On the Origin of Programming-Models

Tim Mattson, Human Learning Group




Fortran

In the beginning, there
were few languages ...

NI-

Pascal

The fiery pit of doom



But then God intervened

« Consider the Bible story of the tower of Babel.

— All developers used the same language. They gathered
together in the valley of Silicon to build great programs and
make a name for themselves, so funding would flow in great
measure unto them.

— God came down to look upon them and the programs they
wrote and remarked that with one language, nothing that
they sought would be out of their reach.

- Hence, God confounded them and gave them languages
each unto their own domain so they could not understand
each other.

— And the developers scattered and stopped building such
great programs.

— (from Genesis 11:1-9, Programmer’s Standard Edition).

http://www.chucksperry.net/tower-of-babel-art-print-noam-chomsky-
book-cover/



And the naked apes who write parallel programs got
carried away and created many languages

Parallel programming environments in the 90’s

ABCPL CORRELATE GLU Mentat Parafrase2

ACE CPS GUARD Legion Paralation pCH
ACT++ CRL HAsL. Meta Chaos Parallel-C-++ S
Active messages CSp Haskell Midway Parallaxis Sl

Adl Cthreads HPC++ Millipede ParC POET
Adsmith CUMULVS JAVAR. CparPar ParLib++ SDDA.
ADDAP DAGGER HORUS Mirage ParLin SHMEM
AFAPI DAPPLE HPC MpC Parmacs Sl
ALWAN Data Parallel C IMPACT MOSIX Parti S

AM DC+ ISIS. Modula-P pC SISAL.
AMDC DCE++ JAVAR Modula-2* pCH++ distributed smalltalk
AppLeS DDD JADE Multipol PCN SMI
Amoeba DICE. Java RMI MPI PCP: SONC
ARTS DIPC javaPG MPC++ PH Split-C.
Athapascan-Ob DOLIB JavaSpace Munin PEACE SR

Aurora DOME JIDL Nano-Threads PCU Sthreads
Automap DOSMOS. Joyce NESL PET Strand.
bb_threads DRL Khoros NetClasses++ PETSc SUIE.

Blaze DSM-Threads Karma Nexus PENNY Synergy
BSP Ease . KOAN/Fortran-S Nimrod Phosphorus Telegrphos
BlockComm ECO LAM NOW POET. SuperPascal
C*, Eiffel Lilac Objective Linda Polaris TCGMSG.
"C*in C Eilean Linda Occam POOMA Threads b+
o Emerald JADA Omega POOL-T Uizl i
CarlOS EPL WWWinda OpenMP PRESTO TRAPPER
Cashmere Excalibur ISETL-Linda Orca P-RIO uC++

C4 Express ParLin OOF90 Prospero UNITY
CCH++ Falcon Eilean P++ Proteus uc

Chu Filaments P4-Linda P3L QPC++ v

Charlotte FM Glenda p4-Linda PVM vic*

Charm FLASH POSYBL Pablo PSI Visifold V-NUS
Charm++ The FORCE Objective-Linda PADE PSDM VPE

Cid Fork LiPS PADRE Quake Win32 threads
Cilk Fortran-M Locust Panda Quark Wll’lPaI:
CM-Fortran FX Lparx Papers Quick Threads WWWinda
Converse GA Lucid AFAPL Sage++ XENOOES
Code GAMMA Maisie Para++ SCANDAL XPC

COOL Glenda Manifold Paradigm SAM Zounds

ZPL



Is it bad to have so many languages?

Too many options can hurt you
60
e The Draeger Grocery Store experiment
consumer choice: :.f, 40
— Two Jam-displays with coupon’s for purchase "qc'; %0
discount. O
- 24 different Jam’s o
- 6 different Jam’s
- How many stopped by to try samples at the 5
display? |
— Of those who “tried”, how many bought jam? £ £ z =
24 6

The findings from this study show that an extensive array of options can at first seem highly appealing to consumers, yet can reduce their
subsequent motivation to purchase the product.

lyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 76, 995-1006.




