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Parallel Programming … the world 
beyond mutithreading

Tim Mattson
Human Learning Group*

tgmattso@gmail.com

*a made-up company since so many forms require an institution … I like “human learning” not “machine learning”
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Disclaimer
• The views expressed in this talk are those of the speaker.

• If I say something “smart” or worthwhile:
– Credit goes to the many smart people I work with.

• If I say something stupid…
– It’s my own fault
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For hardware … parallelism is the path to performance

CPU + SIMD/Vector

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node
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Programming for the three major execution models

• In HPC, 3 programming environments dominate … covering the major classes of 
hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory 

computers.

– OpenMP:  Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t 
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well 
rounded HPC programmer should know what they are and how they work.
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Programming for the three major execution models

• In HPC, 3 programming environments dominate … covering the major classes of 
hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory 

computers.

– OpenMP/TBB:  Shared memory systems.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t 
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well 
rounded HPC programmer should know what they are and how they work.

You are all 
OpenMP and 
TBB experts 
and know a 

great deal about 
multithreading

You understand 
GPU 

programming 
with CUDA
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Programming for the three major execution models

• In HPC, 3 programming environments dominate … covering the major classes of 
hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory 

computers.

– OpenMP/TBB:  Shared memory systems.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t 
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well 
rounded HPC programmer should know what they are and how they work.

You are all 
OpenMP and 
TBB experts 
and know a 

great deal about 
multithreading

You understand 
GPU 

programming 
with CUDA

If you don’t 
know MPI, 
you aren’t 

really an HPC 
programmer!



Before we talk about MPI … I have an important topic I need to 
cover with you.

I’ll use OpenMP for this topic, but the ideas we’re going to cover 
apply to every programming model
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Exercise: Monte Carlo Calculations 
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities, find optimal 
values, etc.

• Example: Computing π with a digital dart board:

l Throw darts at the circle/square.
l Chance of falling in circle is proportional to 

ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r)  = 4 * r2

P = Ac/As =  π /4
l Compute π by randomly choosing points; π is 

four times the fraction that falls in the circle

2 * r

N= 10      π = 2.8

N=100      π = 3.16

N= 1000    π = 3.148
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Parallel Programmers love Monte Carlo algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{
   long i;      long Ncirc = 0;       double pi, x, y;
   double r = 1.0;   // radius of circle. Side of squrare is 2*r 
   seed(0,-r, r);  // The circle and square are centered at the origin
   #pragma omp parallel for private (x, y) reduction (+:Ncirc)
   for(i=0;i<num_trials; i++)
   {
      x = random();         y = random();
      if ( x*x + y*y) <= r*r)   Ncirc++;
    }

    pi = 4.0 * ((double)Ncirc/(double)num_trials);
    printf("\n %d trials, pi is %f \n",num_trials, pi);
}

Embarrassingly parallel: the 
parallelism is so easy its 
embarrassing.

Add two lines and you have a 
parallel program.
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Random Numbers: Linear Congruential Generator (LCG)

• LCG: Easy to write, cheap to compute, portable, OK quality

l If you pick the multiplier and addend correctly, LCG has a period of PMOD.
l Picking good LCG parameters is complicated, so look it up (Numerical Recipes 

is a good source).  I used the following:
u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
random_last = random_next;
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LCG code

static long MULTIPLIER  = 1366;
static long ADDEND      = 150889;
static long PMOD        = 714025;
long random_last = 0;
double random ()
{
    long random_next; 

    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
    random_last = random_next;

   return ((double)random_next/(double)PMOD);
}

Seed the pseudo random 
sequence by setting 
random_last
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Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10  R
elative error

Log10 number of samples

Run the same 
program the 
same way and 
get different 
answers!  

That is not 
acceptable!

Issue: my LCG 
generator is not 
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel 
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.
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Data Sharing: Threadprivate
• Makes global data private to a thread
– Fortran: COMMON  blocks
– C: File scope and static variables, static class members

• Different from making them PRIVATE
– with PRIVATE global variables are masked. 
– THREADPRIVATE preserves global scope within each thread

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{
    counter++;
    return (counter);
}

Example:  Use threadprivate to create a counter for each thread.
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LCG code: threadsafe version

static long MULTIPLIER  = 1366;
static long ADDEND      = 150889;
static long PMOD        = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{
    long random_next; 

    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
    random_last = random_next;

   return ((double)random_next/(double)PMOD);
}

random_last carries state between 
random number computations,

To make the generator threadsafe, 
make random_last threadprivate so 
each thread has its own copy.
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Thread Safe Random Number Generators

Log
10  R

elative error

Log10 number of samples

Thread safe version gives the 
same answer each time you 
run the program.

But for large number of 
samples, its quality is lower 
than the one thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe
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Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random numbers of length 

equal to the period of the RNG

l In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

l Grab arbitrary seeds and you may generate overlapping sequences  
u E.g. three sequences … last one wraps at the end of the RNG period.

l Overlapping sequences = over-sampling and bad statistics … lower quality or even wrong answers!

Thread 1
Thread 2

Thread 3



Now that you understand threadprivate in OpenMP, the concept of 
thread safe libraries, and the concept of parallel random number 

generators, let’s move to MPI.
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A “Hands-on” Introduction to MPI

* The name “MPI” is the property of the MPI forum (http://www.mpi-forum.org).

Tim Mattson          Human Learning Group.     tgmattso@gmail.com 

Download tutorial materials:
git clone https://github.com/infn-esc/esc23.git then go to esc23/hands-on/mpi

mailto:tgmattso@gmail.com
https://github.com/infn-esc/esc23.git
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments



Programming Model for distributed memory systems
• Programs execute as a collection of processes.

– Number of processes almost always fixed at program startup time
– Local address space per node -- NO physically shared memory.
– Logically shared data is partitioned over local processes.

