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Content of  the theoretical session
● Heterogeneous Parallel computing systems

● CUDA Basics

● Parallel constructs in CUDA

● Shared Memory

● Device Management



Content of the tutorial session

● Write and launch CUDA kernels

● Manage GPU memory

● Manage communication and synchronization



Accelerators
● Exceptional raw power and memory bandwidth wrt CPUs

● Lower energy to solution

● Massively parallel architecture

● Low Memory/core



Accelerators
● GPUs were traditionally used for real-time rendering/gaming. 

     AMD and NVIDIA main manufacturers for discrete GPUs, Intel for  
integrated ones

● Intel just introduced Data Center GPU Max Series



Performance portability in CMS 
● Started effort to make CMS online and offline event reconstruction heterogeneous in 2016
● A job could land on a machine with or without an NVIDIA GPU, or other vendor GPU… 
● Maintaining and testing 2+ codebases might not be the most sustainable solution in the 

medium/long term
○ Corporations have been fighting over this for more than 10 years, failing miserably
○ Avoid vendor lock
○ While keeping more than an eye on SYCL, we ported our CUDA code to alpaka 

portability library
● Fortunately GPUs work all in very similar ways and once you learn one programming 

model and know how to map logical names to the hardware you can program any GPU
○ https://github.com/CHIP-SPV/chipStar
○ https://github.com/ROCm-Developer-Tools/HIPIFY

https://github.com/CHIP-SPV/chipStar


GPUs at the CMS HLT
● With the deployment of  a 

GPU-equipped HLT farm:
○ 70% better event processing 

throughput
○ 50% better performance per kW
○ 20% better performance per cost
○ 9k$ host, 4k$ GPUs



GPUs at the CMS HLT
● With the deployment of  a 

GPU-equipped HLT farm:
○ 70% better event processing 

throughput
○ 50% better performance per kW
○ 20% better performance per cost
○ 9k$ host, 4k$ GPUs

● One single source code can be 
executed on different GPUs/CPUs 
within the same process, scheduled by 
tbb

● Keep full node utilized, while running 
on GPUs



CPU vs GPU architectures

CPU
GPU



CPU vs GPU architectures

• Large caches (slow memory accesses to 
quick cache accesses)

• SIMD

• Branch prediction/speculative

• Powerful ALU

• Pipelining

CPU



Memory access patterns: cached
For optimal CPU cache utilization, the 
thread a should process element i and i+1

• stride=1 
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CPU vs GPU architectures
● Hundreds of  “cores” (e.g. streaming 

multiprocessors, Xe cores, compute 
units)

● SIMT (Single-Instruction, 
Multiple-Thread) with hundreds of  
SIMD-like warps in fly

● Instructions pipelined
● Thread-level parallelism
● Instructions issued in order
● Branch predication

GPU



Inside a GPU SM: coalesced
• L1 data cache shared among ALUs
• ALUs work in SIMD mode in groups of  32 (warps)

• Think about it as vectors on the same CPU 
core

• If  a load is issued by each thread, they have to wait 
for all the loads in the same warp to complete 
before the next instruction can execute

• Coalesced memory access pattern optimal for 
GPUs: thread a should process element i, thread 
a+1 the element and i+1

• Lose an order of  magnitude in performance if  
cached  access pattern used on GPU
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Warps

● Once a block is assigned to an SM, it is divided 
into units called warps. 

● Thread IDs within a warp are consecutive and 
increasing 

● Threads within a warp are executed in a SIMD 
fashion

● If  an operand is not ready the warp will stall
● Context switch between warps when stalled
● Context switch must be very fast



Neural networks specific hardware support

● Fast half  precision multiplication and reduction in full precision
● Useful for accelerating NN inference



Throughput

Theoretical peak throughput: the maximum amount of  data that a 
kernel can read and produce in the unit time. 

