
Expressing parallelism with C++ and tbb

Felice Pantaleo

CERN Experimental Physics Department

felice@cern.ch
1

You will learn...

● std::threads

● locks/mutual execution

● atomics

● Threading Building Blocks

2
2

A quick recap

3

Threads

● A thread is an execution context, a set of register values

● Defines the instructions to be executed and their order

● A CPU core fetches this execution context and starts running the
instructions: the thread is running

● When the CPU needs to execute another thread, it switches the context , i.e.
saving the previous context and loading the new one
− Context switching is expensive

− Avoid threads jumping from a CPU core to another

4
4

count number of 5s
array[N]
numberOf5 = 0
for i in [0,N[:
 if array[i] == 5
 numberOf5++
return numberOf5

numberOf5 = 0

nThreads = 4

count5(array, tId):

 beg = tId*N/nThreads

 end = beg + N/nThreads

 for i in [beg,end[:
 if array[i] == 5:
 numberOf5++

Data Race

● A race condition occurs when multiple tasks read from and write to the
same memory without proper synchronization.

● The “race” may finish correctly sometimes and therefore complete
without errors, and at other times it may finish incorrectly.

● If a data race occurs, the behavior of the program is undefined.

6

count number of 5s
array[N]
numberOf5 = 0
for i in [0,N[:
 if array[i] == 5
 numberOf5++
return numberOf5

numberOf5 = 0

nThreads = 4

count5(array, tId):

 beg = tId*N/nThreads

 end = beg + N/nThreads

 for i in [beg,end[:
 if array[i] == 5:
 lock()
 numberOf5++
 unlock()

count number of 5s
array[N]
numberOf5 = 0
for i in [0,N[:
 if array[i] == 5
 numberOf5++
return numberOf5

numberOf5 = 0

nThreads = 4

count5(array, tId):

 privateResult = 0

 beg = tId*N/nThreads

 end = beg + N/nThreads

 for i in [beg,end[:

 if array[i] == 5:
 privateResult++

 lock()
 numberOf5 += privateResult
 unlock()

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

}

∙ compile with
∙ g++ std_threads.cpp -pthread -o std_threads -std=c++20

9

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

}

Define a function that prints Hello world

void f(int i){

 std::cout << “Hello world from thread “ << i << std::endl;

}

10

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

 auto f = [](int i){

 std::cout << "hello world from thread " << i << std::endl;

 };

//Construct a thread which runs the function f

 std::thread t0(f,0);

//and then destroy it by joining it

 t0.join();

} 11

Fork-join

● The construction of a thread is asynchronous, fork
● Threads execute independently
● join is the synchronization point with the main thread

12

std::thread t0(f,0); t0.join();

Need more threads?

13

auto n = std::thread::hardware_concurrency();

std::vector<std::thread> v;

for (auto i = 0; i < n; ++i) {

 v.emplace_back(f,i);

}

for (auto& t : v) {

 t.join();

}

std::mutex
Avoiding that multiple threads access a shared variable

Use it together with a scoped lock

When using two or more mutexes, pay attention to deadlocks
#include <mutex>

std::mutex myMutex;

...

{

 std::scoped_lock myLock(myMutex);

 //critical section begins here

 std::cout << "Only one thread at a time" << std::endl;

} // ends at the end of the scope of myLock 14

Before we move on, measuring time
#include <chrono>

...

auto start = std::chrono::steady_clock::now();

 f(i);

auto stop = std::chrono::steady_clock::now();

std::chrono::duration<double> dur= stop - start;

std::cout << dur.count() << " seconds" << std::endl;

● f() is the function that you want to measure

● Be careful, asynchronous functions return immediately: remember to
synchronize before stopping the timer.

15

Exercise 1

● You want to sum the elements of a vector in parallel using 4 threads

● Accumulate the sum in the variable sum

● Let's start by creating a thread

● Brainstorming time!

16

Transferring ownership of a
thread
void some_function();

void some_other_function();

std::thread t1(some_function);

std::thread t2=std::move(t1);

t1=std::thread(some_other_function);

17

Memory access patterns: cached
Effective parallel programming requires
that we have a sense of the importance of
locality.

For optimal CPU cache utilization, the
thread a should process element i and i+1

• stride=1

18

CPU

CPU Thread 0 CPU Thread 1 CPU Thread 2 CPU Thread 3

18

False Sharing

● Problems of sharing arise when two threads access different words that
share the same cache line.

● The problem is that a cache line is the unit of information interchange
between processor caches.