A path back to the promised land ...

= Software lasts decades ... hardware only for a few years.

= We need a small number of foundational languages we can depend on.

" To understand which programming models succeed and which fail, let’s

start with the famous essay by Richard Gabriel ... “The rise of worse is
better”

* An essay that tried to explain the failure of common LISP to become a dominant
programming model.



Design Philosophy:
“The Right Thing”

Getitright! == == == -——

Example: Common Lisp,

Schema, and supporting
infrastructure ... The MIT

way

4
3
=
=)
-
=
3
=
M
3
1)
=
-
Q)
(=7
o
>

Richard Gabriel:
“The rise of Worse is Better”
“https://www.jwz.org/doc/worse-is-better.html

4
3
T
5 .
”'
=<
=1
(=g
o
q
b2
]
(@)
®

ssaudla|dwo)

Relative Priority



Design Philosophy:
“The Worse way”

Get it right! == =

Example: Unix and C
... The New Jersey way

4
3
=
=)
-
=
3
=
M
3
1)
=
-
Q)
(=7
o
>

Richard Gabriel:
The rise of Worse is Better”
“https://www.jwz.org/doc/worse-is-better.html

Relative Priority

Aduajsisuo)

4] )
3 (o]
5 3
= =1
o, [0)
(o 3 [
< (]
- 2
=1 7
P b7
q
ey
Q
o
()

Third party names are the property of their owners



Which Design Philosophy wins?

=

Design Philosophy: Design Philosophy:

€ »” o H H /4
The Worse way The Right Thing
: Common Lis
C and Unix P
- Z
. £ Get it right] == == == == - g
Get it right! == == "5 E
p -
o Example: Common Lisp, - g
Example: Unixand C o g Schema, and supporting El 8 s
... The New Jersey way S g = infrastructure ... The MIT '% 13 E
2 3 Ko way g g
B [y o = 3
a ] 2 @
< 2 5
@ a
(]

oepu) A1 dwis
uonejuawajdwyj :Ayidwis

L
3
-3
8.
3
=
E]
T
0
3
o
3
2
(=5
o
E]

Richard Gabriel:
“The rise of Worse is Better”
“https://lwww.iwz.org/doc/worse-is-better.html

Richard Gabriel:
The rise of Worse is Better”
“https://www.'wz.org/doc/wo rse-is-better.html Third party names are the property of their owners

« History shows again and again ... “Worse is better”.

— While “the right thing” community takes the time to “get it right”, the “worse is better” folks are busy
establishing a user base.

- “Worse is better’” programmers are conditioned to sacrifice safety, convenience, and hassle to get good
performance.

— Since “worse is better” stresses implementation simplicity, its available everywhere.

— With a large user base, once “worse is better’ has spread, there is pressure to improve it ... so over
time it becomes good enough



Meanwhile, in the wacky world of
Parallel Computing...



History of MPI

Workstation

PVM was great but

vendors wanted | didn’t support quality

into the HPC
market

SW engineering

MPP
Vendors

Needed a common
— foundation to build a

Hardware:
By the early 90’s, massively
parallel processors (MPPs) and

the new trend with clusters
convinced even the skeptics that
the “killer micros” had won.

After several years of
informal discussions, the
MPI forum was created in

parallel SW industry

User
Community

Fed-up recoding as
they moved

between platforms

1992. A draft specification
was presented one year
later at SC’'93.

—
A7 WP

1994

Many of us worked in the MPI forum ... leadership came from the DOE National Labs. In particular, the reference
implementation from Bill Gropp and Rusty Lusk of Argonne national lab called MPIch helped us get it right in the 1.0
pecification and made sure a working implementation of the standard was available right from the beginning.




History of OpenMP

SGI

Cray

KAI

Merged,
needed
commonality
across
products

ISV - needed
larger market

was tired of

ASCI

recoding for
— SMPs. Urged

Third Party names are the property of their owners

vendors to
standardize.

Hardware:
late 90’s chipsets made

DEC

multiprocessor Servers a mass-

market standard. And architects

HP

realized multi-core chips would

arrive soon.

