
An Introduction to Parallel
Programming with OpenMP

Tim Mattson
tgmattso@gmail.com

The Human Learning Group*

Download tutorial materials:
git clone https://github.com/infn-esc/esc23.git then go to esc23/hands-on/openmp

*I retired from Intel in August 2023. HLG is a made-up company since I’m often required to list a home institution … I like “human learning” not “machine learning”

mailto:tgmattso@gmail.com
https://github.com/infn-esc/esc23.git

An Introduction to me
I’m just a simple kayak instructor

Photo © by Greg Clopton, 2014
2

To support my kayaking habit, I
work as a parallel programmer

Which means I know how to turn
math into lines on a speedup plot

P

S

3

Preliminaries: Part 1

• Disclosures
–Please note, the views expressed in this tutorial are my own.
– If I say something wrong (stupid, incorrect or inappropriate) please do not

blame the OpenMP ARB or any of the many people* who have worked with me
over the years to create this content.

• I take my tutorials VERY seriously:
–Help me improve … tell me how you would make this tutorial better.

*People who have helped me over the years (since 1998) with this content: Alice Koniges, Helen Ye, Dave Eder,
Barbara Chapman, Mark Bull, Larry Meadows, Rudi Eigenmann, Sanjiv Shah, Paul Petersen, Ruud van der Pas

4

Preliminaries: Part 2
• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.
–You will use your laptop to connect to a multiprocessor server.

• Please follow these simple rules
–Do the exercises that we assign and then change things around and

experiment.
– Embrace active learning!

–Don’t cheat: Do Not look at the solutions before you complete an exercise …
even if you get really frustrated.

Download tutorial materials:
git clone https://github.com/infn-esc/esc23.git then go to esc23/hands-on/openmp

https://github.com/infn-esc/esc23.git

Lets start with a few key concepts …

5

Let’s agree on a few definitions:

• Active task:
– A task that is available to be scheduled for execution. When the task is moving through its sequence of

instructions, we say it is making forward progress

• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution.

6

• Computer:
– A machine that transforms input data into

output data.
– Typically, a computer consists of Control,

Arithmetic/Logic, and Memory units.
– The transformation is defined by a stored

program (von Neumann architecture).

• Task:
– A specific sequence of instructions plus a

data environment. A program is composed
of one or more tasks.

Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element

Concurrency vs. Parallelism

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs exploit
concurrency in a problem to run tasks on
multiple processing elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems

Programs

Concurrent
Programs

Parallel
Programs If tasks execute in “lock step” they are not

concurrent, but they are still parallel.
Example … a SIMD unit.

• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

Hardware Today is Fundamentally Parallel

9

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

For hardware … parallelism is the path to performance

CPU + SIMD/Vector

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

We will start our
exploration of parallel

programming here

The best way to master parallel computing …

start with a simple approach to parallelism and build
an intellectual foundation by writing parallel code.

… and the simplest API for parallelism is?

12

13

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

C$OMP TASKGROUP

14

OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP: An API for Writing Parallel Applications

§A set of compiler directives and library routines for parallel application programmers

§Originally … Greatly simplifies writing multithreaded programs in Fortran, C and C++

§Later versions … supports non-uniform memories, vectorization and GPU programming

#pragma omp atomic seq_cst

The Growth of Complexity in OpenMP

15

The full spec is overwhelming. We focus on the Common Core: the 21 items most people restrict themselves to

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1 2.0

2.5
3.0 3.1

4.0

4.5

5.0*

5.1*

5.2*
tr10

2.0

Fortran spec
C/C++ spec
Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025
0

500

600

400

300

200

100

Page Counts (not including front matter, indices or appendices) for OpenMP Specs

Page C
ounts

Our goal in 1997 … A simple interface for application programmers

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

16

OpenMP Basic Definitions: Basic Solution Stack

17

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

17

OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er
H

W

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ….
i.e., lots of threads with “equal cost access” to memory 18

19

OpenMP Basic Syntax
• Most of OpenMP happens through compiler directives.

 C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL PRIVATE(X)

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom.
– It’s OK to have an exit() within the structured block.

20

Exercise, Part A: Hello World
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

 printf(“ hello ”);
 printf(“ world \n”);

}

21

Exercise, Part B: Hello World
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

 printf(“ hello ”);
 printf(“ world \n”);

}

Switches for compiling and linking

gcc -fopenmp Gnu (Linux, OSX)

cc –qopenmp Intel (Linux@NERSC)

icc -fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

#include <omp.h>

}

22

Solution
A Multi-Threaded “Hello World” Program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
 {

 printf(“ hello ”);
 printf(“ world \n”);
 }
}

Sample Output:
hello hello world

world

hello hello world

world

OpenMP include file

Parallel region with
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads

23

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

24

OpenMP Execution model:

Fork-Join Parallelism:
u Initial thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met, i.e., the sequential
program evolves into a parallel program.

Parallel Regions

Initial
Thread

A Nested
Parallel
Region

Sequential Parts

25

Thread Creation: Parallel Regions
• You create threads in OpenMP with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
 pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

Thread Creation: Parallel Regions Example

• Each thread executes the
same code redundantly.

double A[1000];
omp_set_num_threads(4);

 #pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}

 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A is
shared between all

threads.

Threads wait here for all threads to finish before
proceeding (i.e., a barrier)

26

27

Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()

• The number requested may not be the number you actually get.
– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();

 int nthrds = omp_get_num_threads();
 pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain

number of threads

Runtime function to
return actual

number of threads
in the team

28

An Interesting Problem to Play With
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of N
rectangles:

Where each rectangle has width Dx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

i = 0

N

29

Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (int i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

See esc23/hands-on/openmp/pi.c

30

Serial PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{ double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 double tdata = omp_get_wtime();
 for (int i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
 tdata = omp_get_wtime() - tdata;
 printf(“ pi = %f in %f secs\n”,pi, tdata);
}

The library routine
get_omp_wtime()
is used to find the

elapsed “wall
time” for blocks of

code

See esc23/hands-on/openmp/pi.c

31

Exercise: the Parallel Pi Program
• Create a parallel version of the pi program using a parallel construct:
 #pragma omp parallel
• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();

Time in seconds since a fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of threads in the team

Download tutorial materials:
git clone https://github.com/infn-esc/esc23.git then go to esc23/hands-on/openmp

https://github.com/infn-esc/esc23.git

32

Hints: the Parallel Pi Program
• Use a parallel construct:
 #pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the number of threads).
– Create an accumulator for each thread to hold partial sums that you can later combine to

generate the global sum.

• In addition to a parallel construct, you will need the runtime library routines
– int omp_set_num_threads();
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();

33

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id,numthrds;
 double x;
 id = omp_get_thread_num();
 numthrds = omp_get_num_threads();
 if (id == 0) nthreads = numthrds;
 for (i=id, sum[id]=0.0;i< num_steps; i=i+numthrds) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
 }
 for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD* pi program

Promote scalar to an array dimensioned by
number of threads to avoid race condition.

This is a common trick in SPMD programs to
create a cyclic distribution of loop iterations

Only one thread should copy the number of
threads to the global value to make sure
multiple threads writing to the same address
don’t conflict.

*SPMD: Single Program Multiple Data

34

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id,numthrds, istart, iend;
 double x;
 id = omp_get_thread_num();
 numthrds = omp_get_num_threads();
 istart = id*(num_steps/numthrds); iend=(id+1)*(num_steps/numthrds);
 if(id == (numthrds-1)) iend = num_steps;
 if (id == 0) nthreads = numthrds;
 for (i=istart, sum[id]=0.0;i< iend; i++) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
 }
 for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD pi program … an alternative solution

This is a common trick in SPMD algorithms …
it’s a blocked distribution with one block per
thread.

SPMD: Single Program Multiple Data

Results*

threads 1st
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default
optimization level (O2) on Apple OS X
10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and
4 Gbyte DDR3 memory at 1.333 Ghz.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

35

36

SPMD: Single Program Multiple Data
• Run the same program on P processing elements where P can be arbitrarily large.

MPI programs almost always use this pattern … it is probably the
most commonly used pattern in the history of parallel programming.

• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared
data structures.

Replicate the program.

Add glue code

Break up the data

How do we describe performance
in parallel programs

37

38

Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent tasks on one processor

Ideally Cut
runtime by ~1/P
(Note: Parallelism
only speeds-up the
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results

Talking about performance

§Speedup: the increased performance
from running on P processors.

)(
)1(

)(
PTime

Time
PS

par

seq=

PPS =)(
n Perfect Linear Speedup: happens when

no parallel overhead and algorithm is
100% parallel.

n Efficiency: How well does your observed
speedup compare to the ideal case? 𝜀(𝑃) =

𝑆(𝑃)
𝑃

Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?

• Approximate the runtime as a part that can be sped up with additional processors and a
part that is fundamentally serial.

seqpar Time
P
fractionparallelfractionserialPTime *)__()(+=

• If you had an unlimited number of processors:

• If the serial fraction is a and the parallel fraction is (1- a) then the speedup is:

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

¥®P

• The maximum possible speedup is:
a
1

=S Amdahl’s
Law

Amdahl’s Law … It’s not just about the maximum speedup

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p

Number of Processors

Parallelizable fraction of the program

0.999 0.99 0.95 0.9

So now you should understand my silly introduction slide.

42

We measure our success as parallel
programmers by how close we come
to ideal linear speedup.

A good parallel programmer
always figures out when you
fall off the linear speedup
curve and why that has
occurred.

…. Now that we know how to describe
performance for parallel computations,

lets get back to OpenMP

43

Internal control variables and how to control the
number of threads in a team

• We’ve used the following construct to control the number of threads. (e.g. to request 12 threads):
– omp_set_num_threads(12)

• What does omp_set_num_threads() actually do?
– It resets an “internal control variable” the system queries to select the default number of threads to

request on subsequent parallel constructs.

• Is there an easier way to change this internal control variable … perhaps one that doesn’t require
re-compilation? Yes.
– When an OpenMP program starts up, it queries an environment variable OMP_NUM_THREADS and

sets the appropriate internal control variable to the value of OMP_NUM_THREADS
– For example, to set the initial, default number of threads to request in OpenMP from my apple laptop

> export OMP_NUM_THREADS=12

44

45

Exercise
• Go back to your parallel pi program and explore how well it scales with the number

of threads.
• Can you explain your performance with Amdahl’s law? If not what else might be

going on?

– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();
–export OMP_NUM_THREADS = N

An environment variable
to set the default number
of threads to request to N

Results*

threads 1st
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default
optimization level (O2) on Apple OS X
10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and
4 Gbyte DDR3 memory at 1.333 Ghz.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

46

47

Why Such Poor Scaling? False Sharing
• If independent data elements happen to sit on the same cache line, each update will cause the

cache lines to “slosh back and forth” between threads … This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program, the array elements are
contiguous in memory and hence share cache lines … Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

48

#include <omp.h>
 static long num_steps = 100000; double step;
 #define NUM_THREADS 2
 #define PAD 8 // assume 64 byte L1 cache line size
 void main ()
 { int i, nthreads; double pi, sum[NUM_THREADS][PAD] ;
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id,nthrds;
 double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;
 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id][0] += 4.0/(1.0+x*x);
 }
 }
 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;
 }

Pad the array so each
sum value is in a

different cache line

Example: Eliminate false sharing by padding the sum array

Results*: PI Program, Padded Accumulator
• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

*Intel compiler (icpc) with default
optimization level (O2) on Apple OS
X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor
at 1.7 Ghz and 4 Gbyte DDR3
memory at 1.333 Ghz.

49

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
!'(;"#()GCD)H II)311&,()JK):L2(M7)3/()%"#()1"N(
O+"'),3"#)PQ
R))))"#2)"S)#2/T(3'19))'+&:%()-"S)1&,U<=>5?@ABCDEVUGCDV 9
12(-)6)7.8IP'+&:%(Q)#&,512(-19
+,-51(25#&,52/T(3'1P<=>5?@ABCDEQ9
!-T34,3)+,- -3T3%%(%
R
"#2)"S)"'S#2/T'19
'+&:%()W9
"')6)+,-54(252/T(3'5#&,PQ9
#2/T'1 6)+,-54(25#&,52/T(3'1PQ9
";)P"')66)8Q)))#2/T(3'1 6)#2/T'19
;+T)P"6"'S)1&,U"'V68.89"*)#&,512(-19)"6"X#2/T'1Q)R
W)6)P"X8.YQZ12(-9
1&,U"'VU8V)X6)K.8IP7.8XWZWQ9

[
[
;+TP"68S)-"68.89"*#2/T(3'19"XXQ-")X6)1&,U"VU8V)Z)12(-9

[

Amdahl’s Law suggests parallel computing is
of limited value.

Oh wait … what if the problem size grows with
the number of processors?

50

What if the problem size grows
• Consider dense linear algebra problems.
• A key feature of many of these operations between matrices (such as LU

factorization or matrix multiplication) … work scales as the cube of the order
of the matrix.

• Assume we can parallelize the linear algebra operation (O(N3)) but not the
loading of the matrices from memory (O(N2)). How does the serial fraction
vary with matrix order (assume loading from memory is much slower than a
floating point op).

What would plots of runtime vs. problem size look like
for the N squared and N cubed terms?

What would plots of serial fraction vs. problem size look
like for the N squared and N cubed terms?

