
Floating Point Arithmetic is not Real

Tim Mattson

Git clone https://github.com/infn-esc/esc23.git

Exercises in esc23/hands-on/flop

https://github.com/infn-esc/esc23.git

1990-1993
Linda and pre-MPI
message passing

PostDoc 1986
Caltech Concurrent Computation

Project

My 40 year Career

Jobs with startups …
numerical analysis, signal

processing,
 scientific computing, and

parallel computing
1987-1990PhD chemistry

1979-1985

1996
ASCI Red:

World’s first TFLOP

2007
World’s First TFLOP

chip

2002-2005
Director of life

sciences

1994
FDIV Bug

1997
Portable

multithreading

2008
Portable GPU programming

2013
GraphBLAS

2015
Sparse Array storage

engine 2015
BigDAWG Polystore

system

Future of
heterogenous

computing
Intention Adaptation

InventionData Data

Data

Machine
Programming

≡

Unified Theory of
data and

computing

2018-Aug’2023

1993
Supercomputing
Systems Division

MPI
1994

Message
Passing

Interface

2023-2038

Tim Mattson
RIP

1958-2038

Here lies the
Christmas bat

Retirement

Write, teach,
kayak, and think

“How do you know the answer to a floating
point computation is correct?”

Common responses:
– Laughter … “of course they are correct … you must be joking”

– “We used double precision.
– “It’s the same answer we’ve always gotten.”

– “It’s the same answer others get.”
– “It agrees with special-case analytic answers.”

… But this is not a joke. It is a very serious question

Arithmetic on computers
• We do arithmetic on a computer and expect it to work the same as doing arithmetic “by hand”.

• The details of how we do arithmetic on computers and the branch of mathematics that studies the
consequences of computer arithmetic (numerical analysis) is fundamentally boring.
– Even professionals who work on computer arithmetic (other than W. Kahan*) admit (maybe only in private) that its boring.

• It’s fine to take floating point arithmetic for granted … until something breaks.

4*Professor William Kahan of UC Berkeley is the father of modern floating point arithmetic (IEEE-754)

Computer Science has changed over my lifetime. Numerical Analysis seems
to have turned into a sliver under the fingernails of computer scientists

Prof. W. Kahan, Desperately needed Remedies … Oct. 14, 2011

Exercise: Tracking time in a digital system

• You are a software engineer working on a device that tracks objects in time and space.

• The device increments time in “clock ticks” of 0.01 seconds.

• Write a simple program that tracks time for a large number of clock-ticks and then outputs the
actual time as a float. Assume you are working with an embedded processor that does not
support the type double.

• Does your program work?

5

Real numbers on a computer are represented as Floating Point numbers

• Many decimal numbers do not have an exact representation as floating point
numbers.

float A = 0.01f;

If (100 * A != 1.0) printf(“oops”);

float c, b = 1000.2f;
c = b - 1000.0;
printf (" %f”, c);

Output: 0.200012

Output: “oops”

l 0.01 and 0.2 do not have exact binary representations … so the computer
rounds to the nearest floating point number.

Real numbers on a computer are represented as Floating Point numbers

• Many decimal numbers do not have an exact representation as floating point
numbers.

float A = 0.01f;

If (100 * A != 1.0) printf(“oops”);

float c, b = 1000.2f;
c = b - 1000.0;
printf (" %f”, c);

Output: 0.200012

Output: “oops”

l 0.01 and 0.2 do not have exact binary representations … so the computer
rounds to the nearest floating point number.

Who cares?
Does this really matter?

Patriot Missile system
Patriot missile incident (2/25/91) . Failed to stop a scud missile from hitting a barracks,

killing 28 Americans.

See http://www.fas.org/spp/starwars/gao/im92026.htm

Patriot missile system: how it works

9

Missile

Search Action: entire
beam processed to get
position and velocity

Verification: range
around trajectory
defines a ”range gate”

Tracking
Only objects in the “range gate”
are tracked … to make sure
other flying objects are not
accidentally targeted.

Range gate area

Incoming object detected as an enemy missile due to properties of the trajectory. Velocity and position from Radar fixes trajectory

24 bit clock counter defines time. Range calculations defined by real arithmetic, so convert to real (i.e. floating point) numbers.

Patriot Radar
System

Patriot missile system: Disaster Strikes

10

Incoming object detected as an enemy missile due to properties of the trajectory. Velocity and position from Radar fixes trajectory

Multiplication of clock-ticks (int) by the float representation of 0.01 led to an error of 0.3433 seconds after 100 hours of operation
which, when you are trying to hit a missile moving at mach 5, corresponds to an error of 687 meters

Missile

Search Action: entire
beam processed to get
position and velocity

Verification: range
around trajectory
defines a ”range gate”

Tracking
Only objects in the “range gate”
are tracked … to make sure
other flying objects are not
accidentally targeted.

Erroneous Range
gate location

Patriot Radar
System

Missile outside range gate

Floating Point Numbers are not Real: Lessons Learned

11

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

A quick introduction to floating
point numbers

12

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 13

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 14

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 15

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 16

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 17

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 18

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 19

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 22F*(Radix, Precision, emin, emax)

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Source: Wahid Redjeb, ESC’22 24

IEEE 754 Floating Point Numbers

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Special values and related operations/exceptions

26

Jeff Arnold of Intel, 2012

For the subnormal
numbers (also
called ”denormal”)
the hidden bit is 0

27

Not a Number

Jeff Arnold of Intel, 2012 28

Jeff Arnold of Intel, 2012 29

The properties of operations
over IEEE 754 floating point

numbers

30

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

The standard also requires exact
rounding for:
• Square root
• Remainder
• Fused multiply/Add
• Conversion between integer

and floating point
But NOT:
• Conversion between decimal

and floating point.