IBM

Intel

Wrote a

rough draft Other vendors |
straw man invited to join

SMP API

OpenMP

1997




The origins of OpenCL

AMD Merged, needed
commonality

AT across products

GPU vendor -
NVIDIA — Wantsto steal

market share
from CPU

CPU vendor -
wants to steal

market share
from GPU

Intel —1

Hardware:
2006 GPUs became fully
programmable with CUDA.

Wrote a rough draft
straw man API

Khronos Compute
group formed

A

s
]

Was tired of recoding for

Apple —

standardize.

many core, GPUs.
Pushed vendors to

— ARM
— Nokia
— |IBM
— Sony
— Qualcomm
— |[magination
— TI
— + many
more
\ 4
7R
OpenCL
2009

Third party names are the property of their owners.



25+ years later, OpenMP rules along side MPI

* Over 80% of all explicitly parallel
code (C/C++/Fortran) publicly visible
in github uses the core trio of key

parallel programing languages from
the 1990’s

Programming models for C/C++/Fortran in publicly visible
repositories in GitHub as of spring 2023*

| | | | |

OpenMP

5,000

3,881

4,000

3,000 |-

2,340

2,000

# Repos

1,000

0 OQQ C o & )

*Quantifying OpenMP: Statistical insights into usage and adoption, T. Kadosh, N.
Hasabnis, T. Mattson, Y. Pinter, and G. Oren, submitted to HPEC 2023



Two key lessons from the history of
Parallel Computing...



Lesson 1: hardware changes dictate when new languages successfully emerge

» The first multiprocessor: Burroughs B5000, 1961

« SMP goes mainstream: the Intel Pentium technology in 1995 (up to two
processors) and the Pentium_Pro (up to four processors).

Dual socket Pentium pro board
(~1997)

« MPPs (e.g. Paragon, TMC CM5, Cray T3D) in early 90’s,

» Clusters (Stacked Sparc pizza boxes late 80’s) and Linux clusters
starting with Beowulf in 1994.

NCSA super-cluster (1998) and
Paragon XPS 140 (1994)

» GPGPU programming starts in early 2000’s but using primitive shader
language

* NVIDIA innovations lead to fully programmable GPUs

NVIDIA GeForce 8800/HD2900
(~2006) 16


https://en.wikipedia.org/wiki/Pentium_Pro

Lesson 1: hardware changes dictate when new languages successfully emerge

» The first multiprocessor: Burro

]
« SMP goes mainstream: the Int OpenMP 1995 (up to two

processors) and the Pentium_R

)

 MPPs (e.g. Paragon, TMC CN
» Clusters (Stacked Sparc pizz4

starting with Beowulf in 1994.

'MP' ?r:gl_glf)\jx clusters

 GPGPU programmina giarts i
language CUDA
 NVIDIA innovations lead to fu

)ut using primitive shader

le GPUs

Dual socket Pentium pro board
(~1997)

NCSA super-cluster (1998) and
Paragon XPS 140 (1994)

NVIDIA GeForce 8800/HD2900
(~2006) 17


https://en.wikipedia.org/wiki/Pentium_Pro

Lesson 2: Success only happens when end users drive the change

« Application programmers in the Accelerated Strategic Computing Initiative
worked with vendors to define OpenMP and then used the funding power of OpenMP
the ASCI program to force rapid adoption. Within one year of the 1.0 W~ -
specification release, the main HPC shared memory systems all supported
OpenMP

 MPI is a library to coordinate processes. It did not need compiler vendors
and could be created entirely by applications programmers. That is what 'MPI

happened with MPIch. Application programmers demanded support from
vendors and they ALL adopted the standard.

SES
» QOutside HPC, applications community demanded OpenCL and it has been .“ ?‘
successful. In HPC, however, the applications community was happy to sell .
their soul to Nvidia and Nvidia eagerly took them ... locking people in a
: « . OpenCL
blissful “walled garden




What is a “walled garden”?

« Walled Garden is an industry term. It is both a compliment and an insuilt.