What if the problem size grows
• Consider dense linear algebra problems.
• A key feature of many of these operations between matrices (such as LU factorization or matrix

multiplication) … work scales as the cube of the order of the matrix.
• Assume we can parallelize the linear algebra operation (O(N3)) but not the loading of the matrices from

memory (O(N2)). How does the serial fraction vary with matrix order (assume loading from memory is
much slower than a floating point op).

0

100000

200000

300000

400000

500000

600000

700000

0 20 40 60 80

O(N^2)

O(N^3)
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

Runtime vs.
matrix order Serial fraction

vs. matrix order

What if the problem size grows
• Consider dense linear algebra problems.
• A key feature of many of these operations between matrices (such as LU factorization or matrix

multiplication) … work scales as the cube of the order of the matrix.
• Assume we can parallelize the linear algebra operation (O(N3)) but not the loading of the matrices from

memory (O(N2)). How does the serial fraction vary with matrix order (assume loading from memory is
much slower than a floating point op).

-1E+09

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

0 500 1000 1500 2000

O(N^2)

O(N^3)

Runtime vs.
matrix order

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Serial fraction vs.
matrix order

For much larger Matrix orders …

Weak Scaling: a response to Amdhal
• An impactful paper from a team at Sandia National Labs in 1988 pointed out that for many

problems the serial fraction as a function of the problem size, 𝛼(N), decreases as N increases:

§ In other words … if parallelizable computations asymptotically dominate the runtime, then you can
increase a problem size until limitations due to Amdahl’s law can be ignored. This is an easier
form of scalability for a programmer to meet … so its called “weak scaling”:
§ Weak Scaling: Performance of an application when the problem size increases with the number of

processors (fixed size problem per node)

0)(lim
arg

=
®

N
elNN
a

PNPS el ®),(arg

)1(*))(1)((

)1(
),(

seq

seq

T
P
NN

T
NPS aa -

+
=

"Development of parallel methods for a 1024-processor hypercube”, John L. Gustafson, Gary R. Montry, and Robert E. Benner, SIAM Journal of Scientific and Statistical
Computing, Volume 9, Number 4, pages 609-638, 1988, DOI = "https://doi.org/10.1137/0909041

https://doi.org/10.1137/0909041

Example of weak scaling

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

A time dependent Quantum
simulation of helium atoms with
20 grid units per processing
element.

IBM Blue Gene P,
0.85 GHz, PowerPC 450,
4-core processors

Ex
ec

ut
io

n
tim

e
(s

ec
s)

Cores

Example of weak scaling

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

Ex
ec

ut
io

n
tim

e
(s

ec
s)

Cores

What does scaling look on the
time vs. cores plot when you
have ideal weak scaling?

A time dependent Quantum
simulation of helium atoms with
20 grid units per processing
element.

IBM Blue Gene P,
0.85 GHz, PowerPC 450,
4-core processors

Example of weak scaling

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

Ex
ec

ut
io

n
tim

e
(s

ec
s)

Cores

For a “perfectly scalable”
application, the trend line for
weak scaling should be flat.

A time dependent Quantum
simulation of helium atoms with
20 grid units per processing
element.

IBM Blue Gene P,
0.85 GHz, PowerPC 450,
4-core processors

58

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

59

Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order
constraints and to protect access to shared data

60

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 B = big_SPMD_job(id, nthrds);

 #pragma omp critical
 res += consume (B);

}

Threads wait their turn
– only one thread at a
time calls consume()

61

Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it is an executable

statement.

double Arr[8], Brr[8]; int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{ int id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id==0) numthrds = nthrds;

 Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier
 Brr[id] = really_big_and_ugly(id, nthrds, Arr);
}

Threads wait until all
threads hit the barrier.
Then they can go on.

62

Exercise
• In your first Pi program, you probably used an array to create space for each thread to store its partial

sum.
• If array elements happen to share a cache line, this leads to false sharing.

– Non-shared data in the same cache line so each update invalidates the cache line … in essence
“sloshing independent data” back and forth between threads.

• Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma parallel
#pragma critical

PI Program with False Sharing

*Intel compiler (icpc) with no
optimization on Apple OS X 10.7.3
with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz
and 4 Gbyte DDR3 memory at 1.333
Ghz.

threads 1st
SPMD

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an array made
the coding easy, but led to false sharing and
poor performance.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

64

#include <omp.h>
 static long num_steps = 100000; double step;
 #define NUM_THREADS 2
 void main ()
 { int nthreads; double pi=0.0; step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;
 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 #pragma omp critical
 pi += sum * step;
 }
 }

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel region …
so you must sum it in here. Must protect summation
into pi in a critical region so updates don’t conflict

No array, so no false sharing.

Create a scalar local to each
thread to accumulate partial sums.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))"#2)#2/K(3'19)'+&:%())-"68.89 12(-)6)7.8LH'+&:%(I)#&,512(-19
+,-51(25#&,52/K(3'1H<=>5?@ABCDEI9
!-K34,3)+,- -3K3%%(%
J
"#2)"M)"'M)#2/K'19))))'+&:%()NM)1&,9
"')6)+,-54(252/K(3'5#&,HI9
#2/K'1 6)+,-54(25#&,52/K(3'1HI9
";)H"')66)8I)))#2/K(3'1 6)#2/K'19)))
;+K)H"6"'M)1&,68.89"*)#&,512(-19)"6"O#2/K'1I)J
N)6)H"O8.PIQ12(-9
1&,)O6)R.8LH7.8ONQNI9

S
!-K34,3)+,- $K"2"$3%

-")O6)1&,)Q)12(-9
S
S

Results*: pi program critical section

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3
with a dual core (four HW thread) Intel® CoreTM i5 processor at
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53

65

66

#include <omp.h>
 static long num_steps = 100000; double step, sum;
 #define NUM_THREADS 2
 void main ()
 { int nthreads; double pi=0.0; step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id, nthrds; double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;
 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 #pragma omp critical
 sum += 4.0/(1.0+x*x);
 }
 }
 }

Example: Using a critical section to remove impact of false sharing

What would happen if you put the
critical section inside the loop?

67

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

68

The Loop Worksharing Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{
#pragma omp for
 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the

parallel loop before any proceed
past the end of the loop

69

Loop Worksharing Construct
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * (N / Nthrds);
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}
}

#pragma omp parallel
#pragma omp for
 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel region

(SPMD Pattern)

OpenMP parallel region and
a worksharing for construct

70

Combined Parallel/Worksharing Construct

• OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

71

Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in any order without

loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
 j = 5;
 for (i=0;i< MAX; i++) {
 j +=2;
 A[i] = big(j);
 }

int i, A[MAX];
 #pragma omp parallel for
 for (i=0;i< MAX; i++) {
 int j = 5 + 2*(i+1);
 A[i] = big(j);
 } Remove loop

carried
dependence

Note: loop index
“i” is private by
default

72

Reduction

• We are combining values into a single accumulation variable (ave) … there is a true dependence
between loop iterations that can’t be trivially removed.

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming environments.

double ave=0.0, A[MAX];
 int i;
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

• How do we handle this case?

73

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.

double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

74

OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions
and array-sections as reduction variables

(we just don’t cover those topics here)

75

Exercise: PI with loops

• Go back to the serial pi program and parallelize it with a loop construct
• Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

76

Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)
 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 pi = step * sum;
}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum.
Note … the loop index is
local to a thread by default.

77

Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{
 double pi, sum = 0.0;
 step = 1.0/(double) num_steps;

 #pragma omp parallel for reduction(+:sum)
 for (int i=0;i< num_steps; i++){
 double x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

Using modern C style, we
put declarations close to
where they are used …
which lets me use the
parallel for construct.

Results*: PI with a loop and a reduction

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68

78

79

The nowait clause
• Barriers are really expensive. You need to understand when they are implied

and how to skip them when it’s safe to do so.
double A[big], B[big], C[big];

#pragma omp parallel
{
 int id=omp_get_thread_num();
 A[id] = big_calc1(id);
#pragma omp barrier
#pragma omp for
 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait
 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc4(id);
}

implicit barrier at the end
of a parallel region

implicit barrier at the end of a for
worksharing construct

no implicit barrier
due to nowait

…. Let’s pause a moment and consider
one of the fundamental issues EVERY
parallel programmer must grapple with

80

81

Load Balancing
• A parallel job isn’t done until the last thread is finished

• Example: Partition a problem into equal sized chunks
but for work that is unevenly distributed spatially.
– Thread 2 has MUCH more work. The uneven distribution of work

will limit performance.

• A key part of parallel programming is to design how you
partition the work between threads so every thread has
about the same amount of work. This topic is referred to
as Load Balancing.

0 1 2 3 4
Thread IDs … box height ∝ amount of work

82

Load Balancing
• A parallel job isn’t done until the last thread is finished

• The work in our problem is unevenly distributed spatially.

• A key part of parallel programming is to design how you
partition the work between threads so every thread has
about the same amount of work.

• This topic is referred to as Load Balancing.

• In this case we adjusted the size of each chunk to
equalize the work assigned to each thread.
– Getting the right sized chunks for a variable partitioning (as done

here) can be really difficult. 0 1 2 3 4
Thread IDs … box height ∝ amount of work

83

Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic

distribution)
– The work is spread out and statistically, you are likely to get a good

distribution of work

0
1
2
3

Colors mapped to 4 different Threads

84

Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic

distribution)
– The work is spread out and statistically, you are likely to get a good

distribution of work

• Vocabulary review
– Load Balancing … giving each thread work sized so all threads

take the same amount of time
– Partitioning or decomposition … breaking up the problem

domain into partitions (or chunks) and assigning different partitions
to different threads.

– Granularity … the size of the block of work. Find grained (small
chunks) vs coarse grained (large chunks)

– Over-decomposition … when you decompose your problem into
partitions such that there are many more partitions than threads to
do the work

0
1
2
3

Colors mapped to 4 different Threads

85

Loop Worksharing Constructs: The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable

by the programmer

DYNAMIC Unpredictable, highly variable
work per iteration

Least work at runtime :
scheduling done at
compile-time

Most work at runtime :
complex scheduling
logic used at run-time

86

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

87

Data Environment: Default storage attributes

• Shared memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called from parallel

regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

88

double A[10];
 int main() {
 int index[10];
 #pragma omp parallel
 work(index);
 printf(“%d\n”, index[0]);
 }

extern double A[10];
void work(int *index) {
 double temp[10];
 static int count;
 ...
}

Data Sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

89

Data Sharing: Changing storage attributes

• One can selectively change storage attributes for constructs using the
following clauses (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
–firstprivate(list)

• These can be used on parallel and for constructs … other than shared
which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used

on parallel constructs

90

Data Sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
 int i, j;
 double A[N][N], B[N][N], C[N][N];
 init_arrays(N, *A, *B, *C);

 #pragma omp parallel for private(j)
 for (i = 0; i < 1000; i++)
 for(j = 0; j<1000; j++)
 C[i][j] = A[i][j] + B[i][j];
}

• private(var) creates a new local copy of var for each thread.

OpenMP makes the loop
control index on the
parallel loop (i) private by
default … but not for the
second loop (j)

91

Data Sharing: Private clause

void wrong() {
 int tmp = 0;
#pragma omp parallel for private(tmp)
 for (int j = 0; j < 1000; ++j)
 tmp += j;
 printf(“%d\n”, tmp);
}

• private(var) creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is 0 here

When you need
to refer to the

variable tmp that
exists prior to the
construct, we call

it the original
variable.

Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed

92

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {
 if ((i%2)==0) incr++;
 A[i] = incr;
}

Each thread gets its own copy of
incr with an initial value of 0

92

93

Data sharing:
A data environment test
• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?
• What are their initial values inside and values after the parallel region?

variables: A = 1,B = 1, C = 1
#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...
l “A” is shared by all threads; equals 1
l “B” and “C” are private to each thread.

– B’s initial value is undefined
– C’s initial value equals 1

Following the parallel region ...
l B and C revert to their original values of 1
l A is either 1 or the value it was set to inside the parallel region

94

Exercise: Mandelbrot set area

• The supplied program (mandel.c)
computes the area of a Mandelbrot set.

• The program has been parallelized with
OpenMP, but we were lazy and didn’t do it
right.

• Find and fix the errors.

• Once you have a working version, try to
optimize the program.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set … The points, c, for which the
following iterative map converges

𝑧!"# = 𝑧!$ + 𝑐

With zn and c as complex numbers and z0 = 0.

The Mandelbrot Set Area Program
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
 int i, j;
 int num=0;
 double C_real, C_imag;
 double area, error, eps = 1.0e-5;
#pragma omp parallel for private(j, C_real, C_imag)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(C_real, C_imag);
 }
 }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
 error=area/(double)NPOINTS;
}

95

void testpoint(double C_real, double C_imag){
 double zr, zi;
 int iter;
 double temp;

 zr=C_real; zi=C_imag;
 int numoutside = 0;
 for (iter=0; iter<MXITR; iter++){
 temp = (zr*zr)-(zi*zi)+C_real;
 zi = zr*zi*2+C_imag;
 zr = temp;
 if ((zr*zr+zi*zi)>4.0) {
 #pragma omp critical
 numoutside++;
 }
 }
 return 0;
}

• eps was not initialized
• Protect updates of numoutside

96

Data Sharing: Private and the original variable

int tmp;
void danger() {
 tmp = 0;
#pragma omp parallel private(tmp)
 work();
 printf(“%d\n”, tmp);
}

• The original variable’s value is unspecified if it is referenced outside of the
construct

– Implementations may reference the original variable or a copy ….. a dangerous
programming practice!

