
Wahid Redjeb1,2

wahid.redjeb@cern.ch

1CERN, European Organization for Nuclear Research, Meyrin, Switzerland
2RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany,

1

Efficient Memory Management

1

Wahid Redjeb - ESC2023, Bertinoro, October 2023 2

What is memory?

● In general, memory refers to the storage a program uses to write and read data

● Memory is usually managed through virtual memory OS
○ Map different hardware to address spaces

■ RAM
■ GPU memory
■ HBM
■ Disk space: swap or mmap files

Wahid Redjeb - ESC2023, Bertinoro, October 2023 3

Different types of memory

Secondary
Memory

(Storage)
e.g. SSD, HDD

● Secondary Memory (SSD, HDD) [variable storage]
● Main Memory (RAM) [usually tens of GBs]
● 3 levels of cache

● Small [32/64kB] separate L1 (I+D) caches for
each core.

● Medium [256kB - 6MB] combined L2 cache,
perhaps shared among some cores.

● Large [4 - 20MB] combined L3 cache shared
between all cores

Wahid Redjeb - ESC2023, Bertinoro, October 2023 4

Different types of memory - Latency

A.Bocci, CERN

Wahid Redjeb - ESC2023, Bertinoro, October 2023 5

Caches

● CPU looks for data in L1 -> L2 -> L3 -> RAM
● Data area loaded in cache in unit of cache lines

○ Usually 64bytes, but depends on
architecture

● Decision in which hierarchy level some data will
stay depends on hardware
○ Memory controllers looks at memory access

patterns
○ Cache locality
○ Cache lines might be promoted or demoted

depending on these patterns
● Cache eviction policies

○ LRU (Last-recently-used)
○ FIFO (First-in-First-Out)
○ Random

Wahid Redjeb - ESC2023, Bertinoro, October 2023 6

Different types of memory

Have a look at your system
● lscpu
● lstopo

Wahid Redjeb - ESC2023, Bertinoro, October 2023 7

Why are we interested in memory?

● Most of the memory is very slow compared to CPU operations

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Why are we interested in memory?

Everything here is better than
reading from main memory

When writing efficient code, the most
important thing to address is memory

But there’s no general rule, the best
solution to adopt depends on your
data

● Know your data

8

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Data temporal locality
○ Exploit data that has just been read or written to memory
○ Exploit data that is “hot” in the processor cache

● Data spatial locality
○ Fully exploit cache line: work on adjacent data!
○ Avoid pointers chasing if possible

■ Pointers to pointers to pointers …
○ AoS → SoA

● Hide memory latency
○ Prefetch data in advance while working on previous data
○ Keep the processor busy while more data is fetched
○ Common strategy on GPU

● If possible avoid dynamic allocations
○ Remember: understand your data
○ Custom allocators

● Avoid high level abstraction

Data oriented design

9

Wahid Redjeb - ESC2023, Bertinoro, October 2023

BASICS

10

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Size of Data Types

Size of a type corresponds to the number of bytes needed to store an object of that type

● Use sizeof() operator to get the size of your type
○ Try it yourself with some common types
○ char, int, float, double, int *, std::vector<double>, std::vector<int>

● Define your own Class / Struct with different members and get the size of your class
○ Try to change the order of the members
○ Try to add a bool to your members

11

Wahid Redjeb - ESC2023, Bertinoro, October 2023

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Size of Data Types

12

Wahid Redjeb - ESC2023, Bertinoro, October 2023

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Size of Data Types

13 bytes

13

Wahid Redjeb - ESC2023, Bertinoro, October 2023

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Size of Data Types

sizeof(MyStruct) -> 2413 bytes

14

Wahid Redjeb - ESC2023, Bertinoro, October 2023

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Size of Data Types

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

13 bytes

15

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● To have a more efficient memory access from the CPU data types are aligned
● Alignment is an integer value representing the number of bytes between successive

addresses at which objects of this type can be allocated.
○ Type with alignment of 4 can be allocated only every 4 bytes