• Processes communicate by explicit send/receive pairs
– Synchronization is implicit by communication events.
– MPI (Message Passing Interface) is the most commonly used API

PnP1P0

s: 12 

i: 2

Private 
memory

s: 14 

i: 3

s: 11 

i: 1

send P1,s

Network

receive Pn,s
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Parallel API’s: MPI,  the Message Passing Interface

omp_set_lock(lck)MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpack 

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelled 

MPI_Type_free

MPI_Type_contiguous

MPI_Barrier

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoallv

MPI_Group_compare

MPI_Scan

MPI_Group_size

MPI_Errhandler_create

MPI:  An API for Writing Applications 
for Distributed Memory Systems

–A library of routines to coordinate the execution 
of multiple processes. 
–Provides point to point and collective 

communication  in Fortran, C and C++ 
–Unifies last 30 years of  cluster computing and 

MPP* practice

*MPP: Massively Parallel Processing.   Clusters use “off the shelf” components.   MPP systems include custom system integration. 



26

How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program 
(blue) working on a 

data set (orange)

•A  replicated single program working on a 
decomposed data set.

•Use Node ID (rank) and number of nodes 
to split up work between processes (ranks)

• Coordination by passing messages.
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Using the ESC cluster with MPI

• Compile your program
$ mpicc -fopenmp -O3 -o hi hello.c

• Run the program on the local node
$ mpirun -np 4 ./hi

• Run the program across multiple nodes (with 2 processes … or slots … on each 
node):
$ cat hosts
 hpc-200-06-06 slots=2
 hpc-200-06-17 slots=2
 hpc-200-06-18 slots=2
$ mpirun -hostfile hosts -np 4 ./hi



Exercise: Hello world part 1
• Goal

– To confirm that you can run a program in parallel.
• Program

– Write a program that prints “hello world” to the screen.
– Execute across the nodes of our cluster using mpirun

• Log in to the ESC cluster making sure to set things up for MPI as instructed.

• Build your MPI program
$ mpicc -fopenmp -O3 -o hi hello.c

• Run the program on the local node
$ mpirun -np 4 ./hi

• Run the program on hosts listed in the hostfile.
$ mpirun -hostfile hosts -np 4 ./hi

$ cat hosts
 hpc-200-06-06 slots=2
 hpc-200-06-17 slots=2
 hpc-200-06-18 slots=2
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An MPI program at runtime
• Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data.

The collection of processes involved in a computation is called “a 
process group”
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An MPI program at runtime
• Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data.

You can dynamically split a process group into multiple subgroups 
to manage how processes are mapped onto different tasks
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MPI Hello World Program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }



33

Initializing and finalizing MPI

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }

int MPI_Init (int* argc, char* argv[])
§ Initializes the MPI library … called before any other MPI 

functions.
§ agrc and argv are the command line args passed from main()

int MPI_Finalize (void)
§ Frees memory allocated by the MPI library … close 

every MPI program with a call to MPI_Finalize
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How many processes are involved?

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }

int MPI_Comm_size (MPI_Comm comm, int* size)
§ MPI_Comm, an opaque data type called a communicator.  Default 

context: MPI_COMM_WORLD (all processes) 
§ MPI_Comm_size returns the number of processes in the process 

group associated with the communicator

Communicators consist of two parts, a 
context and a process group.  

The communicator lets one control how 
groups of messages interact.

Communicators support modular SW … 
i.e. I can give a library module its own 
communicator and know that it’s 
messages can’t collide with messages 
originating from outside the module
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Which process “am I” (the rank)

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }

int MPI_Comm_rank (MPI_Comm comm, int* rank)
§ MPI_Comm, an opaque data type, a communicator.  Default context: 

MPI_COMM_WORLD (all processes) 
§ MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

Note that other than init() and finalize(), 
every MPI function has a 
communicator.

This makes sense .. You need a context 
and group of processes that the MPI 
functions impact … and those come 
from the communicator.
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Running the program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }

§ On a 4 node cluster, to run this program (hello):
> mpirun –np 4 –hostfile hostf hello

• Where “hostf” is a file with the names of the 
cluster nodes, one to a line.

• Would would this program output?
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Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
}

§ On a 4 node cluster, to run this program (hello):
> mpirun –np 4 –hostfile hostf hello
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4

• Where “hostf” is a file with the names of the 
cluster nodes, one to a line.



38

Exercise: Hello world part 2
• Goal

– To confirm that you can run 
an MPI  program on our 
cluster

• Program
– Write a program that prints 

“hello world” to the screen.
– Modify it to run as an MPI 

program … with each printing 
“hello world” and its rank

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

• Log in to the ESC cluster making sure to set things up for 
MPI as instructed.

• Build your MPI program
$ mpicc -fopenmp -O3 -o hi hello.c

• Run the program on the local node
$ mpirun -np 4 ./hi

• Run the program on hosts listed in the hostfile.
$ mpirun -hostfile hosts -np 4 ./hi

 char name[MPI_MAX_PROCESSOR_NAME];
 int namLen;

 
 MPI_Get_processor_name(name,&namLen);
 printf("%s  %d\n",name,namLen);
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Running the program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }

§ run this program (hello) as:
 mpirun –hostfile hosts –np 4 hello

Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Bulk Synchronous Processing:  
BSP, A typical pattern with MPI Programs

• Many MPI applications directly call few (if any) message passing 
routines. They use the following very common pattern:

§ Use the Single Program Multiple Data pattern
§ Each process maintains a local view of the 

global data
§ A problem broken down into phases each of 

which is composed of two subphases:
• Compute on local view of data
• Communicate to update global view on all 

processes (collective communication).
§ Continue phases until complete

Collective comm.

Collective comm.

P0 P3P2P1
Processes

Time

This is a subset or the SPMD pattern sometimes 
referred to as the Bulk Synchronous pattern.
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Collective Communication: Reduction
int MPI_Reduce (void* sendbuf,

  void* recvbuf, int count,
  MPI_Datatype datatype, MPI_Op op,
  int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation (op) on the count values in sendbuf from 
all processes in communicator. Places result in recvbuf on the process with rank root only.