– For example, consider what would happen if the compiler inlined work()?

extern int tmp;
void work() {
 tmp = 5;
}

unspecified which
copy of tmptmp has unspecified value

97

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

98

Memory Models …

l Multiple copies of a variable (such as 𝛾) may be present at various levels of cache, or in registers and
they may ALL have different values.

l So which value of 𝛾 is the one a thread should see at any point in a computation?

l Programming models for Multithreading support shared memory.
l All threads share an address space … but consider the variable 𝛾

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

99

Memory Models …

l Multiple copies of a variable (such as 𝛾) may be present at various levels of cache, or in registers and
they may ALL have different values.

l So which value of 𝛾 is the one a thread should see at any point in a computation?

l Programming models for Multithreading support shared memory.
l All threads share an address space … but consider the variable 𝛾

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A memory
consistency model

(or “memory model”
for short) provides
the rules needed to

answer this question.

100

OpenMP and Relaxed Consistency

• Most (if not all) multithreading programming models (including OpenMP) supports
a relaxed-consistency memory model
– Threads can maintain a temporary view of shared memory that is not consistent with that of

other threads

– These temporary views are made consistent only at certain points in the program

– The operation that enforces consistency is called the flush operation*

*Note: in OpenMP 5.0 the name for the flush described here was changed to a ”strong flush”. This was done so we could
distinguish the traditional OpenMP flush (the strong flush) from the new synchronizing flushes (acquire flush and release flush).

101

Flush Operation

• Defines a sequence point at which a thread is guaranteed to see a consistent
view of memory*
– Previous read/writes by this thread have completed and are visible to other threads
– No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory APIs

* This applies to the set of shared variables visible to a thread at the point the flush is encountered. We call this “the flush set”

102

Flush Example

l Flush forces data to be updated in memory so other threads see the most
recent value*

double A;

A = compute();

#pragma omp flush(A)

 // flush to memory to make sure other
 // threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

* If you pass a list of variables to the flush directive, then that list is “the flush set”

103

What is the BIG DEAL with Flush?

• Compilers routinely reorder instructions implementing a program
– Can better exploit the functional units, keep the machine busy, hide memory latencies, etc.

• Compilers generally cannot move instructions:
– Past a barrier
– Past a flush on all variables

• But it can move them past a flush with a list of variables so long as those variables
are not accessed

• Keeping track of consistency when flushes are used can be confusing …
especially if “flush(list)” is used.

Warning: the flush operation (a strong flush) does not actually synchronize different threads. It
just ensures that a thread’s variables are made consistent with main memory

104

Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
….
(but not on entry to worksharing regions)

WARNING:
If you find your self wanting to write code with explicit flushes, stop and get help. It is very

difficult to manage flushes on your own. Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where
you really need them.

105

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

106

Irregular Parallelism
• Let’s call a problem “irregular” when one or both of the following hold:

– Data Structures are sparse or involve indirect memory references
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in parallel using OpenMP
is difficult.

p = listhead ;
while (p) {
 process(p);
 p=p->next;
}

What are Tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the work of each
task.
– The thread that encounters the task construct may execute

the task immediately.
– The threads may defer execution until later

Serial Parallel

107

What are Tasks?

• The task construct includes a structured block of code

• Inside a parallel region, a thread encountering a task
construct will package up the code block and its data
for execution

• Tasks can be nested: i.e., a task may itself generate
tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the
other threads wait at a barrier and execute the tasks

108

109

Single Worksharing Construct

• The single construct denotes a block of code that is executed by only one thread
(not necessarily the primary* thread).

• A barrier is implied at the end of the single block (can remove the barrier with a
nowait clause).

#pragma omp parallel
{
 do_many_things();
 #pragma omp single
 { exchange_boundaries(); }
 do_many_other_things();

}

*This used to be called the “master thread”. The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.

Task Directive

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp task
 billy();
 }
}

One Thread
packages tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

 structured-block

110

Data Scoping with Tasks
• Variables can be shared, private or firstprivate with respect to task

• These concepts are a little bit different compared with threads:
– If a variable is shared on a task construct, the references to it inside the construct

are to the storage with that name at the point where the task was encountered

– If a variable is private on a task construct, the references to it inside the construct
are to new uninitialized storage that is created when the task is executed

– If a variable is firstprivate on a construct, the references to it inside the construct are
to new storage that is created and initialized with the value of the existing storage of
that name when the task is encountered

111 111

112

Data Scoping Defaults
• The behavior you want for tasks is usually firstprivate, because the task may not be

executed until later (and variables may have gone out of scope)
– Variables that are private when the task construct is encountered are firstprivate by default

• Variables that are shared in all constructs starting from the innermost enclosing parallel
construct are shared by default

#pragma omp parallel shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

112

113

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main(). You
don’t need to make any changes to the “list functions”

114

Parallel Linked List Traversal
#pragma omp parallel
{
 #pragma omp single
 {
 p = listhead ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p);
 }
 p=next (p) ;
 }
 }
}

makes a copy of p
when the task is
packaged

Only one thread
packages tasks

114

115

When/Where are Tasks Complete?
• At thread barriers (explicit or implicit)

– all tasks generated inside a region must complete at the next barrier encountered by the threads
in that region. Common examples:
– Tasks generated inside a single construct: all tasks complete before exiting the barrier on the

single.
– Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of

the parallel region.

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to “descendants” .

115

Example

116

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp taskwait
 #pragma omp task
 billy();
 }
}

fred() and daisy()
must complete before
billy() starts, but
this does not include
tasks created inside
fred() and daisy()

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

116

Example

117

#pragma omp parallel
{
 #pragma omp single nowait
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp taskwait
 #pragma omp task
 billy();
 }
}

The barrier at the end of the
single is expensive and not
needed since you get the
barrier at the end of the
parallel region. So use
nowait to turn it off.

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

117

Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(2n) recursive
implementation!

int fib (int n)
{
 int x,y;
 if (n < 2) return n;

 x = fib(n-1);
 y = fib (n-2);
 return (x+y);
}

int main()
{
 int NW = 5000;
 fib(NW);
}

118

Parallel Fibonacci

119

• Binary tree of tasks

• Traversed using a recursive
function

• A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

• x,y are local, and so by default
they are private to current task

– must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;
 if (n < 2) return n;

#pragma omp task shared(x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib (n-2);
#pragma omp taskwait
 return (x+y);
}

Int main()
{ int NW = 5000;
 #pragma omp parallel
 {
 #pragma omp single
 fib(NW);
 }
} 119

Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be
solved directly

n 3 Options for parallelism:
¨ Do work as you split

into sub-problems
¨ Do work only at the

leaves
¨ Do work as you

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve

120

121

Using Tasks

• Don’t use tasks for things already well supported by OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the number

and granularity of tasks

121

122

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

Concurrency vs. Parallelism
• Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled

fairly, they can be described as logically making forward progress at the same time.

• Parallelism: A condition of a system in which multiple tasks are actually making forward progress at
the same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element

For hardware … parallelism is the path to performance

CPU + SIMD/Vector

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

You now understand
Multithreading with

OpenMP

125

Execution model: Fork-Join parallelism

The essential pattern for multithreaded shared-memory systems (e.g., OpenMP and TBB):
uPrimary thread spawns a team of threads as needed. They execute concurrently within a shared

address space and with fair scheduling.
uParallelism added incrementally until performance goals are met, i.e., the sequential program

evolves into a parallel program.

Primary
Thread
in red

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

126

There is Much More to OpenMP than the Common Core

• Synchronization mechanisms
– locks, synchronizing flushes and several forms of atomic

• Data environment
– lastprivate, threadprivate, default(private|shared)

• Fine grained task control
– dependencies, tied vs. untied tasks, task groups, task loops …

• Vectorization constructs
– simd, uniform, simdlen, inbranch vs. nobranch, ….

• Map work onto an attached device (such as a GPU)
– target, teams distribute parallel for, target data …

• … and much more. The OpenMP 5.2 specification is almost 600 pages!!!

127

Don’t become overwhelmed. Master the common core and move on to other
constructs when you encounter problems that require them.

For hardware … parallelism is the path to performance

CPU + SIMD/Vector

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

OpenMP doesn’t mesh
well with modern C++
programming style.

So next, we will explore
multithreading with a
C++ oriented model

called Threaded Building
Blocks (TBB)

For hardware … parallelism is the path to performance

CPU + SIMD/Vector

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

Tomorrow, we’ll
cover

programming a
GPU with

CUDA

Execution model: The SIMT model (Single Instruction Multiple Thread*)

130

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c), fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

1. The code (a kernel) defines a scalar
work-item (or CUDA thread)

2. Map work-items onto an
N dim index space.

4. Run on hardware designed
around the same SIMT

execution model

3. Map data structures
onto the same index

space

This is CUDA code … the sort of code
an OpenMP compiler generates on your
behalf. This same approach is used in

OpenCL as well.

* SIMT is an NVIDIA/CUDA marketing term that has become standard usage so we are stuck with it. The problem is that the term CUDA thread (more properly, a
work-item) conflicts with the older usage of “thread from the Operating Systems community. This is yet another example of confusing jargon in computer science.

• SIMT is the core model of all GPU programming models (CUDA, OpenCL, SYCL, OpenMP, and OpenACC)

For hardware … parallelism is the path to performance

CPU + SIMD/Vector

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

Then we will close
ESC23 by exploring
cluster computing

with MPI

Execution Model: Communicating Sequential Processes (CSP)
• A collection of processes are launched when the program begins to execute.

• The processes interact through explicit communication events. All aspects of coordinating the processes (i.e.
synchronization) are expressed in terms of communication events.

• The CSP model does not interact with any concurrency issues inside a process … to the CSP model, they
processes appear to be sequential.

132

• Message passing systems are the class of APIs used
to express CSP execution models.

• MPI is the dominant message passing library … has
been since the mid 1990’s.

• MPI has been extended to go well beyond CSP, but
frankly few applications developers use those
features.

The 3 fundamental execution models of parallel programming
• Parallel computing can seem overwhelming …

but for most cases in scientific computing, there
are only three execution models you need to
keep in mind.

– Fork join for multithreading
– Concurrent threads, fairly scheduled running in a

shared address space.

– SIMT for programming GPUs
– Kernel instances (threads or work-items) mapped onto

an index space that execute in blocks (thread-blocks or
work-groups). The blocks are concurrent but enqueued
for execution (i.e. they are not fairly scheduled).

– CSP for cluster computing
– Processes that interact by communicating distinct

messages. They do not have a shard, hardware
managed address space.

133

Fork Join

CSP

SIMT

134

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

135

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main(). You
don’t need to make any changes to the “list functions”

136

Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works. Think about the
computation you want to do at the leaves. If you go all the way down to one
iteration per leaf-node, won’t you just swamp the system with tasks?

137

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

138

OpenMP Organizations

• OpenMP Architecture Review Board (ARB) URL, the “owner” of the OpenMP
specification:

www.openmp.org

• OpenMP User’s Group (cOMPunity) URL:
www.compunity.org

Get involved, join the ARB and cOMPunity.

Help define the future of OpenMP

Resources
• www.openmp.org has a wealth of helpful resources

139

Including a
comprehensiv
e collection of
examples of

code using the
OpenMP

constructs

http://www.openmp.org/

To learn OpenMP:
• An exciting new book that Covers the

Common Core of OpenMP plus a few key
features beyond the common core that
people frequently use

• It’s geared towards people learning
OpenMP, but as one commentator put it
… everyone at any skill level should
read the memory model chapters.

• Available from MIT Press

140www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/

Books about OpenMP

141

A great book that covers
OpenMP features beyond

the common core

Books about OpenMP

142

The latest book on OpenMP …

Comes out in early November 2023.

A book about how to use OpenMP to
program a GPU.

143

Background references

l A book about how to “think
parallel” with examples in
OpenMP, MPI and java

A great book that explores key
patterns with Cilk, TBB,
OpenCL, and OpenMP (by
McCool, Robison, and Reinders)

144

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

145

The Loop Worksharing Constructs

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{
#pragma omp for
 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

146

Loop Worksharing Constructs: The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.
– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks
down to size “chunk” as the calculation proceeds.

– schedule(runtime)
– Schedule and chunk size taken from the OMP_SCHEDULE environment variable (or the

runtime library) … vary schedule without a recompile!
– Schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.

147

Schedule Clause When To Use

STATIC Pre-determined and predictable by the
programmer

DYNAMIC Unpredictable, highly variable work per
iteration

GUIDED Special case of dynamic to reduce
scheduling overhead

AUTO When the runtime can “learn” from
previous executions of the same loop

Loop Worksharing Constructs: The schedule clause

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
 for (int j=0; j<M; j++) {

 }
}

148

Nested Loops

• Will form a single loop of length NxM and then parallelize that.
• Useful if N is O(no. of threads) so parallelizing the outer loop makes

balancing the load difficult.

Number of loops
to be
parallelized,
counting from
the outside

• For perfectly nested rectangular loops we can parallelize multiple loops
in the nest with the collapse clause:

149

Sections Worksharing Construct
• The Sections worksharing construct gives a different structured block to each thread.

#pragma omp parallel
{

 #pragma omp sections
 {
 #pragma omp section
 x_calculation();
 #pragma omp section
 y_calculation();
 #pragma omp section
 z_calculation();
 }

}

By default, there is a barrier at the end of the “omp sections”. Use the “nowait” clause to turn off the barrier.