● The valid alignment values are non-negative integral powers of two.
● The operator alignof() gives you the alignment of a type
● You can request stricter alignment using alignas() specifier
● The alignment of any class object is given by the largest of the alignment of its

members

Alignment of data types

16

Wahid Redjeb - ESC2023, Bertinoro, October 2023

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

13 bytes

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

0 23

17

Wahid Redjeb - ESC2023, Bertinoro, October 2023

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

13 bytes

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

0 24
a a a a

18

Wahid Redjeb - ESC2023, Bertinoro, October 2023

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

13 bytes

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

a a a a b b b b b b b b
0 24

19

Wahid Redjeb - ESC2023, Bertinoro, October 2023

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

13 bytes

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

a a a a b b b b b b b b c
0 24

20

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Alignment of Data Types

13 bytes

alignof(int) -> 4

alignof(double) -> 8

Additional padding is required to properly align each data member!
Let’s optimize this

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

a a a a b b b b b b b b c
0 24

21

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Alignment of Data Types

13 bytes

Struct is much more packed now, we are already saving 8 bytes

struct MyStruct {

double b; // 8bytes

int a; //4 bytes

bool c; // 1 byte

};

b b b b b b b a a a a cb
0 24

22

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Alignment of Data Types - Optimize memory design

13 bytes

b b b b b b b b a a a a c

Struct is much more packed now, we are already saving 8 bytes

● Put data members in decreasing size order
● Group data members based on their size and

alignment
○ Dedicate some time to understand if you are

introducing padding and if you can avoid it
● Group data members based on their usage

○ Better to have data members that are used
together within a single cache line!
■ Cache line usually are 64bytes.

struct MyStruct {

double b; // 8bytes

int a; //4 bytes

bool c; // 1 byte

};

Struct is much more packed now, we are already saving 8 bytes

b b b b b b b a a a a cb
0

23

24

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Create a Class or struct for a Particle with the following members
○ 1 const std::string to hold the particle’s name;
○ 3 doubles for the x, y, z velocities
○ 3 bools to mark if there has been a collision along the x, y z directions
○ 1 float for the mass
○ 1 float for the energy
○ 3 doubles for the px, py, pz coordinates
○ 1 const int for the particle’s id
○ 1 static int to keep track of the total number of objects

● What is the best order for your members?

Exercise

24

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● void* std::malloc(std::size_t size);
○ Allocates size bytes of uninitialized storage.
○ If successful returns pointer to the beginning of newly allocated memory
○ On failure returns a null pointer
○ Suitable alignment for any scalar type
○ Nothing is initialized, just raw memory
○ Requires manual freeing of the memory

● void* std::calloc(std::size_t num, std::size_t size);
○ Allocate memory for an array of num objects of size size
○ Initialized it to all bits zero

● void* std::aligned_alloc(std::size_t alignment, std::size_t size);
○ Allocate a block of memory of at least size bytes
○ The memory buffer is aligned to at least alignment bytes

■ Useful in SIMD to avoid Cache False Sharing
● Require memory aligned to a cache line (64bytes usually)

Memory operations - Allocation

25

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● std::free(void* ptr);
○ Frees allocated memory block by malloc(), calloc() aligned_alloc()
○ The content of the memory is not erased!

■ Any object in the memory is not destroyed!
○ The free operation returns the memory to the system

Memory operations - Freeing memory

26

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Remember, std::malloc(), std::calloc(), std::aligned_alloc() return raw,
uninitialized memory

● T* new T(args…);
○ Allocates and creates object T

● T* new(ptr) T{args…};
○ ptr is some memory previously allocated
○ Constructs an object of type T using its constructor T::T(args…)

■ The object is created in the allocated memory at ptr
● T* new(ptr) T[N]{args…};

○ ptr is some memory previously allocated
○ Constructs N object of type T using its constructor T::T(args…)

■ The object is created in the allocated memory at ptr

Memory operations - Constructing objects

27

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Before freeing the memory (std::free()), you have to destroy the created objects

● std::destroy_at(T* ptr);
○ Calls destructor of object of type T at the memory address ptr
○ Equivalent to ptr->~T();

● std::destroy_n(T* ptr, std::size_t n);
○ Calls destructor of n objects of type T starting at the memory address ptr

● std::destroy(T* first, T* last);
○ Calls destructor of the objects of type T in the range [first, last]

Memory operations - Destroy objects

28

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● False sharing is a performance-degrading usage pattern that happens in
multi-threaded application

● If two cores are accessing different elements that are in the same cache line
○ Each core has it’s own copy of the cache line

● Core0 reads the value X from the cache line
○ It marks the cache line as exclusive

● Core1 reads the value Y from the its copy of the same cache line
○ Both core mark the cache line as shared

● Core0 decides to write in address space of X
○ Marks its cache line as updated

■ It has to send a message to Core1 saying it has updated the cache line
● Core1 marks its cache line as invalid

○ Has to re-read the cache line from main memory
● Core0 has to immediately return the result back to main memory

This process for keeping caches in coherence can be extremely expensive!