Throughputpeak (GB/s) = 2 x access width (byte) x mem_freq (GHz) 

This means that if  your device comes with a memory clock rate of  
1GHz DDR (double data rate) and a 384-bit wide memory interface, 
the amount of  data that a kernel can process and produce in the unit 
time is at most:
Throughputpeak (GB/s) = 2 x (384/8)(byte) x 1 (GHz)= 96GB/s



Global memory

Volta V100:

● 7.8 TFLOPS DPFP peak throughput

● 900 GB/s peak off-chip memory access bandwidth

● 112 G DPFP operands per second

● To achieve peak throughput, a program must perform 7800/112 = ~70 
FP arithmetic operations for each operand value fetched from off-chip 
memory



Bandwidth



Bandwidth



Heterogeneous Parallel Computing Systems



Heterogeneous Computing

● Terminology
− Host       The CPU and its memory space

− Device    The GPU and its memory space

DeviceHost



Simple Processing Flow

                                 
             

PCI Bus



Simple Processing Flow

1. Copy input data from CPU memory to GPU 
memory

PCI Bus



Simple Processing Flow

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

PCI Bus



Simple Processing Flow

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU 
memory

PCI Bus



CUDA Basics



CUDA 

● Small set of  extensions to enable asynchronous heterogeneous computing using 
NVIDIA GPUs

● Straightforward APIs to manage devices, memory etc.

● General way of  thinking about programming GPUs is the same for all GPUs 
vendors



SPMD Phases

● Initialize
− Establish localized data structure and communication channels

● Obtain a unique identifier
− Each thread acquires a unique identifier, typically range from 0 to N-1, where N is the 

number of  threads

● Distribute Data
− Decompose global data into chunks and localize them, or
− Sharing/replicating major data structure using thread ID to associate subset of  the data to 

threads

● Run the core computation

● Finalize
− Reconcile global data structure, prepare for the next major iteration



Memory Hierarchy in CUDA
● Registers/Shared memory:

− Fast

− Only accessible by the thread/block

− Lifetime of  the thread/block

● Global memory:
− Potentially 150x slower than register or 

shared memory

− Accessible from either the host or device

− Lifetime of  the application



Hello World!

#include <iostream>
int main() {

std::cout << "Hello World!\n";
}                                       

                   

        
                      
          
             
  



Hello World!

Standard C++ that runs on the host
nvcc can be used to compile programs with no device code

Output:
$ nvcc hello_world.cu
$ ./a.out
Hello World!
$

#include <iostream>
int main() {

std::cout << "Hello World!\n";
}                                       

                   



Hello World! with Device Code

#include <iostream>

__global__ void mykernel() {

}

   int main() {
     cudaStream_t stream; cudaStreamCreate(&stream);

mykernel<<<1,1,0,stream>>>();
std::cout << "Hello World!\n";
cudaStreamSynchronize(stream);
cudaStreamDestroy(stream);

}                                       
                   



Hello World! with Device Code

__global__ void mykernel() {
}

● CUDA keyword __global__ indicates a function that:
− Runs on the device
− Is called from host code

● nvcc separates source code into host and device components
− Device functions (e.g. mykernel()) processed by nvcc compiler
− Host functions (e.g. main()) processed by gcc



Hello World! with Device Code

mykernel<<<1,1,0,stream>>>();

● Triple angle brackets mark a call from host code to device code
− Also called a “kernel launch”

− We’ll return to the parameters in a moment

● That’s all that is required to execute a function on the GPU!



Compute Capability
● The compute capability of  a device describes its architecture, e.g.

− Number of  registers
− Sizes of  memories
− Features & capabilities

● By running the application deviceQuery in the practical part you will be able to 
know useful information like

− The maximum number of  threads per block
− The amount of  shared memory
− The frequency of  the memory

● The compute capability is given as a major.minor version number (i.e: Pascal: 6.0, 
Volta: 7.0, Ampere: 8, Hopper: 9)



CUDA Binary
● Exact match of  SASS runs natively

− Many copies of  SASS may exist in one fat binary

− This binary will just work on Ampere (8) and Volta (7)

● When running on a GPU for which SASS does not 
exist in the binary, CUDA PTX compiler recompiles 
for the new GPUs
− Forward compatibility guaranteed by JIT compilation of  

PTX to future compute capabilities



Coordinating Host & Device

● Kernel launches are asynchronous
−  control is returned to the host thread before the device has completed the 

requested task

− CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have 
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have 
completed



Pinned memory
● Pinned memory is a main memory area that is not pageable by the operating 

system

● Ensures faster transfers (the DMA engine can work without CPU 
intervention) 

● The only way to get closer to PCI peak bandwidth 

● Allows CUDA asynchronous operations to work correctly

// allocate pinned memory
cudaMallocHost(&area, sizeof(double) * N);
// free pinned memory 
cudaFreeHost(area);



Asynchronous GPU Operations: CUDA Streams
A stream is a FIFO command queue;

Kernel launches and memory copies that do not specify any stream (or set the stream to zero) are issued to the default stream.