Array Sections with Reduce
#include <stdio.h>
#define N 100
void init(int n, float (*b)[N]);
int main(){
int i,j; float a[N], b[N][N]; init(N,b);
for(i=0; i<N; i++) a[i]=0.0e0;

#pragma omp parallel for reduction(+:a[0:N]) private(j)
for(i=0; i<N; i++){
 for(j=0; j<N; j++){
 a[j] += b[i][j];
 }
}
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]);
return 0;

150

Works the same as any other reduce … a
private array is formed for each thread,
element wise combination across threads
and then with original array at the end

Exercise
• Go back to your parallel mandel.c program.
• Using what we’ve learned in this block of slides can you improve the runtime?

151

Optimizing mandel.c
 wtime = omp_get_wtime();

#pragma omp parallel for collapse(2) schedule(runtime) firstprivate(eps) private(j,c)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(c);
 }
 }
 wtime = omp_get_wtime() - wtime;

152

$ export OMP_SCHEDULE=“dynamic,100”
$./mandel_par

default schedule 0.48 secs
schedule(dynamic,100) 0.39 secs
collapse(2) schedule(dynamic,100) 0.34 secs

Four threads on a dual core Apple laptop (Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory)
and the gcc version 9.1. Times are the minimum time from three runs

153

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

154

Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order constraints
between threads and to protect access to shared data

Covered in this section

Covered earlier

155

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a memory
location (the update of X in the following example)

#pragma omp parallel

{
 double tmp, B;

 B = DOIT();

 #pragma omp atomic
 X += big_ugly(B);

}

#pragma omp parallel

{
 double B;

 B = DOIT();

 #pragma omp atomic
 X += big_ugly(B);

}

156

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a
memory location (the update of X in the following example)

#pragma omp parallel

{
 double B, tmp;

 B = DOIT();

 tmp = big_ugly(B);

 #pragma omp atomic
 X += tmp;

}

Atomic only protects the
read/update of X

The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios where you need to protect a

memory operation so it occurs atomically:
 # pragma omp atomic [read | write | update | capture]

157

• Atomic can protect loads
 # pragma omp atomic read
 v = x;

• Atomic can protect stores
 # pragma omp atomic write
 x = expr;

• Atomic can protect updates to a storage location (this is the default behavior … i.e. when you don’t
provide a clause)
 # pragma omp atomic update
 x++; or ++x; or x--; or –x; or
 x binop= expr; or x = x binop expr;

This is the
original OpenMP

atomic

The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an associated update operation:

 # pragma omp atomic capture
 statement or structured block

158

• Where the statement is one of the following forms:
 v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

• Where the structured block is one of the following forms:
 {v = x; x binop = expr;} {x binop = expr; v = x;}

{v=x; x=x binop expr;} {X = x binop expr; v = x;}
{v = x; x++;} {v=x; ++x:}
{++x; v=x:} {x++; v = x;}
{v = x; x--;} {v= x; --x;}
{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware
supported atomic operations and to support modern lock free algorithms

159

Synchronization: Lock Routines
• Simple Lock routines:

– A simple lock is available if it is unset.
– omp_init_lock(), omp_set_lock(),

omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned by the thread

executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(), omp_unset_nest_lock(),

omp_test_nest_lock(), omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock,
so you don’t need to use a flush on the lock variable.

A lock implies a memory
fence (a “flush”) of all
thread visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on
intended use (e.g. contended, uncontended, speculative, unspeculative)

 int i, ix, even_count = 0, odd_count = 0;
 omp_lock_t odd_lck, even_lck;
 omp_init_lock(&odd_lck);
 omp_init_lock(&even_lck);

 #pragma omp parallel for private(ix) shared(even_count, odd_count)
 for(i=0; i<N; i++){
 ix = (int) x[i]; //truncate to int

 if(((int) x[i])%2 == 0) {
 omp_set_lock(&even_lck);
 even_count++;

 omp_unset_lock(&even_lck);
 }
 else{

 omp_set_lock(&odd_lck);
 odd_count++;

 omp_unset_lock(&odd_lck);
 }
 }
 omp_destroy_lock(&odd_lck);
 omp_destroy_lock(&even_lck);

}
160

Synchronization: Simple Locks Example
• Count odds and evens in an input array(x) of N random values.

Free-up storage when done.

One lock per case … even and odd

Enforce mutual exclusion updates,
but in parallel for each case.

Exercise
• In the file hist.c, we provide a program that generates a large array of random numbers

and then generates a histogram of values.

• This is a ”quick and informal” way to test a random number generator … if all goes well
the bins of the histogram should be the same size.

• Parallelize the filling of the histogram You must assure that your program is race free
and gets the same result as the sequential program.

• Using everything we’ve covered today, manage updates to shared data in two different
ways. Try to minimize the time to generate the histogram.

• Time ONLY the assignment to the histogram. Can you beat the sequential time?

161

162

Histogram Program: Critical section

• A critical section means that only one thread at a time can update a histogram bin …
but this effectively serializes the loops and adds huge overhead as the runtime
manages all the threads waiting for their turn for the update.

#pragma omp parallel for
 for(i=0;i<NVALS;i++){
 ival = (int) x[i];
 #pragma omp critical
 hist[ival]++;
}

Easy to write and
correct, but terrible
performance

163

Histogram program: one lock per histogram bin
• Example: conflicts are rare, but to play it safe, we must assure mutual exclusion for

updates to histogram elements.

#pragma omp parallel for
 for(i=0;i<NBUCKETS; i++){
 omp_init_lock(&hist_locks[i]); hist[i] = 0;
 }
 #pragma omp parallel for
 for(i=0;i<NVALS;i++){
 ival = (int) x[i];
 omp_set_lock(&hist_locks[ival]);
 hist[ival]++;
 omp_unset_lock(&hist_locks[ival]);
 }

 #pragma omp parallel for
for(i=0;i<NBUCKETS; i++)
 omp_destroy_lock(&hist_locks[i]); Free-up storage when done.

One lock per element of hist

Enforce mutual
exclusion on update
to hist array

164

Histogram program: reduction with an array

• We can give each thread a copy of the histogram, they can fill them in parallel, and
then combine them when done

#pragma omp parallel for reduction(+:hist[0:Nbins])
 for(i=0;i<NVALS;i++){
 ival = (int) x[i];
 hist[ival]++;
}

Easy to write and correct, Uses a lot of
memory on the stack, but its fast …
sometimes faster than the serial method.

sequential 0.0019 secs
critical 0.079 secs
Locks per bin 0.029 secs
Reduction, replicated histogram array 0.00097 secs

1000000 random values in X sorted into 50 bins. Four threads on a dual core Apple laptop
(Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) and the gcc version 9.1. Times are
for the above loop only (we do not time set-up for locks, destruction of locks or anything else)

165

Sometimes when working with multiple interacting locks, you have
to pay attention to the locking orders

Lock Example from Gafort (SpecOMP’2001)

• Genetic algorithm in Fortran
• Most “interesting” loop: shuffle the population.

– Original loop is not parallel; performs pair-wise swap of an array element with
another, randomly selected element. There are 40,000 elements.

– Parallelization idea:
– Perform the swaps in parallel
– Need to prevent simultaneous access to same array element: use one lock per array

element à 40,000 locks.

169

!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id)
 my_cpu_id = 1
!$ my_cpu_id = omp_get_thread_num() + 1
!$OMP DO
 DO j=1,npopsiz-1
 CALL ran3(1,rand,my_cpu_id,0)
 iother=j+1+DINT(DBLE(npopsiz-j)*rand)
!$ IF (j < iother) THEN
!$ CALL omp_set_lock(lck(j))
!$ CALL omp_set_lock(lck(iother))
!$ ELSE
!$ CALL omp_set_lock(lck(iother))
!$ CALL omp_set_lock(lck(j))
!$ END IF
 itemp(1:nchrome)=iparent(1:nchrome,iother)
 iparent(1:nchrome,iother)=iparent(1:nchrome,j)
 iparent(1:nchrome,j)=itemp(1:nchrome)
 temp=fitness(iother)
 fitness(iother)=fitness(j)
 fitness(j)=temp
!$ IF (j < iother) THEN
!$ CALL omp_unset_lock(lck(iother))
!$ CALL omp_unset_lock(lck(j))
!$ ELSE
!$ CALL omp_unset_lock(lck(j))
!$ CALL omp_unset_lock(lck(iother))
!$ END IF
 END DO
!$OMP END DO
!$OMP END PARALLEL

Parallel Loop
In shuffle.f
of Gafort

Exclusive access
to array
elements.

Ordered locking
prevents
deadlock.

167

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

A well-rounded Parallel Programmer must master The Big Three

• In HPC, 3 programming environments dominate … covering the major
classes of hardware.
1. MPI: distributed memory systems … though it works nicely on shared memory

computers.

2. OpenMP: Shared memory systems … more recently, GPGPU too.

3. CUDA, OpenCL, Sycl, OpenACC, OpenMP … : GPU programming (use CUDA if you
don’t mind locking yourself to a single vendor … it is a really nice programming model)

168

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD
processor

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local Memory (work-group)

Global Memory (kernel)

Logical Memory Hierarchy

GPU terminology is Broken (sorry about that)

171

The “BIG idea” of GPU programming

172

#define N 1024
 void main()
 {
 float a[N], b[N], c[N];

 for(int i=0; i<N; i++)
 c[i] = a[i] + b[i]
 }

Traditional loop-oriented vector add

kernel void
 vadd(global const float *a,
 global const float *b,
 global float *c)
 {
 int id = get_global_id(0);

 c[id] = a[id] + b[id]
 }

Data Parallel, GPU code ….
Turn the loop body into a kernel

A host program launches and manages
execution of N instances of the kernel code.

OpenCL syntax

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

173

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
 __local float* l_sums, __global float* p_sums)
{
 int n_wrk_items = get_local_size(0);
 int loc_id = get_local_id(0);
 int grp_id = get_group_id(0);
 float x, accum = 0.0f; int i,istart,iend;

 istart = (grp_id * n_wrk_items + loc_id) * niters;
 iend = istart+niters;

 for(i= istart; i<iend; i++){
 x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

 l_sums[local_id] = accum;
 barrier(CLK_LOCAL_MEM_FENCE);
 reduce(l_sums, p_sums);
}

1. Turn source code into a scalar work-
item

2. Map work-items onto an
N dim index space.

4. Run on hardware
designed around the

same SIMT
execution model

3. Map data structures
onto the same index

spaceThis is OpenCL kernel code … the sort
of code the OpenMP compiler generates

on your behalf

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution models

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

How do we execute code on a GPU:
OpenCL and CUDA nomenclature

177

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
 __local float* l_sums, __global float* p_sums)
{
 int n_wrk_items = get_local_size(0);
 int loc_id = get_local_id(0);
 int grp_id = get_group_id(0);
 float x, accum = 0.0f; int i,istart,iend;

 istart = (grp_id * n_wrk_items + loc_id) * niters;
 iend = istart+niters;

 for(i= istart; i<iend; i++){
 x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

 l_sums[local_id] = accum;
 barrier(CLK_LOCAL_MEM_FENCE);
 reduce(l_sums, p_sums);
}

Turn source code into a scalar work-
item (a CUDA thread)

Organize work-items into
work-groups and map onto an an N
dim index space. CUDA calls a work-

group a thread-block

OpenCL index space is
called an NDRange. CUDA

calls this a GridThis code defines a kernel

Submit a kernel
to an OpenCL
command
queue or a
CUDA stream

Third Party names are the property of their owners

It’s called SIMT, but GPUs are really vector-architectures with a block of work-
items executing together (a subgroup in OpenCL or a warp with CUDA)

Programming your GPU with OpenMP

178

The “BIG idea” of GPU programming with OpenMP

179

#define N 1024
 void main()
 {
 float a[N], b[N], c[N];

 for(int i=0; i<N; i++)
 c[i] = a[i] + b[i]
 }

Traditional loop-oriented vector add
Data Parallel, GPU code with OpenMP ….

A host program launches and manages
execution of N instances of the kernel code.

#define N 1024
 void main()
 {
 float a[N], b[N], c[N];

 #pragma omp target
 #pragma omp loop
 for(int i=0; i<N; i++)
 c[i] = a[i] + b[i]
 }

Loop body defines
the kernel

The loop defines the
NDRange and the

kernel launch

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Third party names are the property of their owners. 180

Moving execution onto a target device (implicit data movement)

int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target
 {

 for (int i = 0; i < N; ++i) {

 A[i] = A[i] + B[i];

 }

 } // end of target region
}

1. Variables created in host memory.

2. Scalar N and static arrays A and B
are copied to device memory.

Execution transferred to device.

3. i is private on the device as it’s
declared within the target region

4. Execution on the device.

5. static arrays A and B are copied
from device memory back to the
host. Host resumes execution.

181

The target data environment

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{
 target region, can use
 A, B and N

}

Device Initial
thread

Host thread
waits for the

task region to
complete

float A[N], B[N]; A, B and N
mapped to the

device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated
arrays are moved onto the device

by default before execution

Only the statically allocated arrays
are moved back to the host after

the target region completes

182

Run code in parallel on the device
int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target

 #pragma omp loop
 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

}

The loop construct tells the compiler:
“this loop will execute correctly if

the loop iterations run in any order.
You can safely run them

concurrently. And the loop-body
doesn’t contain any OpenMP

constructs. So do whatever you
can to make the code run fast”

183

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”. This is new for OpenMP

Explicit Data Sharing

• Previously, we described the rules for implicit data movement.