(False Sharing)

29

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Two main principles:

● Exploit time locality
○ If a program accesses one memory address, there is a good chance that it will access the

same address again after a short amount of time.
■ E.g loops (variable sum continuously updated)

● Exploit spatial locality
○ If a program accesses one memory address, there is a good chance that it will also access

other nearby addresses.

Note: Data Structure and Memory Access are two faces of the same coin. You should design them
together!

Optimize Memory Access

30

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Sequential Memory Access

x0 x1 x2 … … xN-1 xN

● Consecutive element access
● Good cache locality
● Good memory bandwidth
● Each cycle can read consecutive memory area

○ Cached Memory Access
● Good use of prefetcher

Perfect memory access pattern for CPUs!

31

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Random Memory Access

x0 x1 x2 … … xN-1 xN

● Elements are accessed in random order
● Cache locality not ensured anymore
● Bad memory bandwidth
● Impossible to prefetch data
● Prefetcher not used

Never use this!

32

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Strided Memory Access

 xi … xi+k … xi+2

k
… xi+3

k
…

● Elements are accessed at fixed intervals
● Good use of prefetcher

○ Pattern easy to predict

● Very common pattern on GPU
○ Stride size = Grid Size
○ Coalesced memory access

■ Good cache locality and
bandwidth

xi xi+1 xi+2 xi+k
xi+k+2 …xi+k+

1
…

33

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● The way you access memory is not only driven by the algorithm, but it strongly
depends on how you designed your datastructure

● Let’s investigate our GoodParticle datastructure

● Write a function to initialize a collection of N GoodParticles
○ Assign some value to each member of GoodParticle
○ Pick a x_max value
○ And a time value t

● Write a function that takes as input the collection, and x_max
● Iterate over the elements of this collection and for each element:

○ Update the position x → x = x + px / mass * t
○ If x < 0 or x > x_max → set hit_x to true

■ Else, set it to false and change the sign of px

Memory Access - Data Structures

34

Wahid Redjeb - ESC2023, Bertinoro, October 2023

GoodParticle memory access

x +=

35

Wahid Redjeb - ESC2023, Bertinoro, October 2023

GoodParticle memory access

x += px

36

Wahid Redjeb - ESC2023, Bertinoro, October 2023

GoodParticle memory access

x += px/m * t

37

Wahid Redjeb - ESC2023, Bertinoro, October 2023

GoodParticle memory access

p.x += p.px/p.m * t
p.hit_x = statement? true : false

38

Wahid Redjeb - ESC2023, Bertinoro, October 2023

GoodParticle memory access

Particle 1

Particle 2

39

p.x += p.px/p.m * t
p.hit_x = statement? true : false

Next iteration

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Our problem needs only some members of our class GoodParticle
○ We are paying the price of loading the full object for accessing its members
○ sizeof(GoodParticle) = 96bytes
○ sizeof(doublex) + sizeof(doublepx) + sizeof(doublehit_x) + sizeof(floatmass) = 21bytes

■ We are using only 22% of what we are reading!
● Our std::vector<GoodParticle> is commonly called Array of Struct

○ Very common dastracture coming from Object Oriented Programming (OOP)
■ Self contained objects

● Bad cache locality and bad memory bandwidth
■ Commonly used because it easy to represent the reality

● Not so good for manipulating data in some scenario
● In principe we would like to have a data structure that allow us to use only what we

need in a specific piece of code

GoodParticle memory access

40

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Array of Structs vs Struct of Arrays

struct Particle {
 double x;
 double y;
 double z;

…
};

std::vector<Particle> particles;

● All data fields for each element are
stored together in a contiguous block
of memory.