A stream is independent to every other active stream:

int N = 10000; auto memSize = N*sizeof(float);

cudaStream_t stream;

cudaStreamCreate(&stream);

float* hPtr; float* dPtr;

cudaMallocHost(&hPtr, memSize);

cudaMallocAsync(&dPtr,memSize, stream);

cudaMemcpyAsync(dPtr, hPtr, memSize, cudaMemcpyHostToDevice, stream);

kernel<<<100,512,0,stream>>>(dPtr);

cudaMemcpyAsync(hResults, dPtr ,memSize, cudaMemcpyDeviceToHost, stream);

cudaFreeAsync(dPtr, stream);

cudaStreamSynchronize(stream); 

cudaStreamDestroy(stream); // if the stream is not needed any longer



CUDA streams enable concurrency
● Simultaneous support: 

− CUDA kernels on GPU 

− 2 cudaMemcpyAsync (in opposite directions)

− Computation on the CPU

● Requirements for Concurrency: 
− CUDA operations must be in different, non-0, streams

− cudaMemcpyAsync with host from 'pinned' memory



CUDA Streams

std::vector<cudaStream_t> streams(4);

for (auto& s: streams) cudaStreamCreate(&s);

std::vector<float*> hPtrs(4); std::vector<float*> dPtrs(4);

for (int i=0; i<4; ++i) cudaMallocHost(&hPtrs[i],memSize);

for (int i=0; i<4; ++i) {

    cudaMallocAsync(&dPtrs[i],memSize, streams[i]);

cudaMemcpyAsync(dPtrs[i],hPtrs[i],memSize, cudaMemcpyHostToDevice, streams[i]);

kernelA<<<100,512,0,streams[i]>>>(dPtrs[i]);

kernelB<<<100,512,0,streams[i]>>>(dPtrs[i]);

cudaMemcpyAsync(hResults[i],dPtrs[i],memSize, cudaMemcpyDeviceToHost, streams[i]);

}

for (auto& s: streams) {

cudaStreamSynchronize(s); 

cudaStreamDestroy(s); // if the stream is not needed any longer

}



Device synchronization

● Explicit Synchronization:
− cudaDeviceSynchronize()

● blocks host until all issued CUDA calls are complete

− cudaStreamSynchronize(stream)
● blocks host until all CUDA calls in streamid are complete

− cudaStreamWaitEvent(stream, event)
● all commands added to the stream delay their execution until the event has completed



Parallel constructs in CUDA



Addition on the Device

● A simple kernel to add two integers
__global__ void add(const int *a, const int *b, int *c) {

*c = *a + *b;
}

● As before __global__ is a CUDA keyword meaning
− add() will execute on the device

− add() will be called from the host



Addition on the Device

● Note that we use pointers for the variables
__global__ void add(const int *a, const int *b, int *c) {
    *c = *a + *b;
}

● add() runs on the device, so a, b and c must point to device 
memory

● We need to allocate memory on the GPU



Memory Management

● Host and device memory are separate entities
− Device pointers point to GPU memory

May be passed to/from host code
May not be dereferenced in host code

− Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

● Simple CUDA API for handling device memory
− cudaMalloc(), cudaFree(), cudaMemcpy()
− Similar to malloc(), free(), memcpy()



Addition on the Device: add()

● Returning to our add() kernel

__global__ void add(const int *a, const int *b, int *c) {
    *c = *a + *b;
}

● Let’s take a look at main()…



Addition on the Device: main()
int main() {

      cudaStream_t stream;
      cudaStreamCreate(&stream); 