• We explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to explicitly copied to/from the device:

int main(void) {
 int ii=0, N = 1024;
 int* A = malloc(sizeof(int)*N);

 #pragma omp target
 {
 // N, ii and A all exist here
 // The data that A points to (*A , A[ii]) DOES NOT exist on the target device!
 }
}

184

Controlling data movement

• The various forms of the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device using

the original values from the host (host to device copy).
– map(from:list): At the end of the target region, the values from variables in the list are

copied into the original variables (device to host copy). On entering the region, initial value
of the variable is not initialized.
– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at start

of region, device to host copy at end)
– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

• For pointers you must use array section notation ..
– map(to:a[0:N]). Notation is A[lower-bound : length]

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement
defined from the
host perspective.

185

Moving arrays with the map clause

int main(void) {
 int N = 1024;
 int* A = malloc(sizeof(int)*N);

 #pragma omp target map(A[0:N])
 {
 // N, ii and A all exist here
 // The data that A points to DOES exist here!
 }
}

Default mapping
map(tofrom: A[0:N])

Copy at start and end of
target region.

186

Our running example: Jacobi solver

• An iterative method to solve a system of linear equations
– Given a matrix A and a vector b find the vector x such that Ax=b

• The basic algorithm:
– Write A as a lower triangular (L), upper triangular (U) and diagonal matrix

 Ax = (L+D+U)x = b
– Carry out multiplications and rearrange

 Dx=b-(L+U)x à x = (b-(L+U)x)/D
– Iteratively compute a new x using the x from the previous iteration

 Xnew = (b-(L+U)xold)/D

• Advantage: we can easily test if the answer is correct by multiplying our
final x by A and comparing to b

• Disadvantage: It takes many iterations and only works for diagonally
dominant matrices

187

Jacobi Solver

<<< allocate and initialize the matrix A >>>
<<< and vectors x1, x2 and b >>>

while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

 // test convergence
 conv = 0.0;

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

 // swap pointers for next
 // iteration
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;

} // end while loop

Iteratively update xnew until the value stabilizes (i.e. change less than a preset TOL)

188

Jacobi Solver (Par Targ, 1/2)
while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;
#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim])
#pragma omp loop
for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

189

Jacobi Solver (Par Targ, 2/2)
//

 // test convergence
 //

 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(tofrom:conv)
#pragma omp loop private(i,tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;

 }
 conv = sqrt((double)conv);
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

This worked but the performance was
awful. Why?

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB.

190

Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))
 { iters++;
 xnew = iters % s ? x2 : x1;
 xold = iters % s ? x1 : x2;

 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim])
 #pragma omp loop private(i,j)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }
// test convergence
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(tofrom:conv)
 #pragma loop reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

}

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device
2*Ndim*sizeof(TYPE) bytes

For each iteration, copy to
device
2*Ndim*sizeof(TYPE) bytes

191

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target
regions work within the

target data region

#pragma omp target data map(to:A, B) map(from: C)
{

 #pragma omp target
 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the
device at the beginning of

the construct

Data is mapped back to
the host at the end of the

target data region

192

Jacobi Solver (Par Target Data, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
 { iters++;

#pragma omp target
#pragma omp loop private(j) firstprivate(xnew,xold)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

193

Jacobi Solver (Par Target Data, 2/2)
// test convergence
conv = 0.0;
#pragma omp target map(tofrom: conv)
#pragma omp loop private(tmp) firstprivate(xnew,xold) reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
// end target region
 conv = sqrt((double)conv);

 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per loop 131.94 secs
Above plus target
data region

18.37 secs

Third party names are the property of their owners. 194

Single Instruction Multiple Threads

• Individual work-items of a warp start together at the same program
address

• Each work-item has its own instruction address counter and register
state
– Each work-item is free to branch and execute independently
– Supports the SPMD pattern.

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

195

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

196

Coalescence
• Coalesce - to combine into one
• Coalesced memory accesses are

key for high bandwidth
• Simply, it means, if work-item i

accesses memory location n then
work-item i+1 accesses memory
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
 some_strange_func(id);

float val4 = memA[loc];
}

197

Jacobi Solver (Target Data/branchless/coalesced mem, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
 { iters++;
#pragma omp target
 #pragma omp loop private(j)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 xnew[i]+= (A[j*Ndim + i]*xold[j])*((TYPE)(i != j));
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

We replaced the original code with a
poor memory access pattern

xnew[i]+= (A[i*Ndim + j]*xold[j])
With the more efficient

xnew[i]+= (A[j*Ndim + i]*xold[j])
198

//
 // test convergence
 conv = 0.0;
#pragma omp target map(tofrom: conv)
 #pragma omp loop private(tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
conv = sqrt((double)conv);
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Above plus
target data
region

18.37 secs

Above plus
reduced
branching

13.74 secs

Above plus
improved mem
access

7.64 secs

Jacobi Solver (Target Data/branchless/coalesced mem, 2/2)

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB. Third party names are the property of their owners. 199

pragma, function, clause, or Environment variable Concepts

#pragma omp target Offload execution to a target device (a GPU)
#pragma omp loop Follows a target construct to run the following loop(s) in parallel on a

target device
#pragma target teams loop Combined construct … equivalent to the pair – target followed by loop

reduction(op: list) Reduction using op for variables in list

collapse(n) Combine n nested loops into one logical loop

map([to | from | tofrom :] list) Map variables in list between the host and a device

#pragma omp target data Manage data on a device for a structured block
#pragma omp target update to(list)
#pragma omp target update from(list)

Update data to or from a device

#pragma omp target enter data Move data into a target device data region
#pragma omp target exit data Move data from a target device data region
OMP_TARGET_OFFLOAD=mandatory Force target region to execute on a target device

The OpenMP GPU Common Core: Most OpenMP programs only use these 12 items

200

Why is the GPU so important?

201

If you care about power, the world is heterogeneous?

Specialized
processors doing

operations suited to
their architecture
are more efficient

than general
purpose processors.

0

5

10

15

20

25

30
SGEMM GFLOP/Watt for different architectures

Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2. IEEE International
Symposium on Computer Architecture and High Performance Computing, 2020

Intel® MovidiusTM MyriadTM 2 VPU

Intel® Xeon® E5-2697v2 CPU,
3.5 GHz, 12 cores

Nvidia® K40TM GPU

Hence, future systems will be increasingly heterogeneous … GPUs, CPUs,
FPGAs, and a wide range of accelerators

GF
LO

PS
/W

at
t

Offload vs. Heterogeneous computing
• Offload: The CPU moves work to an accelerator and waits for the answer.

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running?

On a CPU

On an Accelerator

Ru
n

Ti
m

e

CPU only

Offload

Heterogeneous
Computing

Offload vs. Heterogeneous computing
• Offload: The CPU moves work to an accelerator and waits for the answer.

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running?

On a CPU

On an Accelerator

Ru
n

Ti
m

e

CPU only

Offload

Heterogeneous
Computing

… so you really need one programming model that covers both the CPU and the GPU

This is exactly what you get with OpenMP … and it’s a portable industry standard too
(no walled Gardens when you work with OpenMP).

GPU Programming beyond OpenMP

205

206

SIMT Programming models: it’s more than just OpenMP
• CUDA:
– Released ~2006. Made GPGPU programming “mainstream” and continues to drive innovation in SIMT programming.
– Downside: proprietary to NVIDIA

• OpenCL:
– Open Standard for SIMIT programming created by Apple, Intel, NVIDIA, AMD, and others. 1st release in 2009.
– Supports CPUs, GPUs, FPGAs, and DSP chips. The leading cross platform SIMT model.
– Downside: extreme portability means verbose API. Painfully low level especially for the host-program.

• Sycl:
– C++ abstraction layer implements SIMT model with kernels as lambdas. Closely aligned with OpenCL. 1st release 2014
– Downside: Cross platform implementations only emerging recently.

• Directive driven programming models:
– OpenACC: they split from an OpenMP working group to create a competing directive driven API emphasizing descriptive

(rather than prescriptive) semantics.
– Downside: NOT an Open Standard. Controlled by NVIDIA.

– OpenMP: Mixes multithreading and SIMT. Semantics are prescriptive which makes it more verbose. A truly Open
standard supported by all the key GPU players.
– Downside: Poor compiler support so far … but that will change over the next couple years.

Third party names are the property of their owners

Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c), fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

207

Unified shared
memory … allocate
on host, visible on

device too

CUDA kernel as
function

Enqueue the kernel
to execute on the

Grid

Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B
#include <CL/sycl.hpp>

int main () {
 int N = ... ;
 float *a, *b, *c;
 sycl::queue q;
 *a = (float *)sycl::malloc_shared(N * sizeof(float), q);
 // ... allocate other arrays (b and c), fill with data

 q.parallel_for(sycl::range<1>{N},
 [=](sycl::id<1> i) {
 c[i] = a[i] + b[i];

 });
 q.wait();
}

208

Create a queue
for SYCL

commands

Unified shared
memory … allocate
on host, visible on

device too

Kernel as a C++
Lambda function

 [=] means capture external
variables by value.

209209

Vector addition with OpenACC
•Let’s add two vectors together …. C = A + B

void vadd(int n,
 const float *a,
 const float *b,
 float *restrict c)
{
 int i;
 #pragma acc parallel loop
 for (i=0; i<n; i++)
 c[i] = a[i] + b[i];
}
int main(){
float *a, *b, *c; int n = 10000;
// allocate and fill a and b

 vadd(n, a, b, c);

}

Assure the
compiler that c is
not aliased with
other pointers

Turn the loop
into a kernel,

move data to a
device, and
launch the

kernel.

Host waits here
until the kernel is
done. Then the
output array c is
copied back to

the host.

210

A more complicated example:
Jacobi iteration: OpenACC (GPU)
#pragma acc data copy(A), create(Anew)
while (err>tol && iter < iter_max){
 err = 0.0;
 #pragma acc parallel loop reduction(max:err)
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
 A[j-1][i] + A[j+1][i]);
 err = max(err,abs(Anew[j][i] – A[j][i]));
 }
 }
 #pragma acc parallel loop
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 A[j][i] = Anew[j][i];
 }
 }
 iter ++;
}

Create a data region on
the GPU. Copy A once

onto the GPU, and
create Anew on the

device (no copy from
host)

Copy A back out to host
… but only once

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

211

A more complicated example:
Jacobi iteration: OpenMP target directives
#pragma omp target data map(A) map(alloc:Anew)
while (err>tol && iter < iter_max){
 err = 0.0;
 #pragma omp target
 #pragma omp loop reduction(max:err)
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
 A[j-1][i] + A[j+1][i]);
 err = max(err,abs(Anew[j][i] – A[j][i]));
 }
 }
 #pragma omp target
 #pragma omp loop
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 A[j][i] = Anew[j][i];
 }
 }
 iter ++;
}

Create a data
region on the
GPU. Map A
and Anew onto

the target device

Copy A back out to host
… but only once

212

A more complicated example:
Jacobi iteration: OpenMP target directives
#pragma omp target data map(A) map(alloc:Anew)
while (err>tol && iter < iter_max){
 err = 0.0;

 #pragma omp target teams loop reduction(max:err)
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
 A[j-1][i] + A[j+1][i]);
 err = max(err,abs(Anew[j][i] – A[j][i]));
 }
 }
 #pragma omp target teams loop
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 A[j][i] = Anew[j][i];
 }
 }
 iter ++;
}

Create a data
region on the
GPU. Map A
and Anew onto

the target device

Copy A back out to host
… but only once

213

Why so many ways to do the same thing?
• The parallel programming model people have failed you …

– It’s more fun to create something new in your own closed-community that work across vendors to
create a portable API

• The hardware vendors have failed you …
– Don’t you love my “walled garden”? It’s so nice here, programmers, just don’t even think of going

to some other platform since your code is not portable.

• The standards community has failed you …
– Standards are great, but they move too slow. OpenACC stabbed OpenMP in the back and I’m

pissed, but their comments at the time were spot-on (OpenMP was moving so slow … they just
couldn’t wait).

• The applications community failed themselves …
– If you don’t commit to a standard and use “the next cool thing” you end up with the diversity of

overlapping options we have today. Think about what happened with OpenMP and MPI.

214214

Exercise
• In the ATPESC OpenMP github repository, there is a directory called:

– OMP_GPU_Exercises

• First make sure you can run a simple program on the GPU (vadd.c).
• Then experiment with a heat diffusion problem to optimize it for execution on a

GPU (heat.c)
• Finally, experiment with the matrix multiply test bed (see the makefile for details)

and see how fast you can multiply dense matrices.

• Hint: These programs do not run very long, so set the appropriate environment
variable to force the system to run on a GPU

215

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

OpenMP basic definitions: Basic Solution stack

In learning OpenMP, you consider a Symmetric Multiprocessor (SMP) ….
i.e. lots of threads with “equal cost access” to memory

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

Shared address space (SMP)

H
W

. . .

CPU Architecture Trend
● Multi-socket nodes with rapidly increasing core counts

○ Memory per core decreases
○ Memory bandwidth per core decreases
○ Network bandwidth per core decreases

● Applications often use a hybrid programming model with three levels of
parallelism

○ MPI between nodes or sockets
○ Shared memory (such as OpenMP) on the nodes/sockets
○ Increase vectorization for lower level loop structures

A Typical CPU Node in an HPC System
2 Intel® Xeon™ E5-2698 v3 CPUs (Haswell) per node (launched Q3’14)

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$D
D

R
D

D
R

D
D

R
D

D
RPC

Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Socket 0 Socket 1

L2$

L1D$ L1I$

ALU

HT1HT0

As configured for Cori at NERSC: CPUs at 2.3 GHz, 2 16 GB DIMMs per DDR memory
controller, 16 cores per CPU. 2 CPUs connected by a high-speed interconnect (QPI)

2 Hardware threads per core
Intel® AVX2 (256 bit Vector unit)
L1$ instruction and data: 32 KB
Unified L2$ 256 KB

40 MB
shared L3$

Does this look like an SMP node to you?