« A vendor builds a Walled Garden by creating a platform (SW + HW) that solves a
need in the market ... often quite well. People enjoy the Garden as the vendor
builds a wall around the garden to lock people to their platform.

« Software tied to the Garden is of little use outside the garden. People are trapped
and consigned to paying the vendor whatever the vendor wants so they can sustain
themselves in the garden.

| am pissed-off at vendors who do this ... but at the same time, building walled
garden is what ALL vendors want to do. The ones who don’t do so are the ones
who can’t get away with it.

Ultimate responsibility for being trapped in a walled garden rests with the
programmers who willingly enter the garden and let themselves be trapped.

19



What is a

“walled garden”?

« Walled Garden is an industry term. It is both a compliment and an insuilt.

A vendor
need in th|
builds a W

e Software 1
and consi
themselve

* | am pisse
garden is
who can’t

For HPC, Nvidia is the master of the walled garden!!

It pisses me off ... but | have to admit they are the best
software company for HPC we’ve ever seen. CUDA
and Rapids are really great.

But remember ... ultimately it is the programmer’s
fault. Every time you choose an Nvidia language, you
are supporting their work to trap you.

hat solves a
he vendor

le are trapped
1ey can sustain

ng walled
re the ones

20



EVERYTIMEYOU,USEICUDAIOR
',(IPACC'

R — —

._-\ L

Ay s
NS
)

;
1

.
\ P
-
I S . '
.,s“ 'A’ . |
oA - ‘.',. - )
-V )

-’
.'7

i

: \ -
' ‘e .
W .-1

. .
A Tkia /'.'"“" =,I'-|\ % Ny
y po \ v Q’»*"ﬂ\ o

KI :EN' " &

Third Party Names are the Property of their owners . ieniegenera orsnet




The solution ...

* The user community need to band together ... when you join forces (as happened
with MPI and OpenMP) you can make the vendors do the right thing.

* |f you fragment the market by using many specialized languages, you weaken your
voice. Converge around a small number of parallel programming languages,
demand them from the vendors and you will win.

« For GPUs, OpenMP is a great option and support the growing segment of merged
CPU/GPU systems (consider the amazing Grace Hopper product from Nvidia).

« Eventually, native C++ will have everything needed for parallel programming of
CPUs and GPUs. But it could be 10 years before the spec defines these changes
and they become broadly supported.

22



What’s the next great inflection point
that will push the development of new
software APIs for parallel
programming?



The changing pool of software developers

m|II|on
The ntﬂttmber of Software developers is growing rapidly ... ., ﬁﬁ.fn o O
s s conperscenceione guderlones 2013 200 - oporcias Upite 021 mion M\ ﬁ
2013 2019 2032
Quick Facts: Computer Programmers
2022 Median Pay $97,800 per year
But look what the U.S. Bureau of Entry-level Education Bachelor’s degree
Labor Statistics says ... Number of jobs, 2022 147,400
Job Outlook, 2022-2032 -11% (Decline)
Employment Change, 2022-2032 -16,600

https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm

How can both of these trends be correct?

24



https://www.computersciencezone.org/developers
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class

The most popular programming languages...

Share of
PYPL PopularitY of Programming Language total scores
2016 2020
—— C/CH++ 8% 6.7%
—— Java 25% 15.9%
JavaScript 7% 9.4%
— Python 12% 28.0%

2100s Ajueindod jo aleys 607

2006 2008 2010 2012 2014 2016 2018 2020 2022

Professional programmers use Java, C, and C++.
Professionals who program use Python

http://pypl.github.io/PYPL.html 2



Why Python scares me ...

We have problems with Python ... Consider multiplication of 2 matrices of order 4096.

