software to the details of the hardware for high performance

• Programmers do all this together when they write code.

Third party names are the property of their owners.

Programmer
Intent

Algorithm

HW Aware
Implementation

Code

Past attempts to automatically generate code have failed since
they tried to “do it all” together (just as a human would).

Intel Labs | The Future Begins Here 30
30

Separation of concerns
• Let’s break up the software development process and consider each aspect

Separately

Third party names are the property of their owners.

Intention Adaptation

Invention

Programmer
Intent

Algorithm

HW Aware
Implementation

Code

Intel Labs | The Future Begins Here 31
31

Separation of concerns

Third party names are the property of their owners.

Intention Adaptation

Invention

Programmer
Intent

Algorithm

HW Aware
Implementation

Code

Programmers should just worry about expressing their intent. We will
automate the Invention and Adaptation work

• Let’s break up the software development process and consider each aspect
Separately

The Three Pillars of Machine Programming
MAPL/PLDI’18

322nd ACM SIGPLAN Workshop on Machine Learning and Programming Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

Justin Gottschlich, Intel
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel
Michael Carbin, MIT
Martin, Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenebaum, MIT
Tim Mattson, Intel

A position paper laying out our vision for how to solve the machine
programming problem. The three Pillars:
– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaption: Evolve in a changing hardware/software world

Intention

Invention

Data

Program
Synthesis

Inductive
Programming

HW
Design

Algorithm
Creation

Holistic
Compiler

Optimizations

Optimizing
Code

Generators

Reconfigurable
HW/SW

co-designs

Data Data

Adaptation

Three Pillar Examples*

33

*2nd ACM SIGPLAN Workshop on Machine Learning and Programming
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism,

locality, and recomputation in image processing pipelines”
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang,

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi,
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley)
SIGGRAPH 2019

Intention

Invention

Data

Program
Synthesis

Inductive
Programming

HW
Design

Algorithm
Creation

Holistic
Compiler

Optimizations

Optimizing
Code

Generators

Reconfigurable
HW/SW

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT

Three Pillar Examples*

34

*2nd ACM SIGPLAN Workshop on Machine Learning and Programming
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism,

locality, and recomputation in image processing pipelines”
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang,

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi,
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley)
SIGGRAPH 2019

Intention

Invention

Data

Program
Synthesis

Inductive
Programming

HW
Design

Algorithm
Creation

Holistic
Compiler

Optimizations

Optimizing
Code

Generators

Reconfigurable
HW/SW

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT

Intel Labs | The Future Begins Here 3535

Halide: Focusing on programmer intent

Func blur_3x3(Func input) {
 Func blur_x, blur_y;
 Var x, y, xi, yi;

 // The algorithm - no storage or order
 blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
 blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

 // The schedule - defines order, locality; implies storage
 blur_y.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);
 blur_x.compute_at(blur_y, x).vectorize(x, 8);

 return blur_y;
}

§ Algorithm:
• What the program does,

• Written by a domain specialist

§ Schedule:
• How the program runs

• Written by SW/HW expert

Halide
separates the

Algorithm

from the

 Schedule

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines, J Ragan-Kelley, C. Barnes, A.
Adams, S. Paris, F. Durand, and S. Amarasinghe, PLDI, 2013, https://doi.org/10.1145/2491956.2462176

Intention Adaptation

InventionData Data

Data

https://doi.org/10.1145/2491956.2462176

Three Pillar Examples*

36

*2nd ACM SIGPLAN Workshop on Machine Learning and Programming
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism,

locality, and recomputation in image processing pipelines”
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang,

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi,
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley)
SIGGRAPH 2019

Intention

Invention

Data

Program
Synthesis

Inductive
Programming

HW
Design

Algorithm
Creation

Holistic
Compiler

Optimizations

Optimizing
Code

Generators

Reconfigurable
HW/SW

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT

Intel Labs | The Future Begins Here 3737

Halide Learned Schedules

“Learning to Optimize Halide with Tree Search and Random Programs” Intel CAPA funded, SIGGRAPH 2019
(https://dl.acm.org/citation.cfm?id=3322967)

Credit: Andrew Adams et al.

Productivity /
Performance

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-
Kelley. Learning to Optimize Halide with Tree Search and Random Programs ACM Transactions on Graphics 38(4) (Proceedings of ACM SIGGRAPH 2019)

Invention

AdaptationIntention

Data Data

Data

https://dl.acm.org/citation.cfm?id=3322967

Intel Labs | The Future Begins Here 3838

Superhuman Performance

“Learning to Optimize Halide with Tree Search and Random Programs” Intel CAPA funded, SIGGRAPH 2019
(https://dl.acm.org/citation.cfm?id=3322967)

Credit: Andrew Adams et al.Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-
Kelley. Learning to Optimize Halide with Tree Search and Random Programs ACM Transactions on Graphics 38(4) (Proceedings of ACM SIGGRAPH 2019)

Invention

AdaptationIntention

Data Data

Data

https://dl.acm.org/citation.cfm?id=3322967

Three Pillar Examples*

39

*2nd ACM SIGPLAN Workshop on Machine Learning and Programming
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism,

locality, and recomputation in image processing pipelines”
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang,

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi,
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley)
SIGGRAPH 2019

Intention

Invention

Data

Program
Synthesis

Inductive
Programming

HW
Design

Algorithm
Creation

Holistic
Compiler

Optimizations

Optimizing
Code

Generators

Reconfigurable
HW/SW

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT

ScaMP: Scalable Machine Programming
A five-year research program at MIT funded by Intel and NSF (Launched Oct 2022)

40

Intention Adaptation

InventionData Data

Data

I want to build a
web based
workflow

management
system for fluid

dynamics
simulations

Source code
expressed in

terms of
composable

DSLs

Correct by
construction code

generators

Verified DSL
compilers

Learned
autoschedulers

Learned cost
models

Performance
History database

Clusters of
heterogeneous

nodes

Conversation
(iterative

refinement)

Initial “spec”

Source: https://www.intel.com/content/www/us/en/research/news/new-machine-programming-research-at-mit.html?cid=iosm&source=linkedin&campid=intel_ai_-
_@intelai_social_media_content_calendar&content=100003476010351&icid=always-on&linkId=100000158650577

executable

MIT Pis
• Saman Amarasinghe
• Michael Carbin
• Adam Chlipala
• Jonathan Ragan-Kelley
• Armondo Solar-Lezama

Long Term Goal: Full Automation Conversational
Computing
§ Scotty programs by talking to his computer.

§ Why can’t we?

• Intention: Natural language processing
plus visual information

• Invention: Lifting into a DSL, ML to invent
algorithms, Theorem prover to verify.

• Automation: Autotuning + ML to optimize
for “any” HW

§ The process would be iterative (hence why it’s
called “conversational” computing.

41

source: Star Trek IV: the journey home.

This is a 10 year+ agenda. The programming community can’t keep up with the pace of hardware innovation.
Ultimately, we have no choice but to make machine programming work.

Conclusion/Summary
§ Programming models change when external factors (usually HW changes) for a change … not because

people want something more “elegant”

42

§ Application developers have a great deal of
power to shape the programming models they
have to work with … but only if they work
together to speak with one voice and push
vendors to do the right thing.

§ If you become “trapped under one vendor’s rule”
its your own fault. REFUSE to use proprietary
programming models.

§ Changes in programmers and their training will
force us to develop machine programing. We can
do this if we separate our concerns between
intention, invention and adaptation and build
tools for each concern and generate the right
solutions.