219

There may be a single address space, but there are multiple levels of
non-uniformity to the memory. This is a Non-Uniform Memory Architecture (NUMA)

Even a single CPU is properly considered a NUMA architecture

NUMA Systems
● Most systems today are Non-Uniform Memory Access (NUMA)
● Accessing memory in remote NUMA is slower than accessing memory in local NUMA
● Accessing High Bandwidth Memory is faster than DDR

Diagram courtesy Ruud van der Pas

Also possible on-package
high bandwidth memory
on the node

Each core may have
multiple hyperthreads

Memory Locality
• Most systems today are Non-Uniform Memory Access (NUMA)
• Example, the Intel® Xeon Phi™ processor

221

Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale and does not include
all functional areas of the CPU, nor does it represent actual component layout.

MCDRAM MCDRAM MCDRAM

MCDRAM

MCDRAM

MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

Up to
72 cores

HFI

DDR4

DDR4

DDR4

PCIe Gen3
x36

6 channels
DDR4
Up to

384GB
~90 GB/s

On-package
2 ports OPA

Integrated Fabric

Up to 16GB high-bandwidth on-
package memory (MCDRAM)

Exposed as NUMA node
>400 GB/s sustained BW

Up to 72 cores (36 tiles)
2D mesh architecture

Over 6 TF SP peak
Full Xeon ISA compatibility

through AVX-512

Core Core

2 VPU 2
VPU

1M
B

 L
2

H
U

B

Tile

M
ic

ro
-C

oa
x

C
ab

le
 (I

FP
)

M
ic

ro
-C

oa
x

C
ab

le
 (I

FP
)

2x 512b VPU per core
(Vector Processing Units)

Based on Intel® Atom™ processor with
many HPC enhancements
Deep out-of-order buffers

Gather/scatter in hardware
Improved branch prediction

4 threads/core
High cache bandwidth

Memory Locality

• Memory access in different NUMA domains are different
– Accessing memory in remote NUMA is slower than accessing memory in local NUMA
– Accessing High Bandwidth Memory on KNL* is faster than DDR

• OpenMP does not explicitly map data across shared memories

• Memory locality is important since it impacts both memory and intra-node
performance

222

*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 Ghz …
the “bootable” version that sits in a socket, not a co-processor

Cache Coherence and False Sharing
● ccNUMA node: cache-coherence NUMA node.
● Data from memory are accessed via cache lines.
● Multiple threads hold local copies of the same (global) data in their caches.

Cache coherence ensures the local copy to be consistent with the global data.
● Main copy needs to be updated when a thread writes to local copy.
● Writes to same cache line from different threads is called false sharing or

cache thrashing, since it needs to be done in serial. Use atomic or critical or
private variables to avoid race condition.

223

Exploring your NUMA world: NUMACTL
• numactl shows you how the OS processor-numbers map

onto the physical cores of the chip:

224

2 Intel® Xeon™ E5-2698 v3 CPUs (Haswell) per node (launched Q3’14)

Tool to Check NUMA Node Information: numactl

● numactl: controls NUMA policy for processes or shared memory
○ numactl -H: provides NUMA info of the CPUs

% numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
node 0 size: 64430 MB
node 0 free: 63002 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 56 57 58 59 60 61
62 63
node 1 size: 64635 MB
node 1 free: 63395 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

Haswell node example
32 cores, 2 sockets

*Haswell: 16-core Intel® Xeon™ Processor E5-2698 v3 at 2.3 GHz

Shows relative costs …. In this case, there’s a
factor of two in the cost of the local (on CPU)
DRAM vs going to the other socket

Use numactl Command Line Tool
● numactl is a Linux tool to investigate and handle NUMA
● Can be used to request CPU or memory binding

○ Use “numactl <options> ./myapp” as the executable (instead of “./myapp”)

● CPU binding example:
○ % numactl --cpunodebind 0,1 ./code.exe

 only use cores of NUMA nodes 0 and 1

● Memory binding example:
○ % numactl --membind 1 ./code.exe

only use memory in NUMA nodes 1, such as the MCDRAM (High Bandwidth
Memory) in KNL quad, flat mode

Tools to Check Node Information: hwloc
● Portable Hardware Locality (hwloc)

○ hwloc-ls and lstopo: provides a text and graphical representation of the system
topology, NUMA nodes, cache info, and the mapping of procs.

Haswell node
example
32 cores, 2 sockets

Machine (126GB total)

NUMANode P#0 (63GB)

Package P#0

L3 (40MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#32

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#33

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#34

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#35

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#36

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

PU P#37

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

PU P#38

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#7

PU P#39

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#8

PU P#40

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#9

PU P#41

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#10

PU P#42

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#11

PU P#43

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#12

PU P#44

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#13

PU P#45

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#14

PU P#14

PU P#46

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#15

PU P#15

PU P#47

NUMANode P#1 (63GB)

Package P#1

L3 (40MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#16

PU P#48

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#17

PU P#49

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#18

PU P#50

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#19

PU P#51

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#20

PU P#52

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#21

PU P#53

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#22

PU P#54

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#23

PU P#55

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#24

PU P#56

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#25

PU P#57

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#26

PU P#58

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#27

PU P#59

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#28

PU P#60

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#29

PU P#61

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#14

PU P#30

PU P#62

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#15

PU P#31

PU P#63

Haswell Compute Nodes Example

● Each Haswell node has 2 Intel Xeon 16-core Haswell processors
○ 2 NUMA domains (sockets) per node, 16 cores per NUMA domain. 2 hardware

threads per physical core.
○ NUMA Domain 0: physical cores 0-15 (and logical cores 32-47)

NUMA Domain 1: physical cores 16-31 (and logical cores 48-63)
● Memory bandwidth is non-homogeneous among NUMA domains

To obtain processor info:

Get on a compute node:
% salloc -N 1 -C …
Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls

Find Processor Info on a Mac Laptop

$ sysctl -n machdep.cpu.brand_string
 Intel(R) Core(TM) i7-8569U CPU @ 2.80GHz

$ system_profiler |grep Processor
 …
 Processor Name: Quad-Core Intel Core i7
 Processor Speed: 2.8 GHz
 Number of Processors: 1
 …

Exercise: Node Information

• Characterize the processor/memory layout of your system

• Try on a Cori login node, a Cori Haswell and a Cori KNL node, and
find out the differences

230

Process / Thread / Memory Affinity (1)
● Process Affinity: also called "CPU pinning", binds processes (MPI

tasks, etc.) to a CPU or a range of CPUs on a node
○ It is important to spread MPI ranks evenly onto cores in different NUMA

domains

● Thread Affinity: further binding threads to CPUs that are allocated to
their parent process

o Thread affinity should be based on achieving process affinity first
o Threads forked by a certain MPI task have thread affinity binding close to

the process affinity binding of their parent MPI task
o Do not over schedule CPUs for threads

Process / Thread / Memory Affinity (2)

● Memory Locality: allocate memory as close as possible to the core on
which the task that requested the memory is running
o Applications should use memory from local NUMA domain as much as

possible

● Cache Locality: reuse data in cache as much as possible
● Our goal is to promote OpenMP standard settings for portability

○ OMP_PLACES and OMP_PROC_BIND are preferred to vendor specific
settings

● Correct process, thread and memory affinity is the basis for getting optimal
performance. It is also essential for guiding further performance
optimizations.

Naïve vs. Optimal Affinity
Application Benchmark Performance on Cori

OpenMP Thread Affinity

Hardware
Abstraction

OpenMP
Threads

Mapping
Strategy

OMP_PLACES
Environment Variable
(e.g. threads, cores,

sockets)

OMP_PROC_BIND
Environment Variable

or
proc_bind() clause

of parallel region

OMP_NUM_THREADS
Environment Variable

or
num_threads() clause

of parallel region
Courtesy of Oscar Hernandez, ORNL

● Three main concepts:

Writing NUMA-aware OpenMP Code
• Control the places where threads are mapped

– Place threads onto cores to optimize performance
– Keep threads working on similar data close to each other
– Maximize utilization of memory controllers by spreading threads out

• Processor binding … Disable thread migration
– By Default, an OS migrates threads to maximize utilization of resources on

the chip.
– To Optimize for NUMA, we need to turn off thread migration … bind

threads to a processor/core

• Memory Affinity
– Maximize reuse of data in the cache hierarchy
– Maximize reuse of data in memory pages

235

The Concept of Places

• A place: numbers between { }:
export OMP_PLACES=“{0,1,2,3}”

• A place defines where threads can run

236

• The Operating System assigns logical
CPU IDs to hardware threads.

• Recall … the linux command
numactl –H returns those numbers.

> export OMP_PLACES “{0, 3, 15, 12, 19, 16, 28, 31}”
> export NUM_THREADS= 6

#pragma omp parallel
{
 // do a bunch of cool stuff

}

The Concept of Places

• Set with an environment variable:
export OMP_PLACES=“{0,1,2,3}”

• Can also specify with {lower-bound:length:stride}

OMP_PLACES=“{0,1,2,3}” à OMP_PLACES=“{0:4:1}” à OMP_PACES=“{0:4}”

• Can define multiple places:

OMP_PLACES=“{0,1,2,3},{4,6,8},{9,10,11,12}”

OMP_PLACES=“{0,4},{4,3:2},{9:4}”
237

Default
Stride is 1

These are
equivalent

• The Operating System assigns logical
CPU IDs to hardware threads.

• Recall … the linux command
numactl –H returns those numbers.

The Concept of Places

• Set with an environment variable:
export OMP_PLACES=“{0,1,2,3}”

• Can also specify with {lower-bound:length:stride}

OMP_PLACES=“{0,1,2,3}” à OMP_PLACES=“{0:4:1}” à OMP_PACES=“{0:4}”

• Can define multiple places:

OMP_PLACES=“{0,1,2,3},{4,6,8},{9,10,11,12}”

OMP_PLACES=“{0,4},{4,3:2},{9:4}”
238

Default
Stride is 1

These are
equivalent

• The Operating System assigns logical
CPU IDs to hardware threads.

• Recall … the linux command
numactl –H returns those numbers.

Programmers can use OMP_PLACES for detailed control
over the execution-units threads utilize. BUT …

• The rules for mapping onto physical execution units
are complicated.

• PLACES expressed as numbers is non-portable

There has to be an easier and more portable way to describe
places

Hardware Abstraction: OMP_PLACES
● OMP_PLACES environment variable

○ controls thread allocation
○ defines a series of places to which the threads are assigned

● It can be an abstract name or a specific list
○ threads: each place corresponds to a single hardware thread
○ cores: each place corresponds to a single core (having one or more hardware

threads)
○ sockets: each place corresponds to a single socket (consisting of one or more cores)
○ a list with explicit place values of CPU ids, such as:

■ export OMP_PLACES=“ {0:4:2},{1:4:2}” (equivalent to “{0,2,4,6},{1,3,5,7}”)

● Examples:
○ export OMP_PLACES=threads
○ export OMP_PLACES=cores

Writing NUMA-aware OpenMP Code
• Control the places where threads are mapped

– Place threads onto cores to optimize performance
– Keep threads working on similar data close to each other
– Maximize utilization of memory controllers by spreading threads out

• Processor binding … Disable thread migration
– By Default, an OS migrates threads to maximize utilization of resources on

the chip.
– To Optimize for NUMA, we need to turn off thread migration … bind

threads to a processor/core

• Memory Affinity
– Maximize reuse of data in the cache hierarchy
– Maximize reuse of data in memory pages

240

Mapping Strategy: OMP_PROC_BIND (1)
● Controls thread affinity within and between OpenMP places
● Allowed values:

○ true: the runtime will not move threads around between processors
○ false: the runtime may move threads around between processors
○ close: bind threads close to the master thread
○ spread: bind threads as evenly distributed (spreaded) as possible
○ primary*: bind threads to the same place as the master thread

● The values primary*, close, and spread imply the value true

Examples:
export OMP_PROC_BIND=spread
export OMP_PROC_BIND=spread,close (for nested levels)

*the term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.

Mapping Strategy: OMP_PROC_BIND (2)
• Put threads far apart (spread) may improve aggregated memory

bandwidth and available cache size for your application, but may
also increase synchronization overhead

• Put threads “close” have the reverse impact as “spread”

Mapping Strategy: OMP_PROC_BIND (2)

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 1 2 3

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 1 2 3

Prototype example: 4 cores total, 2 hyperthreads per core, 4 OpenMP threads
● none: no affinity setting
● close: Bind threads as close to each other as possible

● spread: Bind threads as far apart as possible

● master: bind threads to the same place as the master thread

Various Methods to Set Number of Threads

● Precedence: 1) > 2) > 3) > 4)
● You may get fewer threads than you requested, check with

omp_get_num_threads()

1) Use num_threads clause
 #pragma omp parallel num_threads (4)
 {
 int ID = omp_get_thread_num();
 pooh(ID,A);
 }

2) Call omp_set_num_threads API
 omp_set_num_threads(4);
 #pragma omp parallel
 {
 int ID = omp_get_thread_num();
 pooh(ID,A);
 }

4) Do none of the three above.
 Code will use an implementation
 dependent default number of threads
 defined by the compiler.