● If one processor modifies a cache line and another processor reads the
same cache line, the line must be moved from one processor to the
other, even if the two processors are dealing with different words within
the line.

● False sharing can hurt performance because cache lines can take
hundreds of clocks to move (going through higher level caches or main
memory)

19

False Sharing

● Suppose that:
− a cache line is 64bytes
− two threads (x and y) run on

processors that share their cache
− we have two arrays int A[500], B[500]
− the end of A and the beginning of B are in the same cache line
− thread x modifies A[499], and loads the corresponding cache-line in cache
− thread y modifies B[0]

● The processor needs to flush the cache lines, reloading the cache for
thread x and invalidating the cache for thread y

● A possible solution is padding
20

std::atomic
● Atomic types:

− encapsulate a value whose access is guaranteed to not cause data races
− other threads will see the state of the system before the operation
− started or after it finished, but cannot see any intermediate state
− can be used to synchronize memory accesses among different threads
− at the low level, atomic operations are special hardware instructions
− (hardware guarantees atomicity)

● The primary std::atomic template may be instantiated with any TriviallyCopyable type T
● Common architectures have atomic fetch-and-add instructions for integers

#include <atomic>
std::atomic<int> x = 0; int a = x.fetch_add(42);

● reads from a shared variable, adds 42 to it, and writes the result back: all in one indivisible
step 21

Trivially Copyable
● Trivially copyable

● The primary std::atomic template may be instantiated

● with any TriviallyCopyable type T
− Continuous chunk of memory

− Copying the object means copying all bits (memcpy)

− No virtual functions, noexcept constructor

std::atomic<int> i; // OK
std::atomic<double> x; // OK
struct S { long x; long y; };
std::atomic<S> s; // OK! 22

std::atomic<T>

● read and write operations are always atomic

● std::atomic<T> provides operator overloads only for atomic operations
(incorrect code does not compile)

std::atomic<int> x{0}
++x;
x++;
x += 1;
x |= 2;
x *= 2; //this is not atomic and will not compile
int y = x * 2; // atomic read of x
x = y + 1; // atomic write of x
x = x + 1; // atomic read and then atomic write
x = x * 2; // atomic read and then atomic write
int z = x.exchange(y); // Atomically: z = x; x = y;

23

Atomic references
● In real life, we usually want to perform atomic operations when the object is

shared among different threads, forgetting about its atomicity in portion of the
code where it is not contented

● The std::atomic_ref class template applies atomic operations to the object it
references

● For the lifetime of the atomic_ref object, the object it references is considered
an atomic object
int x = 0;

std::atomic_ref<int> atomic_x(x);

…

// later inside another thread

atomic_x+= 5;

24

Expressing Parallelism with
Threading Building Blocks

25

Why TBB?

● OneAPI Threading Building Blocks is an open source library which
allows to express parallelism on CPUs in a C++ program
https://github.com/oneapi-src/oneTBB/

● Parallelizing for loops can be tedious with std::threads

● One wants to achieve scalable parallelism, easily

● To use the TBB library, you specify tasks, not threads, and let the library
map tasks onto threads in an efficient manner

26

https://github.com/oneapi-src/oneTBB/

Why TBB?

● Direct programming with threads forces you to do the work to efficiently map
logical tasks onto threads

● TBB Runtime library maps tasks onto threads allowing them to steal tasks
when idle to maximize load balancing and squeezing performance out of the
processor
− Better portability
− Easier programming
− More understandable source code
− Better performance and scalability
− Integration with C++ exceptions

27

Produce-Consume

28

Consume and
Process data

Produce data

Produce-Consume

29

Consume and
Process data

Produce data
Produce data

Produce data

Consume and
Process dataConsume and

Process data

The CMS dependency graph

http://fpantale.web.cern.ch/fpantale/dependency.png

One graph per event

Many events reconstructed at the same time

Each box is a C++ module

30

http://fpantale.web.cern.ch/fpantale/dependency.png

tbb and High-Throughput Computing in
HEP: a success story

● Perfect load balance up to 128 threads/node
○ then I/O overhead

● Huge reduction of
resident memory

● Non uniform time per
module

31CMSSW Scaling Limits on Many-Core Machines

TBB Threads
Open hands-on/stdthreads_tbb/hello_world_tbb.cpp

Compile:
g++ hello_world_tbb.cpp -ltbb -o hello_world_tbb -std=c++20

32

Thread pool

A number of threads will be reused throughout your application to avoid the
overhead of spawning them (or spawning too many)