● Cache locality might be loss if not all
the elements are used

struct ParticleSoA {
 std::vector<double> x;
 std::vector<double> y;
 std::vector<double> z;

…
};

ParticleSoA particles;

● Each data field of all elements is
stored in separate arrays.

● This layout is beneficial when you
need to perform operations on some
fields for all elements concurrently

41

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Take the last exercise
○ Implement an SoA version of GoodParticle
○ Add two more functions, one for initializing the SoA collection and one to

perform the operation previously discussed
● Try to time it

○ Try to use compiler optimization (-O1 -O2 -O3)
○ What happens?

● What memory access pattern are we using now?
● Is your data structure interface that different?

AoS vs SoA

42

Wahid Redjeb - ESC2023, Bertinoro, October 2023

AoS vs SoA

Padding

● Sequential access pattern on each member of
our object!

● Use only what you need
○ You can pass to your function only the

members you are going to use

int N = 100;
std::vector<GoodParticleAoS> particles(N);
96 bytes * 100 = 9600 bytes
9600 bytes / 64 bytes/cacheline = 150 cache lines

ParticleSoA particles(N);
21 bytes * 100 = 2100 bytes
2100 / 64 bytes/cacheline = 33 cache lines!

43

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● So far our SoA uses std::vector, which is useful to be able to resize our datastructure
● However, resizing is quite expensive
● Better to have fixed sized SoA

○ If you don’t know your exact size, better to put a Max Value
■ Knowing the size (and alignment) at compile time helps the compiler to

optimize your code
● Especially true for vectorization!

● Moreover, you can use single memory buffers to allocate and deallocate memory in
one go, or to transfer it to accelerators
○ And you could also reuse the same memory!

More on SoA

44

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Modify your ParticleSoA struct such that:
○ Contains a single memory buffer and a single size
○ Contains M pointers pointing to the beginning of each “column”
○ Explicit constructor that takes the number of particle you want to allocate

■ Allocates the needed memory with a single operation
■ Set each pointer to the beginning of the column
■ Remember alignment!

g++ -Wall -Wextra -fsanitize=address your_program.cc

To check if gcc is happy with your alignment!

Exercise

45

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Allocating and deallocating can be very expensive
● We can try to reduce the impact of the allocations and deallocation by reusing

some allocated memory

● Write a class representing an allocator
○ Should have an allocate(), deallocate() and free() methods
○ Let’s take inspiration from the CUB caching allocator
○ Next slide for more details

More exercises: Caching Allocator

46

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Idea: reuse memory already preallocated but not used
● Let’s decide to only allocate memory in fixed size blocks

● Everytime I ask for some memory the allocator should decide the minimum block it
has to allocate.
○ For example if I ask for 24kB of memory it would allocate 32kB

● Once the memory is not used anymore, we don’t release the memory, but instead
we keep the memory in a pool
○ If another allocation fits this 32kB of memory, the same block will be reused
○ Otherwise, we create another block

More exercises: Caching Allocator

47

Wahid Redjeb - ESC2023, Bertinoro, October 2023

More exercises: Caching Allocator
Ask allocation

32kB

Allocate a big
enough block

24kB 24kB

32kB

Assign block for
request allocation

Ask for deallocation

24kB

32kB

deallocating Caching allocated block

32kB

32kB

48

Wahid Redjeb - ESC2023, Bertinoro, October 2023

More exercises: Caching Allocator
Ask for another
allocation

512kB

Allocate a big
enough block

490kB
490kB

512kB

Assign block for
request allocation

Ask for de allocation

490kB

512kB

deallocating Caching allocated block

512kB

32kB 512kB

49

Wahid Redjeb - ESC2023, Bertinoro, October 2023

More exercises: Caching Allocator
Ask for another
allocation

30kB

32kB

Take block from
cached blocks

30kB

32Kb

512kB

512kB

50

Wahid Redjeb - ESC2023, Bertinoro, October 2023

More exercises: Caching Allocator

Ask for deallocation

24kB

32kB

deallocating Caching allocated block

32kB

32kB 512kB

51

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Possible scenario after some iterations

More exercises: Caching Allocator

512kB

512kB

512kB

32kB
4096kB

4096kB

Cached → Available for reuse

32kB 512kB

32MB

Currently used memory

52

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● At this point I hope the illustration helped …

● Write an allocator that allocates blocks of memory fitting the requested size (blocks
of memory of power of 2)
○ The allocator should have a min_number_bin and max_number_bin, max

allocation size
○ Bin growth (8^bin_number)
○ If requested allocation is bigger than max_number_bin, allocate space

normally
○ If requested size is bigger than max_allocation_size, return bad alloc
○ Remember alignment!
○ Use your allocator to allocate members in your ParticleSoA structure!
○ Try to measure performance!