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND

Operation Function
MPI_BAND Bitwise AND
MPI_LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
User-defined It is possible to define new 

reduction operations

Returns 
MPI_SUCCESS 
if there were no 

errors

MPI Data Type* C Data Type

MPI_CHAR char

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

MPI_LONG_DOUBLE long double

MPI_SHORT short

*This is a subset of available MPI types
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MPI_Reduce() Example

#include <mpi.h>

int main(int argc, char* argv[]) {
  int buf, sum, nprocs, myrank;

  MPI_Init(&argc,&argv);
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

  sum = 0;
  buf = myrank;

  MPI_Reduce(&buf, &sum, 1, MPI_INT, 
          MPI_SUM, 0, MPI_COMM_WORLD);

  MPI_Finalize();
}

MPI_COMM_WORLD

Rank 1

1buf

Rank 0

3sum

0buf

MPI_REDUCE

2buf

Rank 2

0 + 1 + 2
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MPI_Reduce() Example

#include <mpi.h>

int main(int argc, char* argv[]) {
  int buf, sum, nprocs, myrank;

  MPI_Init(&argc,&argv);
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

  sum = 0;
  msg = myrank;

  MPI_Reduce(&buf, &sum, 1, MPI_INT, 
          MPI_SUM, 0, MPI_COMM_WORLD);

  MPI_Finalize();
}

MPI_COMM_WORLD

Rank 1

1buf

Rank 0

3sum

0buf

MPI_REDUCE

2buf

Rank 2

0 + 1 + 2

C language comments:   
• char* is a pointer to a collection of characters (a string).
• char* argv[] is the same as char **argv.  They point to a 

collection of strings
• If you have a variable and you want its address, use the & character.  

C is a call-by-value language.   If you want to pass updated values 
through a function argument, you need to pass in the address for that 
argument, for example &myrank



Example Problem:  Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the 
integral as a sum of 
rectangles:

Where each rectangle has 
width Dx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.
0

2.
0

1.
0X0.

0
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PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{   int i;   double x, pi, sum = 0.0;

   step = 1.0/(double) num_steps;
             x = 0.5 * step;
   for (i=0;i<= num_steps; i++){
    x+=step;
    sum += 4.0/(1.0+x*x);
   }
   pi = step * sum;
}
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Exercise: Pi Program
• Goal

– To write a simple Bulk Synchronous, SPMD program

• Program
– Start with the provided “pi program” and using an MPI reduction, write a parallel 

version of the program.  

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Op Function
MPI_SUM Summation

MPI Data Type C Data Type

MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long
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Pi program in MPI 

#include <mpi.h>
void main (int argc, char *argv[])
{
 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
  MPI_Init(&argc, &argv) ;
 MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;  
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 
;
}

Sum values in “sum” from 
each process and place it 

in “pi” on process 0 
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Timing MPI programs

• MPI added a function (which OpenMP copied) to time programs.

• MPI_Wtime() returns a double for the time (in seconds) for some arbitrary time 
in the past.

• As with omp_get_wtime(), call before and after a section of code of interest to 
get an elapsed time.
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Exercise: Pi Program with MPI_Wtime()
• Goal

– Time your Bulk Synchronous, SPMD program

• Program
– Start with your parallel “pi program” and use MPI_Wtime() to explore its 

scalability on your system.

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
Double MPI_Wtime();
MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Op Function
MPI_SUM Summation

MPI Data Type C Data Type

MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long
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Pi program in MPI 
#include <mpi.h>
void main (int argc, char *argv[])
{
 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
  MPI_Init(&argc, &argv) ;
 MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
          double init_time = MPI_Wtime();
 my_steps = num_steps/numprocs ;  
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
          if(my_id == 0) printf(“ runtime = %lf\n”,MPI_Wtime()-init_time); 
}



MPI Pi program performance (on my laptop)

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread 
or 

procs

OpenMP 
SPMD 
critical

OpenMP 
PI Loop

MPI

1 0.85 0.43 0.84
2 0.48 0.23 0.48
3 0.47 0.23 0.46
4 0.46 0.23 0.46

#include <mpi.h>
void main (int argc, char *argv[])
{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
double init_time = MPI_Wtime();
my_steps = num_steps/numprocs ;  
for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ; 
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(my_id == 0) printf(“ runtime = %lf\n”,MPI_Wtime()-init_time); 

}



MPI Pi program performance (on my laptop)

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread 
or 

procs

OpenMP 
SPMD 
critical

OpenMP 
PI Loop

MPI

1 0.85 0.43 0.84
2 0.48 0.23 0.48
3 0.47 0.23 0.46
4 0.46 0.23 0.46

#include <mpi.h>
void main (int argc, char *argv[])
{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
double init_time = MPI_Wtime();
my_steps = num_steps/numprocs ;  
for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ; 
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(my_id == 0) printf(“ runtime = %lf\n”,MPI_Wtime()-init_time); 

}

Is this a dependable way to get an elapsed time?

What if instead of a laptop, we are starting processes 
across a large cluster?   Is this time reliable?
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Synchronization in MPI

• Synchronization … establishing ordering constraints among concurrent 
processes so we can establish happens-before relations.

• As we will see later … the semantics of how messages are passed includes 
synchronization properties.

• For a stand-alone synchronization construct, we can use a barrier (all 
processes in the group associated with comm arrive before any proceed):

– int MPI_Barrier(MPI_Comm comm)
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Synchronization in MPI

• Synchronization … establishing ordering constraints among concurrent 
processes so we can establish happens-before relations.

• As we will see later … the semantics of how messages are passed includes 
synchronization properties.

• For a stand-alone synchronization construct, we can use a barrier (all 
processes in the group associated with comm arrive before any proceed):

– int MPI_Barrier(MPI_Comm comm)

What is this int for?   All MPI routines other than the timing routines 
return an int error code.  Equals MPI_SUCCESS when everything 
is OK, other values specific to routines when errors occur
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Collective Communication: Reduction
int MPI_Reduce (void* sendbuf,

  void* recvbuf, int count,
  MPI_Datatype datatype, MPI_Op op,
  int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation (op) on the count values in sendbuf from 
all processes in communicator. Places result in recvbuf on the process with rank root only.