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c;// device copies of a, b, c
int size = sizeof(int);
// Allocate space for device copies of a, b, c

      cudaMallocHost(&a,size); 
      cudaMallocHost(&b,size); 
      cudaMallocHost(&c,size); 

*a = 2; *b = 7;



Addition on the Device: main()
   cudaMallocAsync(&d_a, size, stream);
   cudaMallocAsync(&d_b, size, stream);
   cudaMallocAsync(&d_c, size, stream);
    // Copy inputs to device

cudaMemcpyAsync(d_a, a, size, cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_b, b, size, cudaMemcpyHostToDevice, stream);
// Launch add() kernel on GPU
add<<<1,1,0,stream>>>(d_a, d_b, d_c);
// Copy result back to host
cudaMemcpyAsync(c, d_c, size, cudaMemcpyDeviceToHost, stream);
cudaFreeAsync(d_a,stream); 
cudaFreeAsync(d_b,stream); 
cudaFreeAsync(d_c,stream);

     // Synchronize to be able to use c...
 cudaStreamSynchronize(stream); 

    cudaStreamDestroy(stream);        
    cudaFreeHost(a); cudaFreeHost(b); cudaFreeHost(c);
}



Moving to Parallel

● GPU computing is about massive parallelism
− So how do we run code in parallel on the device?

add<<< 1, 1, 0, stream >>>();

add<<< N, 1, 0, stream >>>();

● Instead of  executing add() once, execute N times in parallel



Vector Addition on the Device

● With add() running in parallel we can do vector addition
● Terminology: each parallel invocation of add() is referred to as a block

− The set of blocks is referred to as a grid
− Each invocation can refer to its block index using blockIdx.x
__global__ void add(const int *a, const int *b, int *c)   

   {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

● By using blockIdx.x to index into the array, each block handles a different index



Remember SPMD?

    __global__ void add(const int *a, const int *b, int *c) {
   c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

● On the device, each block can execute in parallel:

c[0]= a[0]+b[0]; c[1]= a[1]+b[1]; c[2]= a[2]+b[2]; c[3]= a[3]+b[3];

Block 0 Block 1 Block 2 Block 3



Vector Addition on the Device: add()

● Returning to our parallelized add() kernel

    __global__ void add(const int *a, const int *b, int *c) {
  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

● Let’s take a look at main()…



Vector Addition on the Device: main()
   int main() {
   cudaStream_t stream; cudaStreamCreate(&stream);
   int N = 512;

std::vector<int> a, b, c; 
a.resize(N); b.resize(N); c.resize(N);
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for host copies of a, b, c and

     // setup input values
       my_favorite_random_ints(a, N);
       my_favorite_random_ints(b, N);

// Alloc memory for device copies of a, b, c
cudaMallocAsync(&d_a, size, stream);
cudaMallocAsync(&d_b, size, stream);
cudaMallocAsync(&d_c, size, stream);



Vector Addition on the Device: 
// Copy inputs to device
cudaMemcpyAsync(d_a, a.data(), size, cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_b, b.data(), size, cudaMemcpyHostToDevice, stream);
// Launch add() kernel on GPU with N blocks
add<<<N, 1, 0, stream>>>(d_a, d_b, d_c);
// Copy result back to host
cudaMemcpyAsync(c.data(), d_c, size, cudaMemcpyDeviceToHost, stream);
// Cleanup
cudaFreeAsync(d_a,stream); 
cudaFreeAsync(d_b,stream); 
cudaFreeAsync(d_c,stream);
cudaStreamSynchronize(stream);
// Now you can use content of the c vector…
cudaStreamDestroy(stream); 
}



CUDA Threads
● Terminology: a block can be split into parallel threads

● Let’s change add() to use parallel threads instead of parallel blocks

• We use threadIdx.x instead of blockIdx.x
• Need to make one change in main()…

__global__ void add(const int *a, const int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}



Combining Blocks and Threads

● We’ve seen parallel vector addition using:
− Many blocks with one thread each

− One block with many threads
Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…
First let’s discuss data indexing…



Indexing Arrays with Blocks and Threads

With blockDim.x threads/block a unique index for each thread is given by:
auto index = threadIdx.x + blockIdx.x * blockDim.x;