Original python code

for 1 in xrange (4096) :

for j in xrange (4096) :

for k in xrange (40906) :

C[i][3] += A[i][k] * B[k]I[]]
: Implementation GFLOPS | Absolute | Relative | Fraction
Numba with Speedup | speedup | of peak How do we get
Parallel - SW developers
Accelerator might Python 2.7.9 0.005 1 ~ @‘/ who write code
get us this far Java (OpenJDK 1.80 51) | 0.058 11 10.8 0.01 like this
C (GCC 5.2.1 20150826) 0.253 47 4.4 0.03
Parallel Loops 1.969 366 7.8 0.24
¢ Cache oblivious (div&con 36,180 6,727 18.4 4.33
But it won’t do the > ( jD r'fl'o get
algorithm  |_1{"+ vectorization 124,914 | 23224 |35 14.96 performance
restructuring —— — like this
required for this + AVXintrinsics 337,812 62,806 2.7 40.45 )‘

Source: Table 1 from “There’s plenty of room at the Top’,
Leiserson, Thompson, Emer, Kuszmaul, Lampson, Sanchez, and
Schardl, Science Vol 368, June 5, 2020.

Amazon AWS c4.8xlarge spot instance. Dual-socket Intel® Xeon® E5-2666 v3 CPU with 18 cores each. 60
gibibytes of memory, shared 25-megabyte L3-cache and per-core 32—kibibyte (KiB) L1-data-cache and 256-
KiB private L2-cache. Fedora 22 with version 4.0.4 of the Linux kernel. Runtimes are best of five runs.



Hardware complexity is growing!!!

As the level of Hardware expertise among

programmers has fallen, the complexity of

systems has exploded. Applicatlon source code written with a
high-level language such as Python:

Core Patterns + coordination language/API
map SW onto HW guage/

Data @ Data
A

Software generator

Machine Programming ,| Hardware cost

Data
( \ A
* Application task-groups = microservices » Application task-groups = processes » Applications task-groups = threads

* Data structures = distributed object store * Data structures = in process memory

» Data structures = process heap
* Durable store: Persistent cloud store (e.g. S3)

Durable Store: Cluster file system * Durable store: local file system

\_ J\ J
Cloud Native HPC HPC Cluster Laptop/server

Intel Labs | The Future Begins Here |nte|@ 27



What is Machine Programming?



Traditional programming

* Three fundamental aspects of software development:

e Express the intent of their program

* Invent algorithms/data-structures

| Algorithm |
Programmer HW Aware
« Adapt the software to the details of the hardware for high performance Intent Implementation

* Programmers do all this together when they write code.

Past attempts to automatically generate code have failed since
they tried to “do it all” together (just as a human would).

intel. =

Intel Labs | The Future Begins Here rpirq harty names are the property of their owners. 29



Separation of concerns

e Let’s break up the software development process and consider each aspect
Separately

| Algorithm |

Programmer HW Aware
Intent Implementation

intel. =

Intel Labs | The Future Begins Here rpirq harty names are the property of their owners. 30



Separation of concerns

e Let’s break up the software development process and consider each aspect
Separately

Programmer
Intent

Implementation

Adaptation

Programmers should just worry about expressing their intent. We will
automate the Invention and Adaptation work

intel. =

Intel Labs | The Future Begins Here rpirq harty names are the property of their owners. 31



The Three Pillars of Machine Programming

Reconfigurable
HW/SW
co-designs

Justin Gottschlich, Intel
Armando Solar-Lezama, MIT

MAPL/PLDI'18

Algorithm

Creation
Nesime Tatbul, Intel

Data
Michael Carbin, MIT

Martin, Rinard, MIT
Regina Barzilay, MIT ynthesis

Saman Amarasinghe, MIT

Joshua B Tenebaum, MIT
. Inductive
Tim Mattson, Intel Data

Holistic
Compiler
Optimizations

Adaptation

Optimizing
Code
Generators

A position paper laying out our vision for how to solve the machine
programming problem. The three Pillars:

— Intention: Discover the intent of a programmer

— Invention: Create new algorithms and data structures

— Adaption: Evolve in a changing hardware/software world

2"d ACM SIGPLAN Workshop on Machine Learning and Programming Languages (MAPL), PLDI'18, arxiv.org/pdf/1803.07244.pdf