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND

Operation Function
MPI_BAND Bitwise AND
MPI_LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
User-defined It is possible to define new 

reduction operations

Returns 
MPI_SUCCESS 
if there were no 

errors

MPI Data Type* C Data Type

MPI_CHAR char

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

MPI_LONG_DOUBLE long double

MPI_SHORT short

*This is a subset of available MPI types Many operations beyond sum
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Timing without a barrier

• Another option … forget the barrier.  Collect times for all processes and report 
min, max and average.    This is easy to do using the operations available for 
use in MPI_Reduce.

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND

int MPI_Reduce (void* sendbuf,
  void* recvbuf, int count,
  MPI_Datatype datatype, MPI_Op op,
  int root, MPI_Comm comm)



58

Exercise: Explore timing MPI programs with the Pi program
• Goal

– Time your Bulk Synchronous, SPMD program

• Program
– Use MPI_Wtime(), MPI_Barrier() and other methods explore timing for the pi program.  

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
double MPI_Wtime();
int MPI_Barrier();
MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND
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Pi program … return max time
#include <mpi.h>
void main (int argc, char *argv[])
{       int i, my_id, numprocs;  double x, pi, step, sum = 0.0, mxtime=0.0;
 step = 1.0/(double) num_steps ;
  MPI_Init(&argc, &argv) ;
 MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
          MPI_Barrier(MPI_COMM_WORLD);
          double init_time = MPI_Wtime();
 my_steps = num_steps/numprocs ;  
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++) {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
         MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
         double wtime = MPI_Wtime()-init_time
 MPI_Reduce(&wtime, &mxtime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
          if(my_id == 0) printf(“ maximum time = %lf”,mxtime);
}



MPI defines a rich set of Collective operations



Collective Computations

P0
P1
P2
P3

P0
P1
P2
P3

A
B

D
C

A
B

D
C

ABCD

A
AB
ABC
ABCD

MPI_Reduce()

MPI_Scan()

Reduction: Take values on each P 
and combine them with an op (such as 
add) into a single value on one P.

Scan: Take values on each P and 
combine them with a scan operation 
and spread the scan array out among 
all P.

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)
int MPI_Scan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)



Collective Data Movement

A
B

D
C

B C D

A
A

A
A

MPI_Bcast()

MPI_Scatter()

MPI_Gather()

P0
P1
P2
P3

P0
P1
P2
P3

Broadcast a value from P0 
(the root) and give a copy to 
P1, P2 and P3

Scatter an array on P0 (the 
root) to P1, P2, and P3

Gather values from P1, P2, 
and P3 into an array on P0 
(the root)

int MPI_Bcast( void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm )
int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)
int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

A

A



More Collective Data Movement

A
B

D
C

A0B0 C0D0
A1B1 C1D1

A3B3 C3D3
A2B2 C2D2

A0A1A2A3
B0 B1 B2 B3

D0D1D2D3
C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

MPI_Allgather()

MPI_Alltoall()

P0
P1
P2
P3

P0
P1
P2
P3

Gather a chunk from each P 
and put it into a single array.  
Each P gets a copy of the 
resulting array. 

All to All: Take chunks of data 
on each P and spread them out 
among the corresponding 
arrays on each P

int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)
int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)
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MPI Collectives: Summary

• Collective communications: called by all processes in the group to create a global 
result and share with all participating processes.
– Allgather, Allgatherv, Allreduce, Alltoall, Alltoallv, Bcast, Gather, 
Gatherv, Reduce, Reduce_scatter, Scan, Scatter, Scatterv 

• Notes:
– Allreduce, Reduce, Reduce_scatter, and Scan use the same set of built-in or user-

defined combiner functions. 
– Routines with the “All” prefix deliver results to all participating processes
– Routines with the “v” suffix allow chunks to have different sizes

• Global synchronization is available in MPI through a barrier which blocks until all 
the processes in the process group associated with the communicator call it.
– MPI_Barrier( comm )



Collective operations are powerful … use them when you can

Do not implement them from scratch on your own.  Think about how 
you’d implement, for example, a reduction.   

It is MUCH harder than you might think.
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Message passing: Basic ideas and jargon
• We need to coordinate the execution of processes … which may be spread out 

over a collection of independent computers
• Coordination:

1. Process management (e.g., create and destroy)
2. Synchronization … timing constraints for concurrent processes)
3. Communication ... Passing a buffer from one machine to another

• A message passing interface builds coordination around messages (either 
explicitly or implicitly).

• The fundamental (and overly simple) timing model for a message:

Timecommunication = latency + Nbytes/bandwidth

Network fixed costs plus overheads Network asymptotic bytes per second



68

Sending and receiving messages
• Pass a buffer which holds “count” values of MPI_TYPE
• The data in a message to send or receive is described by a triple:

-  (address, count, datatype)

Address of 
Local  
Buffer

Count Datatype

MPI_Send (buff, 100, MPI_DOUBLE, Dest, tag, MPI_COMM_WORLD);

• The receiving process identifies messages with the double :
-  (source, tag)

• Where:
- Source is the rank of the sending process
- Tag: a user-defined int to keep track of different messages from a single source

Rank of Source node

tag

MPI_Recv (buff, 100, MPI_DOUBLE, Src, tag, MPI_COMM_WORLD, &status);

Rank of Destination node

Communicator
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Sending and Receiving messages: More Details

MPI_Status is a variable that contains information about the message that is received.  We can use it to find out information 
about the received message.  The most common usage is to find out how many items were in the message:

MPI_Status MyStat;        int count;      float buff[4];
int ierr = MPI_Recv(buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, &MyStat);   // receive message from node=2 with message tag = 0
If(ierr == MPI_SUCCESS) MPI_Get_Count(MyStat, MPI_FLOAT, &count);