• No longer as simple as using blockIdx.x and threadIdx.x
– Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 60



Vector Addition with Blocks and Threads

What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads per block
auto index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel threads and parallel blocks

__global__ void add(const int *a, const int *b, int *c) {
    auto index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
}



Vector Addition on the Device: main()
   int main() {
    cudaStream_t stream; cudaStreamCreate(&stream);
    int N = 2048*2048;
    int threads_per_block = 512;

std::vector<int> a, b, c; 
a.resize(N); b.resize(N); c.resize(N);
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for host copies of a, b, c and

    // setup input values
    my_favorite_random_ints(a, N);
    my_favorite_random_ints(b, N);

// Alloc memory for device copies of a, b, c
cudaMallocAsync(&d_a, size, stream);
cudaMallocAsync(&d_b, size, stream);
cudaMallocAsync(&d_c, size, stream);



Vector Addition on the Device: 

  // Copy inputs to device
  cudaMemcpyAsync(d_a, a.data(), size, cudaMemcpyHostToDevice, stream);
  cudaMemcpyAsync(d_b, b.data(), size, cudaMemcpyHostToDevice, stream);
  // Launch add() kernel on GPU with N blocks
  add<<<N/threads_per_block,threads_per_block, 0, stream>>>(d_a, d_b, d_c);
  // Copy result back to host
  cudaMemcpyAsync(c.data(), d_c, size, cudaMemcpyDeviceToHost, stream);
  // Cleanup
  cudaFreeAsync(d_a,stream); cudaFreeAsync(d_b,stream);cudaFreeAsync(d_c,stream);
  cudaStreamSynchronize(stream);
  // Now you can use content of the c vector…
  cudaStreamDestroy(stream);
}



Handling Arbitrary Vector Sizes

Update the kernel launch:
add<<<(n + nThPerBlock - 1)/nThPerBlock, nThPerBlock >>>(d_a,d_b, d_c, n);

• Typical problems are not friendly multiples of blockDim.x

• Avoid accessing beyond the end of the arrays:

__global__ void add(const int *a, const int *b, int *c, int n) {
    auto index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];
}



Hardware vs Software

● From a programmer’s perspective: 
− Blocks 

− Kernel 

− Threads 

− Grid 

● Hardware implementation:
− Streaming multiprocessors (SM)

− Warps



CUDA Runtime system
● Threads assigned to execution resources on a block-by-block basis. 
● CUDA runtime automatically reduces number of  blocks assigned to each SM 

until resource usage is under limit.
● Runtime system: 

● maintains a list of  blocks that need to execute 
● assigns new blocks to SM as they compute previously assigned blocks 

●  Example of  SM resources:
● threads/block or threads/SM or blocks/SM
● number of  threads that can be simultaneously tracked and scheduled
● shared memory



Context Switching
● Registers and shared memory are allocated for a block as long as that 

block is active
● Once a block is active it will stay active until all threads in that block have 

completed
● Context switching is very fast because registers and shared memory do 

not need to be saved and restored
● Goal: Have enough transactions in flight to saturate the memory bus
● Latency can be hidden by having more transactions in flight
● Increase active threads or Instruction Level Parallelism 



Time for exercises!



Shared Memory



Why Bother with Threads?

● Threads seem unnecessary
− They add a level of  complexity
− What do we gain?

● Unlike parallel blocks, threads have mechanisms to:
− Communicate
− Synchronize

● To understand the gain, we need a new example…



1D Stencil
● Consider applying a 1D stencil sum to a 1D array of  elements

− Each output element is the sum of  input elements within a radius

− Example of  stencil with radius 2:



Sharing Data Between Threads

● Terminology: within a block, threads share data via shared memory

● Extremely fast on-chip memory, user-managed

● Declare using __shared__, allocated per block

● Data is not visible to threads in other blocks



Implementing With Shared Memory

● Cache data in shared memory
− Read (blockDim.x + 2 * radius) input elements 

from global memory to shared memory
− Compute blockDim.x output elements
− Write blockDim.x output elements to global memory
− Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right



Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
                                                
                                                       
                                      

                                            
                               
                              
                                                   