More exercises: Caching Allocator

53

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● At some point you will know how to deal with multi-threading using TBB
○ That means you will have to deal with race conditions!

● Can you make your allocator thread-safe?
● But possibilities are even more now, for example you can also decide to have an

allocator for each thread or for each group of threads!

Caching Allocator - Bonus

54

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Stuff becomes more and more complex … now you have a GPU and you are the
guru of GPU programming
○ You can manage both CPU and GPU memory with allocators!
○ I am not going to provide a solution for this exercise, but in case you are eager

to try, you can have a look at the caching allocator used by CMS

Caching Allocator - Bonus Bonus

Real example in CMS!

From A.Bocci -
ACAT2022

55

https://github.com/cms-patatrack/pixeltrack-standalone/blob/master/src/cuda/CUDACore/CachingHostAllocator.h

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Memory Fragmentation

Allocate 1kB, 4kB, 2kB

Deallocate 1kB, 4kB

Allocate 2kB

Allocate 4kB → Unable

4kB are available, but not of contiguous
memory
→ Memory Fragmentation

● UNIX system uses the glibc
memory allocator

56

Wahid Redjeb - ESC2023, Bertinoro, October 2023

If your program allocates and deallocates objects with different life times, you get
memory fragmentation and the process might not be able to return the memory to the
OS

● Alternative allocators
○ Might give you better performance and reduce memory fragmentation

■ But detailed studies are necessary on the full application
● Jemalloc

○ Used by Mozilla Firefox, Facebook, …
○ Tries to avoid memory fragmentation

● TCMalloc
○ Developed by Google
○ Fast C implementation of malloc and new, multithreaded

Jemalloc and TCMalloc

57

Wahid Redjeb - ESC2023, Bertinoro, October 2023

Jemalloc on a real example

● Real scenario: CMS Software, multithreaded software
○ Multi-threading brings to even more memory fragmentation

● Jemalloc manages to reduce the peak memory, and as secondary effects reduces also the
processing time!

58

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Memory is what keeps you away from running code efficiently
● Keep memory always in mind when you are developing your software
● Remember to understand your hardware and map what you are programming on it
● Investigate your data before developing your data structure and try to understand

the memory footprint and how to better access the memory
● Profile profile profile

○ perf, valgrind, intel VTune

Take Away Message

59

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Thanks Andrea Bocci for all the inputs and help in preparing the lecture!

● Reducing memory footprint using jemalloc
○ https://twiki.cern.ch/twiki/bin/view/LCG/VIJemalloc

● What Every Programmer Should Know About Memory
○ https://akkadia.org/drepper/cpumemory.pdf

● What Programmers Should Know About Memory Allocation - S. Al Bahra, H. Sowa,
P. Khuong - CppCon 2019
○ https://www.youtube.com/watch?v=gYfd25Bdmws&t

● CppCon 2014: Mike Acton "Data-Oriented Design and C++"
○ https://www.youtube.com/watch?v=rX0ItVEVjHc&t=2838s

● jemalloc

Reference

60

https://twiki.cern.ch/twiki/bin/view/LCG/VIJemalloc
https://akkadia.org/drepper/cpumemory.pdf
https://www.youtube.com/watch?v=gYfd25Bdmws&t=815s
https://www.youtube.com/watch?v=rX0ItVEVjHc&t=2838s

Wahid Redjeb - ESC2023, Bertinoro, October 2023

BONUS

Bonus

61

Wahid Redjeb - ESC2023, Bertinoro, October 2023

● Here’s a program with the aim of fragmenting the memory from Zac blog post
○ https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-

heap-fragmentor-cpp
● Compile it and try to look at the

Jemalloc example

62

https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-heap-fragmentor-cpp
https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-heap-fragmentor-cpp