For messages of a known size, we typically ignore the status, in which case use the parameter MPI_STATUS_IGNORE

int ierr = MPI_Recv(&buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

int MPI_Send (void* buf, int count,
 MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,
 MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm,
 MPI_Status* status)



70

Sending and Receiving messages: More Details

MPI_Status is a variable that contains information about the message that is received.  We can use it to find out information 
about the received message.  The most common usage is to find out how many items were in the message:

MPI_Status MyStat;        int count;      float buff[4];
int ierr = MPI_Recv(buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, &MyStat);   // receive message from node=2 with message tag = 0
If(ierr == MPI_SUCCESS) MPI_Get_Count(MyStat, MPI_FLOAT, &count);

For messages of a known size, we typically ignore the status, in which case use the parameter MPI_STATUS_IGNORE

int ierr = MPI_Recv(&buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

int MPI_Send (void* buf, int count,
 MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,
 MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm,
 MPI_Status* status)

C language comments:   
• void* says the argument can take a 

pointer to any type.  The C compiler 
won’t do any type checking … it just 
needs a valid address to a block of 
memory. 

• A type with a * means the function 
expects a pointer to that type.  So I 
would declare a variable as 
MPI_Status MyStat and then put 
the variable in the function call with 
an ampersand (&) … for example 
&MyStat



MPI Data Types for C

MPI Data Type C Data Type
MPI_BYTE

MPI_CHAR signed char
MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long
MPI_LONG_DOUBLE long double
MPI_PACKED

MPI_SHORT short
MPI_UNSIGNED_SHORT unsigned short
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_UNSIGNED_CHAR unsigned char

MPI defines 
predefined data 
types that must be 
specified when 
passing messages.
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Exercise: Ping-Pong Program
• Goal

– Measure the latency of our communication network.

• Program
– Create a program to bounce a message (a single value) between a pair of processes.  Bounce the 

message back and forth multiple times and report the average one-way communication time.   Figure out 
how to use this so called “ping-pong” program to measure the latency of communication on your system.

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
double MPI_Wtime();
MPI_Finalize();

MPI Data Type C Data Type
MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

int MPI_Send (void* buf, int count,MPI_Datatype datatype, int dest,int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,MPI_Datatype datatype, int source,int tag, 
 MPI_Comm comm, MPI_Status* status)



73

Solution: Ping-Pong Program
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define VAL 42
#define NREPS  10
#define TAG 5

int main(int argc, char **argv)  {
 int rank, size;
 double t0;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int bsend = VAL;
 int brecv = 0;
 MPI_Status stat;

   MPI_Barrier(MPI_COMM_WORLD);
 if(rank == 0) t0 = MPI_Wtime();

 for(int i=0;i<NREPS; i++){
   if(rank == 0){
    MPI_Send(&bsend, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD);
    MPI_Recv(&brecv, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD, &stat);
    if(brecv != VAL)printf("error: interation %d %d != %d\n",i,brecv,VAL);
    brecv = 0;
   }
   else if(rank == 1){
    MPI_Recv(&brecv, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD, &stat);
    MPI_Send(&bsend, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD);
    if(brecv != VAL)printf("error: interation %d %d != %d\n",i,brecv,VAL);
    brecv = 0;
   }
 }
 if(rank == 0){

   double t = MPI_Wtime() - t0;
   double lat = t/(2*NREPS);
   printf(" lat = %f seconds\n",(float)lat);
 }
 MPI_Finalize();

}
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Ping Pong for different message sizes … but first a bit of C

• Input parameters from the command line (so you don’t need to recompile for each case):

int main(int argc, char **argv)
{
  if (argc == 3){
    int msg_size = atoi(*++argv);
    int num_pings = atoi(*++argv);
     }
     else{
        int msg_size = 1;
        int num_pings = 10;
     }

• Allocate memory and initialize buffer (i.e., a dynamic array of doubles)

double *msg = (double*)malloc(msg_size*sizeof(double));
for(int i; i<msg_size; i++) msg[i] = (double) i;
free(msg);

Define a default case for when skipped command line are omitted

Argc à number of command line arguments
**argv àPointer to a set of strings

Argc == 3 à the executable Plus two args

*++argv à increment to point to next string

atoi() àconverts a string to an int

Malloc allocates memory 
as a void*.  Cast to the 
desired type

Msg is a pointer but we treat it like an array

For atoi() you need #include <stdlib.h>
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Command Line Arguments

• If I run my program like this:

./a.out 1000 10

• Then my program ping/pongs a message of size 1000 ten times.
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Exercise: Ping-Pong Program with command line args

• Goal
– Measure the latency of our communication network for different sized messages.

• Program
– Vary message sizes and number of pings/pongs from the command line.

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
double MPI_Wtime();
MPI_Finalize();

int MPI_Send (void* buf, int count,MPI_Datatype datatype, int dest,int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,MPI_Datatype datatype, int source,int tag, 
 MPI_Comm comm, MPI_Status* status)

int main(int argc, char **argv) {
   if (argc == 3){
  int msg_size = atoi(*++argv);
  int num_pings = atoi(*++argv);

   }
   double *msg = (double*)malloc(msg_size*sizeof(double));
   for(int i; i<msg_size; i++) msg[i] = (double) i;
   free(msg);
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Buffers
• Message passing is straightforward, but there are subtleties

– Buffering and deadlock
– Deterministic execution
– Performance 

• When you send data, where does it go?  The following is the typical flow:
Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Derived from slides provided by Bill Gropp of UIUC
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Blocking Send-Receive Timing Diagram 
(Receive before Send)

send side                               receive side

MPI_Send:  T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive
is called @ T0,
Local buffer unavailable
to user

Local buffer filled and 
available to user

It is important to post the receive before 
sending, for highest performance. 

T0: MPI_Recv

Local 
buffer can
be reused

T3: Transfer Complete

time time



80

Exercise: Ring program
• Start with the basic ring program we provide.  

• Study the code (ring.c and ring_naive.c) and note how I manage the computation 
of where the message goes to and where it comes from for each node.