3) Set runtime environment
 export OMP_NUM_THREADS=4
 #pragma omp parallel
 {
 int ID = omp_get_thread_num();
 pooh(ID,A);
 }

Affinity Clauses for OpenMP Parallel Construct

● The num_threads and proc_bind clauses can be used
○ The values set with these clauses take precedence over values

set by runtime environment variables
● Helps code portability

● Examples:
○ C/C++:

#pragma omp parallel num_threads(2) proc_bind(spread)
○ Fortran:

!$omp parallel num_threads (2) proc_bind (spread)
…
!$omp end parallel

Affinity Verification Methods
● NERSC provides pre-built binaries from a Cray code (xthi.c) to display

process thread affinity
% srun -n 32 -c 8 --cpu-bind=cores check-mpi.intel.cori | sort -nk 4

 Hello from rank 0, on nid02305. (core affinity = 0,1,68,69,136,137,204,205)
 Hello from rank 1, on nid02305. (core affinity = 2,3,70,71,138,139,206,207)

● Use portable OpenMP environment variables OMP_DISPLAY_AFFINITY
and OMP_AFFINITY_FORMAT (in OpenMP 5.0)

○ Automatically displays affinity info when OMP_DISPLAY_AFFINITY=true
○ Can set custom OMP_DISPLAY_AFFINITY_FORMAT
○ Also has runtime APIs such as omp_display_affinity and omp_capture_affinity

OMP_AFFINITY_FORMAT Fields
Short Name Long name Meaning

L thread_level from omp_get_level()
n thread_num from omp_get_thread_num()
a thread_affinity the numerical identifiers of the processors the current

thread is binding to, in the format of a comma separated list
of OpenMP thread places

h host host or node name
p process_id process id used by the implementation (such as the

process id for the MPI process)
N num_threads from omp_get_num_threads()
A ancestor_tnum from omp_get_ancestor_thread_num(). One level up only.

% export OMP_DISPLAY_AFFINITY=true
% export OMP_AFFINITY_FORMAT="host=%h, pid=%p, thread_num=%n, thread affinity=%a”
host=nid02496, pid=150147, thread_num=0, thread affinity=0
host=nid02496, pid=150147, thread_num=1, thread affinity=4
% export OMP_AFFINITY_FORMAT="Thread Affinity: %0.3L %.10n %.20{thread_affinity} %.15h”
Thread Affinity: 001 0 0-1,16-17 nid003
Thread Affinity: 001 1 2-3,18-19 nid003

Sample Nested OpenMP Program
#include <omp.h>
 #include <stdio.h>
 void report_num_threads(int level)
 {

 #pragma omp single {
 printf("Level %d: number of threads in the

team: %d\n", level, omp_get_num_threads());
 }
 }
 int main()
 {

 omp_set_dynamic(0);
 #pragma omp parallel num_threads(2) {

 report_num_threads(1);
 #pragma omp parallel num_threads(2) {

 report_num_threads(2);
 #pragma omp parallel num_threads(2) {

 report_num_threads(3);
 }

 }
 }
 return(0);

 }

% ./a.out
Level 1: number of threads in the team: 2
Level 2: number of threads in the team: 1
Level 3: number of threads in the team: 1
Level 2: number of threads in the team: 1
Level 3: number of threads in the team: 1

% export OMP_NESTED=true
% export OMP_MAX_ACTIVE_LEVELS=3
% ./a.out
Level 1: number of threads in the team: 2
Level 2: number of threads in the team: 2
Level 2: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2

Level 0: P0
Level 1: P0 P1
Level 2: P0 P2; P1 P3
Level 3: P0 P4; P2 P5; P1 P6; P3 P7

Process and Thread Affinity in Nested OpenMP
● A combination of OpenMP environment variables and runtime flags are needed

for different compilers and different batch schedulers on different systems

● Use num_threads clause in source codes to set threads for nested regions
● For most other non-nested regions, use OMP_NUM_THREADS environment

variable for simplicity and flexibility

Example: Use Intel compiler with SLURM on Cori Haswell:
export OMP_NESTED=true
export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PROC_BIND=spread,close
export OMP_PLACES=threads
srun -n 4 -c 16 --cpu_bind=cores ./code.exe

spread

close

Illustration of a system with:
2 sockets, 4 cores per socket,
4 hyper-threads per core

#pragma omp parallel proc_bind(spread)
 #pragma omp parallel proc_bind(close)

initial

When to Use Nested OpenMP

• Beneficial to use nested OpenMP to allow more fine-grained thread
parallelism

• Some application teams are exploring with nested OpenMP to allow more
fine-grained thread parallelism
– Hybrid MPI/OpenMP not using node fully packed
– Top level OpenMP loop does not use all available threads
– Multiple levels of OpenMP loops are not easily collapsed
– Certain computational intensive kernels could use more threads
– MKL can use extra cores with nested OpenMP

• Nested level can be arbitrarily deep

250

Use Multiple Threads in MKL
• By Default, in OpenMP parallel regions, only 1 thread will be used for

MKL calls.
– MKL_DYNAMICS is true by default

• Nested OpenMP can be used to enable multiple threads for MKL
calls. Treat MKL as a nested inner OpenMP region.

• Sample settings

export OMP_NESTED=true
export OMP_PLACES=cores
export OMP_PROC_BIND=sprad,close
export OMP_NUM_THREADS=6,4
export MKL_DYNAMICS=false
export OMP_MAX_ACTIVE_LEVELS=2

FFT3D on KNC, Ng=643 example

Courtesy of Jeongnim Kim, Intel

251
*KNC: Intel® Xeon Phi™ processor (Knights Corner) … the first generation co-processor version of the chip.

Exercise: Affinity Verification

• Run the “Hello World” code, use OMP_DISPLAY_AFFINITY to observe
affinity status

• Change thread binding and number of threads and see how affinity
status changes

252

OMP_PROC_BIND Choices for STREAM Benchmark

OMP_NUM_THREADS=32
OMP_PLACES=threads

OMP_PROC_BIND=close
Threads 0 to 31 bind to CPUs
0,32,1,33,2,34,…15,47. All
threads are in the first socket.
The second socket is idle. Not
optimal.

OMP_PROC_BIND=spread
Threads 0 to 31 bind to CPUs
0,1,2,… to 31. Both sockets
and memory are used to
maximize memory bandwidth.

Blue: OMP_PROC_BIND=close
Red: OMP_PROC_BIND=spread
Both with First Touch

Exercise: STREAM Benchmark

•Use the STREAM benchmark code: C/affinity/stream.c
o Sample batch script: “run_stream_sample.sh”

% sbatch <job_script>
o STREAM memory bandwidth results: check “Best Rate” for “Triad” in the

output
o Experiment with different OMP_NUM_THREADS, OMP_PROC_BIND, and

OMP_PLACES, and OMP_DISPLAY_AFFINITY settings to check thread
affinity output and performance result

o Run with 8, 16, 32, 48, 64 threads, and OMP_PROC_BIND=spread or
close

•Compare your results with the previous STREAM plot

Writing NUMA-aware OpenMP Code
• Control the places where threads are mapped

– Place threads onto cores to optimize performance
– Keep threads working on similar data close to each other
– Maximize utilization of memory controllers by spreading threads out

• Processor binding … Disable thread migration
– By Default, an OS migrates threads to maximize utilization of resources on

the chip.
– To Optimize for NUMA, we need to turn off thread migration … bind

threads to a processor/core

• Memory Affinity
– Maximize reuse of data in the cache hierarchy
– Maximize reuse of data in memory pages

255

Memory Affinity: “First Touch” memory

Red: step 1.1 + step 2. No First Touch
Blue: step 1.2 + step 2. First Touch

Step 1.1 Initialization
 by master thread only
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

 Step 1.2 Initialization
 by all threads
 #pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

 Step 2 Compute
 #pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j]=b[j]+d*c[j];}

• Memory affinity is not defined when memory was allocated,
instead it will be defined at initialization.

• Memory will be local to the thread which initializes it. This is
called first touch policy.

• Hard to do “perfect touch” for real applications. General
recommendation is to use number of threads fewer than
number of CPUs (one or more MPI tasks) per NUMA domain.

OMP_PROC_BIND=close

“Perfect Touch” is Hard

257

• Hard to do “perfect touch” for real applications
• General recommendation: use number of threads fewer than number of

CPUs per NUMA domain
• In the previous example, there are 16 cores (32 CPUs) per NUMA

domain. Sample run options:
– 2 MPI tasks, 1 MPI task per NUMA domain, with 32 OpenMP threads (if using

hyperthreads) or 16 OpenMP threads (if not using hyperthreads) per MPI task
– 4 MPI tasks, 2 MPI tasks per NUMA domain, with 16 OpenMP threads (if using

hyperthreads) or 8 OpenMP threads (if not using hyperthreads) per MPI task
– …

MPI Process Affinity Example: aprun “-S” Option
● Important to spread MPI ranks evenly onto different NUMA nodes
● Use the “-S” option: specify #MPI_tasks per NUMA domain
● The example below was from an XE6 system (NERSC Hopper)

aprun –n 4 –S 1–d 6

aprun –n 4 –d 6

Exercise: Importance of First Touch

• Do the same STREAM experiments with the no first touch code:
“stream_nft.c” to understand the impact of first touch
o Experiment with different OMP_NUM_THREADS, OMP_PROC_BIND, and

OMP_PLACES, and OMP_DISPLAY_AFFINITY settings to check thread
affinity output and performance result

o Run with 8, 16, 32, 48, 64 threads, and OMP_PROC_BIND=spread or
close

• Compare your results with the previous STREAM plot

OpenMP task-to-data Affinity (in OpenMP 5.0)
● Affinity hints can be provided for OpenMP tasks, resulting data to be

closer to tasks
● Useful for multi-socket systems

void task_affinity() {
 double* B;
 #pragma omp task shared(B) affinity(A[0:N])
 B = init_B_and_important_computation(A);

 #pragma omp task firstprivate(B) affinity(B[0:N])
 important_computation_too(B);

 #pragma omp taskwait
 }

Memory Allocators (in OpenMP 5.0)

261

● Support versatile types of memory available on current and future systems: DDR,
High-Bandwidth Memory (HBM), non-volatile memory, constant memory

● Memory allocators define types of memory that variables can be allocated to, such as
large capacity, low latency, cgroup, thread local, etc.

Using Memory Allocators

262

void allocator_example(omp_allocator_t *my_allocator) {
 int a[M], b[N];
 #pragma omp allocate(a) allocator(omp_high_bw_mem_alloc)
 #pragma omp allocate(b) // use default OMP_ALLOCATOR

 double *p = (double *) omp_alloc(N*M*sizeof(*p), my_allocator);

 #pragma omp parallel private(a) allocate(omp_low_lat_mem_alloc:a)
 {
 some_parallel_code();
 }
 omp_free(p);
 }

A NUMA Case study

263

Benchmarking … I Must Control Everything!

• Goal: To compare different programming systems applied to the same problem:
– We must control everything we can to make sure any observed differences are due to the

different programming systems.

• We need to know exactly which cores we are using and how thread IDs map onto
cores … so we can understand data detailed memory movement and make sure
it’s the same between the different test cases.

264

Step 1: Know Your System
• My system did not have numactl or Hwloc. So I went with my third option

…. lscpu (note: I’m only showing a subset of the actual output):

265

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 72
On-line CPU(s) list: 0-71
Thread(s) per core: 2
Core(s) per socket: 18
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
Stepping: 2
CPU MHz: 1197.539
CPU max MHz: 3600.0000
CPU min MHz: 1200.0000
L1d cache: 1.1 MiB
L1i cache: 1.1 MiB
L2 cache: 9 MiB
L3 cache: 90 MiB
NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71

SMT enabled … two HW threads per core
2 CPUs (sockets) with 18 physical cores per CPU

Note: a HW thread is a CPU (or core) as far as the
OS is concerned. These two lines show you the
numbering of these “cores”.