                                  
                                
    



Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
                                                      
                                      

                                            
                               
                              
                                                   
                                  
                                
    



Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
  auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
  auto s_index = threadIdx.x + RADIUS;

                                            
                               
                              
                                                   
                                  
                                
    



Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
  auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
  auto s_index = threadIdx.x + RADIUS;

  // Read input elements into shared memory
  temp[s_index] = in[g_index];
                             
                                                   
                                  
                                
    



Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
  auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
  auto s_index = threadIdx.x + RADIUS;

  // Read input elements into shared memory
  temp[s_index] = in[g_index];
  if (threadIdx.x < RADIUS) {
    temp[s_index - RADIUS] = in[g_index - RADIUS];
                                 
                                
    



Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
  auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
  auto s_index = threadIdx.x + RADIUS;

  // Read input elements into shared memory
  temp[s_index] = in[g_index];
  if (threadIdx.x < RADIUS) {
    temp[s_index - RADIUS] = in[g_index - RADIUS];
    temp[s_index + BLOCK_SIZE] = 
                               
    



Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
  auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
  auto s_index = threadIdx.x + RADIUS;

  // Read input elements into shared memory
  temp[s_index] = in[g_index];
  if (threadIdx.x < RADIUS) {
    temp[s_index - RADIUS] = in[g_index - RADIUS];
    temp[s_index + BLOCK_SIZE] = 
      in[g_index + BLOCK_SIZE];
  }



Stencil Kernel

  // Apply the stencil
  int result = 0;
  for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
    result += temp[s_index + offset];

  // Store the result
  out[g_index] = result;
}



Data Race!

• The stencil example will not work…

                                                              
   

                                 
                                
                                                      
                                                               
      
                    
                                 



__syncthreads()

● void __syncthreads();

● Synchronizes all threads within a block
− Used to prevent race conditions

● All threads must reach the barrier
− In conditional code, the condition must be uniform across the block



Stencil Kernel
__global__ void stencil_1d(const int *in, int *out, int n) {
  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
  auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
  auto s_index = threadIdx.x + RADIUS;

  // Read input elements into shared memory
  temp[s_index] = in[g_index];
  if (threadIdx.x < RADIUS) {
    temp[s_index - RADIUS] = g_index - RADIUS < 0? 0: 

   in[g_index - RADIUS];
    

temp[s_index + BLOCK_SIZE] = g_index + BLOCK_SIZE < n ? 
in[g_index + BLOCK_SIZE]: 0;

  }

    // Synchronize (ensure all the data is available)
    __syncthreads();



Stencil Kernel

  // Apply the stencil
  int result = 0;
  for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
    result += temp[s_index + offset];

  // Store the result
  out[g_index] = result;
}



Review (1 of 2)
● Launching parallel threads

− Launch N blocks with M threads per block with 
kernel<<<N,M,0,stream>>>(…);

− Use blockIdx.x to access block index within grid

− Use threadIdx.x to access thread index within block

● Allocate elements to threads:

auto index = threadIdx.x + blockIdx.x * blockDim.x;



Review (2 of 2)

● Use __shared__ to declare a variable/array in shared memory
− Data is shared between threads in a block

− Not visible to threads in other blocks

● Use __syncthreads() as a barrier to prevent data hazards



Device Management



Reporting Errors

● All CUDA API calls return an error code (cudaError_t)
− Error in the API call itself
OR
− Error in an earlier asynchronous operation (e.g. kernel)

● Get the error code for the last error:
cudaError_t cudaGetLastError(void)

● Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

cudaGetErrorString(cudaGetLastError());



Timing

● You can use the standard timing facilities (host side) in an almost 
standard way…
− but remember: CUDA calls can be asynchronous!



Conclusion
● Programming GPUs forces you to think parallel

− CUDA is very well mapped to the properties of  the hardware
● Portable code is key for long-term maintainability, testability and 

support for new accelerator devices
− It improves the CPU performance as well if  done properly, aiding 

automatic vectorization
● Many possible solutions, not so many viable ones, even less production 

ready or compatible with existing infrastructure
● Starting from a CUDA code rather than sequential C++ made life so 

much easier in the parallelization and portability
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