• Run it for a range of message sizes and notes what happens for large messages.

double *buff;     int buff_count, to, from, tag=3;   MPI_Status stat;

MPI_Recv (buff, buff_count, MPI_DOUBLE, from, tag, MPI_COMM_WORLD, &stat);
MPI_Send (buff, buff_count, MPI_DOUBLE, to,     tag,  MPI_COMM_WORLD);
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• Send a large message from process 0 to process 1
– If there is insufficient storage at the destination NIC (Network 

Interface Unit), the send must wait for the user to provide the 
memory space (through a receive) to drain buffers inside the NIC

• What happens with this code?

Sources of Deadlocks

Process 0

Send(to 1)
Recv(from 1)

Process 1

Send(to 0)
Recv(from 0)

• This code could deadlock … it depends on the 
availability of system buffers in which to store the 
data sent until it can be received 

Slide source: based on slides from Bill Gropp, UIUC
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Some Solutions to the “deadlock” Problem

• Order the operations more carefully:

• Use a collective “swap” so buffers created when the communication 
operation is posted: 

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: based on slides from Bill Gropp, UIUC
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More Solutions to the “unsafe” Problem

• Supply a sufficiently large buffer in the send function

• Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

Slide source: Bill Gropp, UIUC
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Non-Blocking Communication
• Non-blocking operations return immediately and pass ‘‘request handles” that can be 

waited on and queried
–MPI_Isend( start, count, datatype, dest, tag, comm, request )
–MPI_Irecv( start, count, datatype, src, tag, comm, request )
–MPI_Wait( request, status )

• One can also test without waiting using  MPI_TEST
–MPI_Test( request, flag, status )

• Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 
MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait

•  Note the MPI types:
MPI_Status status;       // type used with the status output from recv
MPI_Request request;  // the type of the handle used with isend/ircv

Non-blocking operations are extremely important … they 
allow you to overlap computation and communication.
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buffer unavailable 
to user

Non-Blocking Send-Receive Diagram

send side             receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable 
to user

receive buffer 
filled and available 

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

Sender completes

T1: MPI_Irecv Returns

T5

tim
e

tim
e

T2
MPI_Isend returns

T6
T9

MPI_Wait

MPI_Wait returns

buffer available 
to user
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Exercise: Ring program
• Start with the basic ring program we provide.  Run it for a range of message sizes 

and notes what happens for large messages.
– It may deadlock if the network stalls due to there being no place to put a message (i.e. 

no receives in place so the send blocking on when its buffer can be reused hangs).
• Try to make it more stable for large messages by:

–Split-phase … have the nodes “send than receive” while the other half “receive then 
send”.
–Sendrecv … a collective communication send/receive.
– Isend/Irecv … nonblocking send receive

double *buff;     int buff_count, to, from, tag=3;   MPI_Status stat; MPI_Request request;

MPI_Recv (buff, buff_count, MPI_DOUBLE, from, tag, MPI_COMM_WORLD, &stat);
MPI_Send (buff, buff_count, MPI_DOUBLE, to,     tag,  MPI_COMM_WORLD);
MPI_Isend( Buff, count, datatype, dest, tag, comm, &request )
MPI_Irecv( Buff, count, datatype, src, tag, comm, &request )
MPI_Wait( &request, &status )
MPI_Sendrecv (snd_buff,  buff_count, MPI_DOUBLE, to, tag,
                rcv_buf,     buff_count, MPI_DOUBLE, to, tag, MPI_COMM_WORLD, &stat);
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Example: shift messages around a ring (part 1 of 2)
#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)
{
  int num, rank, size, tag, next, from;
  MPI_Status status1, status2;
  MPI_Request req1, req2;

  MPI_Init(&argc, &argv);
  MPI_Comm_rank( MPI_COMM_WORLD, &rank);
  MPI_Comm_size( MPI_COMM_WORLD, &size);
  tag = 201;
  next = (rank+1) % size;
  from = (rank + size - 1) % size;
  if (rank == 0) {
    printf("Enter the number of times around the ring: ");
    scanf("%d", &num);

    printf("Process %d sending %d to %d\n", rank, num, next);
    MPI_Isend(&num, 1, MPI_INT, next, tag, 
                                              MPI_COMM_WORLD,&req1);
    MPI_Wait(&req1, &status1);
  } 

do {
    MPI_Irecv(&num, 1, MPI_INT, from, tag, 
                                              MPI_COMM_WORLD, &req2);
    MPI_Wait(&req2, &status2);
    
    if (rank == 0) {
      num--;
      printf("Process 0 decremented number\n");
    }

    printf("Process %d sending %d to %d\n", rank, num, next);
    MPI_Isend(&num, 1, MPI_INT, next, tag, 
                                               MPI_COMM_WORLD, &req1);
    MPI_Wait(&req1, &status1);
  } while (num != 0);

  if (rank == 0) {
    MPI_Irecv(&num, 1, MPI_INT, from, tag, 
                                               MPI_COMM_WORLD, &req2);
    MPI_Wait(&req2, &status2);
  }
  MPI_Finalize();
  return 0;
} 
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Example: finite difference methods

• Solve the heat diffusion equation in 1 D:
– u(x,t) describes the temperature field
– We set the heat diffusion constant to one
– Boundary conditions, constant u at endpoints.

ihxxi += 0

t
u

x
u

¶
¶

=
¶
¶

2

2

n  map onto a mesh with stepsize h and k

n Central difference approximation for spatial 
derivative (at fixed time) 2

11
2

2 2
h

uuu
x
u jjj -+ +-

=
¶
¶

iktti += 0

n Time derivative at t = tn+1
k
uu

dt
du nn -

=
+1
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Example: Explicit finite differences
• Combining time derivative expression using spatial derivative at t = tn

2
11

1 2
h

uuu
k
uu n

j
n
j

n
j

n
j

n
j -+
+ +-

=
-

n Solve for u at time n+1 and step j

n The solution at t = tn+1 is determined explicitly from the solution at t = tn 
(assume u[t][0] = u[t][N] = Constant for all t).