32



Three Pillar Examples

¢ |Intention

— “Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines”
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and
Amarasinghe,) PLDI 2013

e Invention

— “Neo: a learned query optimizer”, (Marcus, Mao, Zhang,
Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

e Adaptation

— “Learning to Optimize Halide with Tree Search and Random
Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi,

Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley)
SIGGRAPH 2019

sk *2nd ACM SIGPLAN Workshop on Machine Learning and Programming
Languages (MAPL), PLDI'18, arxiv.org/pdf/1803.07244.pdf

Reconfigurable
HW/SW
co-designs

Algorithm
Creation

Data

Program
Synthesis

N XS

. Adaptation

Inductive Optimizing
Programming Code
Generators

Holistic
Compiler
Optimizations

— “ScaMP” Intel/NSF joint research center at MIT

e Put all three together ... and something awesome happens

33




¢ |Intention

e Invention

Three Pillar Examples

“Halide: A language and compiler for optimizing paralleli
locality, and recomputation in image processing pipelines”
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and
Amarasinghe,) PLDI 2013

— “Neo: a learned query optimizer”, (Marcus, Mao, Zhang,
Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

e Adaptation

— “Learning to Optimize Halide with Tree Search and Random
Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi,

Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley)
SIGGRAPH 2019

sk *2nd ACM SIGPLAN Workshop on Machine Learning and Programming
Languages (MAPL), PLDI'18, arxiv.org/pdf/1803.07244.pdf

Reconfigurable
HW/SW
co-designs

Algorithm
Creation

Data

Program
Synthesis

N XS

. Adaptation

Holistic
Compiler
Optimizations

Inductive Optimizing
Programming Code
Generators

e Put all three together ... and something awesome happens

— “ScaMP” Intel/NSF joint research center at MIT
34



Halide: Focusing on programmer intent

Func blur_3x3(Func input) {
Func blur_x, blur_y;
Halide Var x, y, Xi, Vi;

separates the

// The algorithm - no storage or order = Algorithm:
. blur_x(x, y) = (input(x-1, y) +input(x, y) +input(x+1,y))/3;
Algorithm =" / J 7 ’ « What the program does,
& blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3; e
* Written by a domain specialist
from the
// The schedule - defines order, locality; implies storage = Schedule:
Schedule blur_y.tile(x, v, xi, yi, 256, 32).vectorize(xi, 8).parallel(y); + How the program runs
blur_x.compute_at(blur_y, x).vectorize(x, 8);
* Written by SW/HW expert

return blur_y;

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines, J Ragan-Kelley, C. Barnes, A.

Adames, S. Paris, F. Durand, and S. Amarasinghe, PLDI, 2013, https://doi.org/10.1145/2491956.2462176 . -
Intel Labs | The Future Begins Here |nte|u



https://doi.org/10.1145/2491956.2462176

Three Pillar Examples

¢ |Intention

— “Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines”
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and
Amarasinghe,) PLDI 2013

e Invention

— “Neo: a learned query optimizer”, (Marcus, Mao, Zhang,
Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

e Ada

— “Learning to Optimize Halide with Tree Search and Rando
Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi,

Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley)
SIGGRAPH 2019

sk *2nd ACM SIGPLAN Workshop on Machine Learning and Programming
Languages (MAPL), PLDI'18, arxiv.org/pdf/1803.07244.pdf

Algorithm
Creation
Data

Program
Synthesis
Inductive
Programming

Reconfigurable
HW/SW
co-designs

N XS

. Adaptation

Holistic
Compiler
Optimizations

Optimizing
Code
Generators

e Put all three together ... and something awesome happens

— “ScaMP” Intel/NSF joint research center at MIT

36




Halide Learned Schedules

.r*i~'

Learned r”“Benchmark
cost model performance

Fastest

{ L schedule

F *‘schedule's"'

Input Halide Tree search

algorithm > on schedules | , Fast

schedule

Credit: Andrew Adams et al.