33

Parallelizing for loops with tbb

for(int i =0; i<N; ++i) x[i]++;

oneapi::tbb::parallel_for(oneapi::tbb::blocked_range(0, N, <G>), [&](const
auto& range) {

 for (auto i=range.begin(); i!= range.end(); ++i) {

 x[i]++;

 }

}, <partitioner>);

34

Parallelizing for loops with tbb

for(int i =0; i<N; ++i) x[i]++;

oneapi::tbb::parallel_for(oneapi::tbb::blocked_range(x.begin(), x.end(), <G>),
[&](const auto& range) {

 for (auto& element : range) {

 element++;

 }

}, <partitioner>);

35

Scalability

● A loop needs to last for at least 1M clock cycles for parallel_for to
become worth it

● If the performance of your application improves by increasing the
number of cores, the application is said to scale strongly. There is usually a
limit to the scaling.

● Usually, adding more cores than the limit does not only result in
performance improvements, but performance falls.
− Overhead in scheduling and synchronizing many small tasks starts dominating

● TBB uses the concept of Grain Size to keep data splitting to a reasonable
level

36

Grain Size

● If GrainSize is 1000 and the loop iterates over 2000 elements, the
scheduler can distribute the work at most to 2 processors

● With a GrainSize of 1, most of the time is spent in packaging

37

Automatic Partitioner

● The automatic partitioner is often more than enough to have good
performance

● Heuristics that:
− Limits overhead coming from small grain size

− Creates opportunities for load balancing given by not choosing a grain size
which is too large

● Sometimes controlling the grainSize can lead to performance
improvements

38

Partitioners

● affinity_partitioner can improve performance when:
− data in a loop fits in cache

− the ratio between computations and memory accesses is low

● simple_partitioner enables the manual ninja mode
− You need to specify manually the grain size G

− The default is 1, in units of loop iterations per chunk

− Rule of thumb: G iterations should take at least 100k clock cycles

39

Mutex Flavors

● Scalability
− Not scalable if the waiting threads consume excessive processor cycles and

memory bandwidth, reducing the speed of threads trying to do real work

● Fairness
− Serves threads in the order they arrived (queuing_mutex)
− Fair mutexes prevent thread starvation

● Yielding or Blocking
− Yield: repeatedly poll, if no work allowed temporarily yield the processor
− Block: yield the processor until the mutex permits progress

40

Mutex
● Header: #include <oneapi/tbb/mutex.h>

● Wrapper around OS calls:
− Portable across all operating systems supported by TBB

− Releases the lock if an exception is thrown from the protected region of code

oneapi::tbb::mutex myMutex;
...
{
 oneapi::tbb::mutex::scoped_lock myLock(myMutex);
 //critical section here
 …
} 41

Exercise 2 - Numerical Integration

We know that:

The integral can be approximated as the sum
of the rectangles:

42

Numerical integration
● Try to parallelize it

● Measure time vs number of threads, vs number of steps, play with parameters and check precision

● Try privatization

● What happens if one thread runs over more steps than the others?
int num_steps = 1<<20;

double pi = 0.;

double step = 1.0/(double) num_steps;

double sum = 0.;

for (int i=0; i< num_steps; i++){

 auto x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

std::cout << "result: " << std::setprecision (15) << pi << std::endl;
43

Concurrent containers

Concurrent containers allow concurrent thread-safe read-write access by multiple threads
● oneapi::tbb::concurrent_vector<T>

● oneapi::tbb::concurrent_queue<T>

● oneapi::tbb::concurrent_hashmap<Key,T,HashCompare>

For example:
#include <oneapi/tbb/concurrent_vector.h>

…

oneapi::tbb::concurrent_vector<int> myVector;

… // later in a parallel section

myVector.push_back(x);

44

Exercise 3 - π with Monte Carlo

● The area of the circle is π

● The area of the square is 4

● Generate N random x and y between -1
and 1:
− if r < 1: the point is inside the circle and

increase Nin

− The ratio between Nin and N converges to
the ratio between the areas

45

Exercise 4 - Parallel Histogram

● Generate 2M floats normally distributed with average 0 and sigma 50

● Create a thread-safe histogram class with 100 bins of width 2 (first and
last bins contain overflow)

● Use parallel for to push these numbers in the histogram

● Measure strong scaling

● Measure how performance changes, when modifying the number of bins

● Can you think of another pattern for mitigating high contention cases?