n
j

n
j

n
j

n
j ruruuru 11
1 )21( +-
+ ++-=

2h
kr =

for (int t = 0; t < N_STEPS-1; ++t)
    for (int x = 1; x < N-1; ++x)
          u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);
 

n Explicit methods are easy to compute … each point updated based on nearest 
neighbors.  Converges for r<1/2.
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Heat Diffusion equation 

infinitesimally narrow rod (~one D)

“infinite” heat 
bath (fixed 

temperature, 
T2)

“infinite” heat 
bath (fixed 

temperature, 
T1)

T2T1
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Heat Diffusion equation 

infinitesimally narrow rod (~one D)

T2T1

Pictorially, you are sliding a three 
point “stencil” across the domain 
(u[t]) and computing a new value of 
the center point (u[t+1]) at each stop.
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Heat Diffusion equation 

int main()
{
   double *u   = malloc (sizeof(double) * (N));    
   double *up1 = malloc (sizeof(double) * (N));
                                                     
   initialize_data(uk, ukp1, N, P); // initialize, set end temperatures
   for (int t = 0; t < N_STEPS; ++t){
      for (int x = 1; x < N-1; ++x)
          up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);
  
      temp = up1; up1 = u; u = temp;
    }
return 0;

T2T1

A well known trick with 2 arrays so I 
don’t overwrite values from step k-1 
as I fill in for step k

Note: I don’t need the 
intermediate “u[t]” values 

hence “u” is just indexed by x.
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Heat Diffusion equation 

int main()
{
   double *u   = malloc (sizeof(double) * (N));    
   double *up1 = malloc (sizeof(double) * (N));
                                                     
   initialize_data(uk, ukp1, N, P); // initialize, set end temperatures
   for (int t = 0; t < N_STEPS; ++t){
      for (int x = 1; x < N-1; ++x)
          up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);
  
      temp = up1; up1 = u; u = temp;
    }
return 0;

T2T1

How would you 
parallelize this program?
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Exercise: Parallel heat diffusion
• Goal

– Parallelize the heat diffusion code (MPI_Exercises/heat-eqn-seq.c) with OpenMP … should be a quick and 
easy way to familiarize yourself with the code.

– As you do this, think about how you might parallelize this with MPI

#pragma omp parallel
#pragma omp for
#pragma omp critical
#pragma omp single
#pragma omp barrier
int omp_get_num_threads();
int omp_get_thread_num();
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Heat Diffusion equation 

T2T1

• Start with our original picture of the problem … a one 
dimensional domain with end points set at a fixed 
temperature.
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Heat Diffusion equation 

T2T1

• Break it into chunks assigning one chunk to each process.

P0 P1 P2 P3
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Heat Diffusion equation 

T2T1

• Each process works on it’s own chunk … sliding the stencil 
across the domain to updates its own data.

P0 P1 P2 P3
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Heat Diffusion equation 

T2T1

• What about the ends of each chunk … where the stencil will 
run off the end and hence have missing values for the 
computation?

?
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

Ghost 
cell

Ghost 
cell
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

Ghost 
cell

Ghost 
cell

How would you 
allocate memory 
to create chunks 
of the right size 
with ghost cells 
in your code?
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

MPI_Comm_size (MPI_COMM_WORLD, &P);
double *u   = malloc (sizeof(double) * (2 + N/P))
double *up1 = malloc (sizeof(double) * (2 + N/P)); 

Let’s be lazy and assume P is 
a divisor of N (i.e.; N%P = 0)
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

Ghost 
cell

Ghost 
cell

Write the code 
for the update of 

an individual 
chunk … 

accounting for 
edges using the 

ghost cells.
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Heat Diffusion MPI Example: Updating a chunk 
// Compute interior of each “chunk”
  for (int x = 2; x < N/P; ++x)
    up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

// update edges of each chunk keeping the two far ends fixed 
// (first element on Process 0 and the last element on process P-1). 
  if (myID != 0)
    up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);  

  if (myID != P-1)
    up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

// Swap pointers to prepare for next iterations
  temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

Note I was lazy and assumed N was 
evenly divided by P.  Clearly, I’d never 

do this in a “real” program.

Update array values using local data 
and values from ghost cells.

u[0] and u[N/P+1] are 
the ghost cells
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Heat Diffusion MPI Example: Communication 

T2T1

• Each process works on it’s own chunk … sliding the stencil 
across the domain to updates its own data.

P0 P1 P2 P3

Try to write the code for this communication pattern.
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Heat Diffusion MPI Example 
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells” to hold
double *up1 = malloc (sizeof(double) * (2 + N/P)); // values from my neighbors
                                                     
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

  if (myID != 0) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

  if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
 

  if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
  

  if (myID != 0) MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);
 

Note: the edges of domain are held at a fixed temperature.
• Node 0 has no neighbor to the left
• Node P has no neighbor to its right

Send my “left” boundary value to the neighbor on my “left’

Receive my “right” ghost cell from the neighbor to my “right’

Send my “right” boundary value  to the neighbor to my “right’

Receive my “left” ghost cell from the neighbor to my “left”
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Heat Diffusion equation 

T2T1

• Each process works on it’s own chunk … sliding the stencil 
across the domain to updates its own data.

P0 P1 P2 P3

We now put all the pieces together for the full program
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Heat Diffusion MPI Example 
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells” to hold
double *up1 = malloc (sizeof(double) * (2 + N/P)); // values from my neighbors
                                                     
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){
  if (myID != 0)  MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);
  if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
  if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
  if (myID != 0)   MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

  for (int x = 2; x < N/P; ++x)
    up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);
  if (myID != 0)
    up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);  
  if (myID != P-1)
    up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);
  temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;
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The Geometric Decomposition Pattern

T2T1

Ghost 
cell

Ghost 
cell

§ This is an instance of a very important design pattern … the Geometric decomposition pattern.
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Partitioned Arrays

• Realistic problems are 2D or 3D; require 
more complex data distributions.