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-

Kelley. Learning to Optimize Halide with Tree Search and Random Programs ACM Transactions on Graphics 38(4) (Proceedings of ACM SIGGRAPH 2019) .
'ntel Labs | Tho Future Begins Here |nte| 37



https://dl.acm.org/citation.cfm?id=3322967

Superhuman Performance

A new automatic scheduling algorithm for Halide

Speed-up (higher is better)
Py X :

Larger search space
2X - | e - includes more Halide scheduling
features
- extensible

Hybrid cost model
- Mix of machine learning and
hand-designed terms
- Can model complex architectures

Ox — i

Prior work Expert This paper
(Mullapudi 2016) Humans

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-
Kellﬁer}/t.ell.ﬁi)rpinl%g?uct) rtirgﬂz,e F‘_?E!ige with Tree Search and Random Programs ACM Transactions on Graphics 38(4) (Proceedings of ACM SIGGRAPH 2019)

e Begins



https://dl.acm.org/citation.cfm?id=3322967

sk *2nd ACM SIGPLAN Workshop on Machine Learning and Programming

Th re e P i I I a r Exa m p I e S Languages (MAPL), PLDI'18, arxiv.org/pdf/1803.07244.pdf

e Intention
— “Halide: A language and compiler for optimizing parallelism,

locality, and recomputation in image processing pipelines”
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and
Amarasinghe,) PLDI 2013

e Invention
— “Neo: a learned query optimizer”, (Marcus, Mao, Zhang, Data
Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019
e Adaptation
— “Learning to Optimize Halide with Tree Search and Random
Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi,

Reconfigurable
HW/SW
co-designs

Algorithm
Creation

Holistic
Compiler
Optimizations

N XS

. Adaptation

Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley) Inductive Optimizing
SIGGRAPH 2019 eI Code
Generators

e Put all three together ... and something awesome happens
— “ScaMP” Intel/NSF joint research center at MIT
39




ScaMP: Scalable Machine Programming

A five-year research program at MIT funded by Intel and NSF (Launched Oct 2022)

Initial “spec”

| want to build a
web based
workflow
management
system for fluid
dynamics
simulations

>

<

Conversation
(iterative
refinement)

Incremental Multimodal

Specification (IMS)
X : MF, SP
Progressive Reification
DSL Synthesis Gl
Coordination M~ PL,
Synthesis o
Source code
expressed in
terms of
composable
DSLs

executable

1

Clusters of
heterogeneous
nodes

Correct by
construction code
generators

t ¢

Verified DSL
compilers

t ¢

Learned
autoschedulers

Performance
History database

Learned cost
models

MIT Pis

Saman Amarasinghe
Michael Carbin

Adam Chlipala
Jonathan Ragan-Kelley
Armondo Solar-Lezama

Source: https://www.intel.com/content/www/us/en/research/news/new-machine-programming-research-at-mit.html?cid=iosm&source=linkedin&campid=intel_ai_-
_@intelai_social_media_content_calendar&content=100003476010351&icid=always-on&Ilinkld=100000158650577

40



Long Term Goal: Full Automation Conversational
Computing

= Scotty programs by talking to his computer.
= Why can’t we?

* Intention: Natural language processing
plus visual information

* Invention: Lifting into a DSL, ML to invent
algorithms, Theorem prover to verify.

* Automation: Autotuning + ML to optimize
for “any” HW

= The process would be iterative (hence why it’s
called “conversational” computing.

A

source: Star Trek IV: the journey home.

This is a 10 year+ agenda. The programming community can’t keep up with the pace of hardware innovation.
Ultimately, we have no choice but to make machine programming work.

41



Conclusion/Summary

Programming models change when external factors (usually HW changes) for a change ... not because
people want something more “elegant”

Application developers have a great deal of
power to shape the programming models they
have to work with ... but only if they work
together to speak with one voice and push
vendors to do the right thing.

If you become “trapped under one vendor’s rule”
its your own fault. REFUSE to use proprietary
programming models.

Changes in programmers and their training will
force us to develop machine programing. We can
do this if we separate our concerns between
intention, invention and adaptation and build
tools for each concern and generate the right
solutions.