46

Parallel Scheduler

● Efficient load balancing by work stealing

● Reduce context switching

● Preserve data locality

● Keep CPUs busy

● Start/terminating tasks is up to 2 orders of magnitude faster than
spawning/joining threads

47

Depth-first execute, breadth-first theft

● Strike when the cache
is hot
− The deepest tasks are

the most recently
created tasks and,
therefore, the hottest
in the cache

48

Task Parallelism with TBB
● A task_group is a container of potentially concurrent and independent tasks
● A task can be created from a lambda or a functor
● A very stupid way to compute the Fibonacci sequence (a lot of duplicate calculations)

49

Conclusion

TBB owes its success in HEP to being flexible, and cache friendly
in non-well-balanced workloads

● deeply nested and recursive parallelism (the nature of tbb)
● complex parallel patterns (non-loops)
● complex flow graph structures
● exception safety or C++ friendly constructions
● no compiler support is required

50

backup

51

52

Parallel algorithms in C++

● Starting from C++17, parallel/vectorized versions of standard algorithms
started to appear

● You mostly don't have to think about what kind of parallel
implementation is hidden under the hood

● You can control the behavior by changing the execution policy

53

Execution Policies (since C++17)

● std::execution::seq : a parallel algorithm's execution may not
be parallelized.

● std::execution::par : indicate that a parallel algorithm's
execution may be executed in an unordered fashion in unspecified threads,
and sequenced with respect to one another within each thread.

● std::execution::par_unseq : indicate that a parallel
algorithm's execution may be executed in an unordered fashion in
unspecified threads, and unsequenced with respect to one another within
each thread.

54

Parallel Algorithms

● std::accumulate

● std::adjacent_difference

● std::inner_product

● std::partial_sum

● std::adjacent_find

● std::count

● std::count_if

● std::equal

● std::find

● std::find_if

● std::find_first_of

● std::for_each

● std::generate

● std::generate_n

● std::lexicographical_com
pare

● std::mismatch

● std::search

● std::search_n

● std::transform

● std::replace

● std::replace_if

● std::max_element

● std::merge

● std::min_element

● std::nth_element

● std::partial_sort

● std::partition

● std::random_shuffle

● std::set_union

● std::set_intersection

● std::set_symmetric_difference

● std::set_difference

● std::sort

● std::stable_sort

● std::unique_copy

55

Examples of what is possible

● #include <execution>

● ...

● std::vector<int> v;

● // fill the vector

● ...

● // sort it in parallel

● std::sort(std::execution::par, v.begin(), v.end());

● // apply a function foo to each element

● std::for_each(std::execution::par_unseq, v.begin(), v.end(), foo);
56

Unordered algorithms

● std::vector<int> v;

● // fill the vector

● ...

● // reduce it in parallel

● // reduction_binary_op has to be commutative and associative // operation

● auto y = std::reduce(std::par_unseq, v.begin(), v.end(), [initialvalue],
[reduction_binary_op]);

57

std::transform_reduce, aka the parallel C++ swiss knife

● Takes a container of elements of type T

● Produces an object of type R

● Requires a transformation function
− R foo(const T&)

● Requires a requires a binary operation:
− R bar(const R&,const R&)

● Requires an initial value for the reduction

58

example
● The norm of a vector is:

● sqrt(x[0]*x[0] + x[1]*x[1] + ... + x[N-1]*x[N-1])
● std::vector<double> v; // fill it

● double result2 = std::transform_reduce(std::par_unseq,
● v.begin(), v.end(),
● // transform
● [](double elt) { return elt*elt; },
● // initial value
● 0.0,
● // reduction
● [](double x, double y) {return x+y;}
●);

● double norm = std::sqrt(result2);

59

task_arena::constraints
● It allows to specify the following restrictions:

● Preferred NUMA node

● Preferred core type

● The maximum number of logical threads scheduled per single core simultaneously

int concurrency_one_thread = oneapi::tbb::info::default_concurrency(
 oneapi::tbb::task_arena::constraints{}.set_max_threads_per_core(1)
);
oneapi::tbb::task_arena arena(concurrency_one_thread);
arena.execute([] { parallel_foo();});

● The level of task_arena concurrency

60

Your turn: BFS

● Calculate the shortest distance to travel from a vertex to all the other
vertices in a graph

● You can find sequential iterative and recursive implementations in
BFS.cpp

● Implement it with parallel_for and tasks

61

62

d=0

63

d=1

64

d=2

65

Compare-and-swap (CAS)
● Allows to create more complex lockless data structures

bool success = x.compare_exchange_weak(expected, new_value_if_success);

66