• We need to parallelize the computation by 
partitioning this index space

• Example: Consider a 2D domain over 
which we wish to solve a PDE using an 
explicit finite difference solver .  The figure 
shows a five point stencil … update a 
value based on its value and its 4 
neighbors.

• Start with an array and stencil à
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Partitioned Arrays: Column block distribution

• Split the non-unit-stride dimension (P-1) times to produce P chunks, assign the ith chunk to Pi. …. 
To keep things simple, assume N%P = 0 

• In a 2D finite-differencing program (exchange edges), how much do we have to communicate? 
O(N) values per processor

P is the
# of processors

N is the order of our 
square matrix

P0 P1 P2 P3
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Partitioned Arrays: Block distribution
• If we parallelize in both dimensions, then we have (N/P1/2)2 elements per processor, 

and we need to send  O(N/P1/2) values from each processor. Asymptotically better 
than O(N).

P is the
# of processors

Assume a p by p 
square mesh … 
p=P1/2

N is the order of our 
square matrix

Dimension of each 
block is N/P1/2

P0,0 P0,1

P1,0
P1,1
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Partitioned Arrays: block cyclic distribution

• LU decomposition (A= LU) .. Move down the 
diagonal transform rows to “zero the column” below 
the diagonal.

§ Zeros fill in the right lower triangle of the 
matrix … less work to do. 

§ Balance load with cyclic distribution  of 
blocks of A mapped onto a grid of nodes 
(2x2 in this  case … colors show the 
mapping to nodes).  

* * ** * * * *
0 * ** * * * *
0 0 ** * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *



Matrix Transpose:  
Column block decomposition 

You can only learn this stuff by doing it so we’re going 
to design an algorithm to transpose a matrix using a 
partitioned array model based on column blocks. 

Transpose

P0 P1 P2 P3 P0 P1 P2 P3

A B

Aij = Bji

Let’s keep things simple.  The order of A and B is N.   N = blk*P where blk is the order of the square subblocks 



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … how will each 
Processor march through 
its set of blocks?



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … How will each 
Processor march through 
its set of blocks?

There is no one way to do this.

Since its an SPMD program, you want a 
symmetric path through the blocks on 
each processor.

A great approach is for everyone to start 
from their diagonal and shift down until 
they hit the bottom of their column.

Phase 0 … transpose your diagonal

Start

Start

Start

Start



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … How will each 
Processor march through 
its set of blocks?

Shift down (with a circular shift pattern … 
i.e. when you run off an edge, wrap 
around to the opposite edge.

Phase 0 … transpose your diagonal
Phase 1 … deal with next block “down”

Start

Start

Start

Start



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … How will each 
Processor march through 
its set of blocks?

Shift down (with a circular shift pattern … 
i.e. when you run off an edge, wrap 
around to the opposite edge.

Phase 0 … transpose your diagonal
Phase 1 … deal with next block “down”

Start

Start

Start

Start We know the sender … 
who receives the block?



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … How will each 
Processor march through 
its set of blocks?

Shift down (with a circular shift pattern … 
i.e. when you run off an edge, wrap 
around to the opposite edge.

Phase 0 … transpose your diagonal
Phase 1 … deal with next block “down”

We know the sender … 
who receives the block?
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Exercise: Matrix Transpose Program
• Start with the basic transpose program we provide (transpose.c and several trans_*.c functions).
• Your task … deduce a general expression for the sender and receiver (FROM and TO)  for each phase. 
• Go to trans_sendrcv.c and enter your definitions for the TO and FROM macros (what is there now is wrong 

… I just wanted something to show how macros work).
• Test and verify correctness
• Try different message passing approaches.
• Can you overlap the local transpose and the communication between nodes?

double *buff;     int buff_count, to, from, tag=3;   MPI_Status stat, MPI_Request request;

MPI_Recv (buff, buff_count, MPI_DOUBLE, from, tag, MPI_COMM_WORLD, &stat);
MPI_Send (buff, buff_count, MPI_DOUBLE, to,     tag,  MPI_COMM_WORLD);
MPI_Isend( Buff, count, datatype, dest, tag, comm, &request )
MPI_Irecv( Buff, count, datatype, src, tag, comm, &request )
MPI_Wait( &request, &status )
MPI_Sendrecv (snd_buff,  buff_count, MPI_DOUBLE, to, tag,
                rcv_buf,     buff_count, MPI_DOUBLE, to, tag, MPI_COMM_WORLD, &stat);
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments



The 12 core functions in MPI
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• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast



The 12 core functions in MPI
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• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast

10

Real Programmers always try to overlap communication 
and computation .. Post your receives using MPI_Irecv() 
then where appropriate, MPI_Isend(). 
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Does a shared address space make 
programming easier?  

Time

Effort

Extra work upfront,  but easier 
optimization and debugging means 

overall, less time to solution
Message passing

Time

Effort

initial parallelization can be 
quite easy 

Multi-threading

But difficult debugging and 
optimization means overall 

project takes longer 

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica,  vol. 35 pp. 321–345, 
2003

Proving that a shared address space program using 
semaphores is race free is an NP-complete problem*
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MPI References
• The Standard itself at http://www.mpi-forum.org
• Additional tutorial information at http://www.mcs.anl.gov/mpi
• The core reference books: 

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
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Additional books to help you master MPI

§ Parallel Programming with MPI, by Peter Pacheco, 
Morgan-Kaufmann, 1997.
§ Only covers MPI 1.0 so it’s out of date, but it is a 

very friendly and gentle introduction.
§ Peter Pacheco is a teacher first and foremost 

and that shows in the way he organizes the 
material in this book.

§ Patterns for Parallel Programing, by Tim Mattson, 
Beverly Sanders, and Berna Massingill.
§ Only covers MPI 1.0 so it’s out of date.
§ Focusses on how to use MPI, not the structure of 

the standard itself.
§ Shows how patterns are expressed across MPI, 

OpenMP, and concurrent Java