Step 1: Know Your System
• My system did not have numactl or Hwloc. So I went with my third option

…. lscpu (note: I’m only showing a subset of the actual output):

266

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 72
On-line CPU(s) list: 0-71
Thread(s) per core: 2
Core(s) per socket: 18
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
Stepping: 2
CPU MHz: 1197.539
CPU max MHz: 3600.0000
CPU min MHz: 1200.0000
L1d cache: 1.1 MiB
L1i cache: 1.1 MiB
L2 cache: 9 MiB
L3 cache: 90 MiB
NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71

SMT enabled … two HW threads per core
2 CPUs (sockets) with 18 physical cores per CPU

The numbering of these “cores” (in 2 sockets).
0/36 1/37 2/38 3/39 4/40 5/41 6/42 7/43 8/44

9/45 10/46 11/47 12/48 13/49 14/50 15/51 16/52 17/53

18/54 19/55 20/56 21/57 22/58 23/59 24/60 25/61 26/62

27/63 28/64 29/65 30/66 31/67 32/68 33/69 34/70 35/71

Setup a Runscript (so you can reproduce the computations later)

#! /usr/bin/env bash
Run script for DGEMM with C and OpenMP

Define shared parameters for the calculations we will run
BLOCK=0
ORDER=1000
ITERS=5

setup environment for the intel compilers
source /opt/intel/compilers_and_libraries_2020.4.304/linux/bin/compilervars.sh -arch intel64

Setup display of mapping from OpenMP threads to "hardware" threads.
export OMP_DISPLAY_AFFINITY=true
export OMP_AFFINITY_FORMAT="Thrd Lev=%3L, thrd_num=%5n, thrd_aff=%15A"

Enable explicit affinity control.
export OMP_PLACES="{0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16}"
export OMP_PROC_BIND=close

./dgemm 8 $ITERS $ORDER $BLOCK

./dgemm 16 $ITERS $ORDER $BLOCK

267

A NUMA Case Study: Results

Parallel Research Kernels version 2.17
OpenMP Dense matrix-matrix multiplication
Thrd Lev=1 , thrd_num=0 , thrd_aff=0
Thrd Lev=1 , thrd_num=4 , thrd_aff=4
Thrd Lev=1 , thrd_num=3 , thrd_aff=3
Thrd Lev=1 , thrd_num=5 , thrd_aff=5
Thrd Lev=1 , thrd_num=1 , thrd_aff=1
Thrd Lev=1 , thrd_num=2 , thrd_aff=2
Thrd Lev=1 , thrd_num=6 , thrd_aff=6
Thrd Lev=1 , thrd_num=7 , thrd_aff=7
Matrix order = 1000
Number of threads = 8
Rate : 21650.601956 +/- 1589.413250 MFlops/s

268

Parallel Research Kernels version 2.17
OpenMP Dense matrix-matrix multiplication
Thrd Lev=1 , thrd_num=0 , thrd_aff=0
Thrd Lev=1 , thrd_num=13 , thrd_aff=13
Thrd Lev=1 , thrd_num=4 , thrd_aff=4
Thrd Lev=1 , thrd_num=11 , thrd_aff=11
Thrd Lev=1 , thrd_num=10 , thrd_aff=10
Thrd Lev=1 , thrd_num=8 , thrd_aff=8
Thrd Lev=1 , thrd_num=9 , thrd_aff=9
Thrd Lev=1 , thrd_num=1 , thrd_aff=1
Thrd Lev=1 , thrd_num=3 , thrd_aff=3
Thrd Lev=1 , thrd_num=2 , thrd_aff=2
Thrd Lev=1 , thrd_num=12 , thrd_aff=12
Thrd Lev=1 , thrd_num=7 , thrd_aff=7
Thrd Lev=1 , thrd_num=6 , thrd_aff=6
Thrd Lev=1 , thrd_num=5 , thrd_aff=5
Thrd Lev=1 , thrd_num=14 , thrd_aff=14
Thrd Lev=1 , thrd_num=15 , thrd_aff=15
Matrix order = 1000
Number of threads = 16
Rate : 38765.867067 +/- 3303.460980 MFlops/s

Notice the one-to-one mapping of
thread ID onto hardware thread.

Normally, this is going too far, but for
benchmarking, this is a handy trick.

Obtain Optimal Affinity
on Cori KNL Example

269

KNL Compute Nodes
A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory,
16 GB high bandwidth on package memory (MCDRAM)

A quad,cache node (default setting) has only 1 NUMA node with all CPUs on
the NUMA node 0 (DDR memory). MCDRAM is hidden from the “numactl -H”
result since it is a cache.

Can We Just Do a Naive srun?
Example: 16 MPI tasks x 8 OpenMP threads per task on a single 68-core KNL quad,cache
node:

% export OMP_NUM_THREADS=8
% export OMP_PROC_BIND=spread (other choice are “close”,”master”,”true”,”false”)
% export OMP_PLACES=threads (other choices are: cores, sockets, and various ways to specify
explicit lists, etc.)

% srun -n 16 ./xthi |sort -k4n,6n or % mpirun –n 16 ./xthi
 Hello from rank 0, thread 0, on nid02304. (core affinity = 0)
 Hello from rank 0, thread 1, on nid02304. (core affinity = 144) (on physical core 8)
 Hello from rank 0, thread 2, on nid02304. (core affinity = 17)
 Hello from rank 0, thread 3, on nid02304. (core affinity = 161) (on physical core 25)
 …
 Hello from rank 1, thread 0, on nid02304. (core affinity = 0)
 Hello from rank 1, thread 1, on nid02304. (core affinity = 144)

 It is a mess! e.g., thread 0 for rank 0, and thread 1 for rank 1 are on same physical core 0

MPI Process Affinity: Selected Slurm srun Options
● --cpu-bind=threads

Automatically generate masks binding tasks to threads
● --cpu-bind=cores

Automatically generate masks binding tasks to cores
● --cpu-bind=sockets

Automatically generate masks binding tasks to sockets
● --cpu-bind=map_cpu:<cpulist>

Bind by setting CPU masks on tasks (or ranks)
● --cpu-bind=map_ldom:<NUMA_domain_list>

Bind by mapping NUMA locality domain IDs to tasks
(ldom means logical domain)

Example mpirun or srun Commands: Fix the Problem
● The reason is #MPI tasks is not divisible by 68!

○ Each MPI task is getting 68x4/#MPI tasks of logical cores as the domain size
○ MPI tasks are crossing tile boundaries

● Let’s set number of logical cores per MPI task manually by wasting extra
4 cores on purpose, which is 256/#MPI tasks

● Cray MPICH with Aries network using native SLURM
○ % srun -n 16 -c 16 --cpu_bind=cores ./code.exe

Notes: Here the value for -c is also set to number of logical cores per MPI
task, i.e., 256/#MPI tasks.

● Intel MPI with Omni Path using mpirun:
○ % export I_MPI_PIN_DOMAIN=16
○ % mpirun -n 16 ./code.exe

Now It Looks Good!

available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
268 269 270 271
node 0 size: 96723 MB
node 0 free: 93924 MB
node 1 cpus:
node 1 size: 16157 MB
node 1 free: 16088 MB
node distances:
node 0 1
 0: 10 31
 1: 31 10

Intel KNL Quad,Flat Node Example

% numactl –H

• The quad,flat mode has only 2 NUMA nodes with all CPUs
on the NUMA node 0 (DDR memory).

• And NUMA node 1 has MCDRAM (high bandwidth memory).

Cori KNL quad,flat node example
68 cores (272 CPUs)

275

Essential Runtime Settings for KNL MCDRAM Memory Affinity

• In quad, cache mode, no special setting is needed to use MCDRAM
• In quad,flat mode, using quad,flat as an example
–NUMA node 1 is MCDRAM

• Enforced memory mapping to MCDRAM
– If using >16 GB, malloc will fail
–Use “numactl -m 1 ./myapp” as the executable

 (instead of “./myapp”)
• Preferred memory mapping to MCDRAM
– If using >16 GB, malloc will spill to DDR
–Use “numactl -p 1 ./myapp” as the executable

 (instead of “./myapp”)

276

Process and Thread Affinity Best Practices

● Achieving best data locality, and optimal process and thread affinity is crucial
in getting good performance with MPI/OpenMP, yet not straightforward

○ Understand the node architecture with tools such as “numactl -H” first
○ Set correct cpu-bind and OMP_PLACES options
○ Always use simple examples with the same settings for your real application to

verify affinity first or check with OMP_DISPLAY_AFFINITY
○ For nested OpenMP, set OMP_PROC_BIND=spread,close is recommended

● Optimize code for memory affinity
○ Pay special attention to avoid false sharing
○ Exploit first touch data policy, or use at least 1 MPI task per NUMA domain
○ Optimize code for cache locality
○ Compare performance with put threads close or far apart (spread)
○ Use omp_allocator
○ Use numactl -m option to explicitly request memory allocation in specific NUMA

domain (such as high bandwidth memory in KNL)

278

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Introduction to Parallel Computing … Recap
• Extra Content for Self-Study:
– A few extra exercises to consolidate what you have learned
– Where to go to learn more about OpenMP
– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Programming your GPU with OpenMP
– Thread Affinity and Data Locality
– Thread Private Data

279

Data Sharing: Threadprivate

• Makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables, static class members

• Different from making them PRIVATE
– with PRIVATE global variables are masked.
– THREADPRIVATE preserves global scope within each thread

• Threadprivate variables can be initialized using COPYIN or at time of definition
(using language-defined initialization capabilities)

280

A Threadprivate Example (C)

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{
 counter++;
 return (counter);
}

Use threadprivate to create a counter for each thread.

281

Data Copying: Copyin

parameter (N=1000)
 common/buf/A(N)
!$OMP THREADPRIVATE(/buf/)

!$ Initialize the A array
 call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

 … Now each thread sees threadprivate array A initialized
 … to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin clause.

282

Exercise: Monte Carlo Calculations
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities, find optimal
values, etc.

• Example: Computing π with a digital dart board:

l Throw darts at the circle/square.
l Chance of falling in circle is proportional to

ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
l Compute π by randomly choosing points; π is

four times the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

283

Exercise: Monte Carlo pi (cont)

• We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program
– random.c: a simple random number generator
– random.h: include file for random number generator

• Create a parallel version of this program.
• Run it multiple times with varying numbers of threads.
• Is the program working correctly? Is there anything wrong?

284

Parallel Programmers love Monte Carlo algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{
 long i; long Ncirc = 0; double pi, x, y;
 double r = 1.0; // radius of circle. Side of squrare is 2*r
 seed(0,-r, r); // The circle and square are centered at the origin
 #pragma omp parallel for private (x, y) reduction (+:Ncirc)
 for(i=0;i<num_trials; i++)
 {
 x = random(); y = random();
 if (x*x + y*y) <= r*r) Ncirc++;
 }

 pi = 4.0 * ((double)Ncirc/(double)num_trials);
 printf("\n %d trials, pi is %f \n",num_trials, pi);
}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

285

Random Numbers: Linear Congruential Generator (LCG)
• LCG: Easy to write, cheap to compute, portable, OK quality

l If you pick the multiplier and addend correctly, LCG has a period of PMOD.
l Picking good LCG parameters is complicated, so look it up (Numerical Recipes is

a good source). I used the following:
u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

286

LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{
 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

Seed the pseudo random
sequence by setting
random_last

287

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10 R
elative error

Log10 number of samples

Run the same
program the
same way and
get different
answers!

That is not
acceptable!

Issue: my LCG
generator is not
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

288

Exercise: Monte Carlo pi (cont)

• Create a threadsafe version of the monte carlo pi program

• Do not change the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your parallel random number

generator have to know any details of the generator or make any changes to how the generator
is called?

– The random number generator must be thread-safe

• Verify that the program is thread safe by running multiple times for a fixed number
of threads.

• Any concerns with the program behavior?

289

LCG code: threadsafe version

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{
 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

random_last carries state between
random number computations,

To make the generator threadsafe,
make random_last threadprivate so
each thread has its own copy.

290

Thread Safe Random Number Generators

Log
10 R

elative error

Log10 number of samples

Thread safe version gives the
same answer each time you
run the program.

But for large number of
samples, its quality is lower
than the one thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe

291

Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random numbers of length

equal to the period of the RNG

l In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

l Grab arbitrary seeds and you may generate overlapping sequences
u E.g. three sequences … last one wraps at the end of the RNG period.

l Overlapping sequences = over-sampling and bad statistics … lower quality or even wrong answers!

Thread 1
Thread 2

Thread 3

292

Parallel random number generators
• Multiple threads cooperate to generate and use random numbers.
• Solutions:

– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin” as if dealing a

deck of cards.
– Block method … pick your seed so each threads gets a distinct

contiguous block.

• Other than “replicate and pray”, these are difficult to implement. Be
smart … get a math library that does it right.

If done right, can
generate the
same sequence
regardless of the
number of
threads …

Nice for
debugging, but
not really needed
scientifically.

Intel’s Math kernel Library supports a wide range of
parallel random number generators.

For an open alternative, the state of the art is the Scalable Parallel
Random Number Generators Library (SPRNG): http://www.sprng.org/

from Michael Mascagni’s group at Florida State University.

http://www.sprng.org/

293

MKL Random Number Generators (RNG)

#define BLOCK 100
double buff[BLOCK];
VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,
 BLOCK, buff, low, hi)

vslDeleteStream(&stream);

l MKL includes several families of RNGs in its vector statistics library.
l Specialized to efficiently generate vectors of random numbers

Initialize a
stream or
pseudo
random
numbers

Select type of RNG
and set seed

Fill buff with BLOCK pseudo rand.
nums, uniformly distributed with values
between lo and hi.

Delete the stream when you are done

294

Wichmann-Hill Generators (WH)

• WH is a family of 273 parameter sets each defining a non-overlapping and
independent RNG.

• Easy to use, just make each stream threadprivate and initiate RNG stream so each
thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

 …

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

295

Independent Generator for each thread

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

WH one
thread
WH, 2
threads
WH, 4
threads

Log
10 R

elative error

Log10 number of samples
Notice that once
you get beyond
the high error,
small sample
count range,
adding threads
doesn’t
decrease quality
of random
sampling.

296

#pragma omp single
 { nthreads = omp_get_num_threads();
 iseed = PMOD/MULTIPLIER; // just pick a seed
 pseed[0] = iseed;
 mult_n = MULTIPLIER;
 for (i = 1; i < nthreads; ++i)
 {
 iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);
 pseed[i] = iseed;
 mult_n = (mult_n * MULTIPLIER) % PMOD;
 }

 }
 random_last = (unsigned long long) pseed[id];

Leap Frog Method
• Interleave samples in the sequence of pseudo random numbers:

– Thread i starts at the ith number in the sequence
– Stride through sequence, stride length = number of threads.

• Result … the same sequence of values regardless of the number of threads.

One thread
computes offsets
and strided
multiplier

LCG with Addend = 0 just
to keep things simple

Each thread stores offset starting
point into its threadprivate “last
random” value

297

Same sequence with many threads.
• We can use the leapfrog method to generate the same

answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for the
y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