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Relative Errors and Ulps
• Rounding error is inherent in floating-point computation
• How do we measure this error.

– Consider radix 10 floating-point format (decimal) numbers with three digits.
– If the result of a floating-point computation is 3.12 × 10-2, and the answer when

computed to infinite precision is .0314, it is clear that this is in error by 2 units in the last
place.

– if the real number .0314159 is represented as 3.14 × 10-2, then it is in error by .159
units in the last place.

– We define “unit in the last place” by the acronym “ulp”
– Continuing with radix 10 numbers with three digits

– If the result using real arithmetic is 3.14159 is approximated with floating point at 3.14,
we an define the relative error as the difference between the real and the floating point
results divided by the real result …. (3.14159 = 3.14)/3.14159 = 0.0005.

• When a result from an operation is carried out to produce the correct result (as
determined by real arithmetic) and rounded to the nearest floating point number,
the error can be no larger than 0.5 ulp

34

IEEE 754 rounding modes

#include <fenv.h>
 #pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = fegetround();

 // establish the desired rounding mode
 fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 fesetround(originalRounding);

35

#include <cfenv>
 #pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = std::fegetround();

 // establish the desired rounding mode
 std::fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 std::fesetround(originalRounding);

C C++

The 4 rounding modes in IEEE 754

Default rounding mode
Two versions …
• Nearest, on a tie, round to even
• Nearest, on a tie, away from zero

Three directed roundings

Exercise

• We provide two programs, one in C and one in C++, that demonstrate how to change rounding modes.
– roundC.c. and roundCpp.cc

• Experiment with these programs just to confirm that you know how the rounding modes work and to verify
that you can manipulate them.

• If you have time, use them in other programs you might have, to see if you can see any impact from the
different rounding modes.

36

You must be careful how you manage rounding…
Vancouver stock exchange index undervalued by 50%

(Nov. 25, 1983)

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html

Index managed on an IBM/370. 3000 trades a day and for each trade, the
index was truncated to the machine’s REAL*4 format, loosing 0.5 ULP per
transaction. After 22 months, the index had lost half its value.

Third party names are the property of their owners

Source: Wahid Redjeb, ESC’22

When moving beyond basic operations, however, you
may not get exactly rounded results
• Floating point numbers are:

–Commutative: A * B = B * A
–NOT Associative: A * (C * B) ≠ (A * C) * B
–NOT Distributive: A*(B+C) ≠ A*B + A*C

• For example, consider addition. To add a pair of numbers, you
must shift the smaller number of the pair to use the same
exponent then combine them.
–This can cause you to loose digits from the smaller number. Hence it is

dangerous to sum numbers that are of greatly different magnitudes.
–When summing a sequence of numbers, you can get different results

depending on the order of the operations … i.e. floating point operations
are not associative

Exercise: Summation with floating point arithmetic

• We have provided a C program called sum.c

• In the program, we generate a sequence of floating point numbers (all greater
than zero). Don’t look at how we create that sequence … treat the sequence
generator as a black box (in other words, just work on the sequence, don’t use
knowledge of how it was generated).

• Write code to sum the sequence of numbers. You can compare your result to our
estimate of the correct result.
– Only use float types (it’s cheating to use double … at least to start with).
– Using what you know about floating point arithmetic, is there anything you can think of doing to

improve the quality of your sum?

40

Exercise: Summation with floating point arithmetic

• Possible solutions to try.
– Use a double for the accumulator. Does that make any difference?

• Look at the way the sequence is generated and who the ”correct value’ was
produced.
– Is it a problem if we add two numbers that have widely different magnitudes?

– What if you sort the array before the summation?

41

Adding floating point numbers
• Lets keep things simple and work with F*(10, 3, -2, 2)

• Find the sum … 1.23 x 101 + 3.11 x 10-1
– Align smaller number to the exponent of the larger number

0.0311 x 101
– Add the two aligned numbers …..

42F*(Radix, Precision, emin, emax)

1 . 2 3
0 . 0 3 1 1
1 . 2 6 1 1

– Round to nearesgt (the default rounding in IEEE 754).

1 . 2 6

– Adding numbers with greatly different magnitudes causes loss of the low order bits from the exact result.

x 101

x 101

x 101

x 101

The Summation problem: Numerical Analysis to the rescue

• The branch of mathematics that studies the consequences of computer arithmetic is called numerical
analysis. (and yes, it is fundamentally boring … and don’t tell Professor Kahan that I said that)..

• Kahan (and collaborators … there are many forms of this algorithm) came up with a method to sum
sequences of numbers without loosing so much precision.

43*Professor William Kahan of UC Berkeley is the father of modern floating point arithmetic (IEEE-754)

Exercise: The Kahan Summation Algorithm

• Implement this algorithm in your summation program. Does it improve the sum.
• Spend some time playing with the code to understand EXACTLY how it works.

44

Input: a sequence of N values, x[i]for i=1,N

 correction = 0.0
 sum = 0.0

 for i = 1 to N:

 xcor = x[i] – correction

 tmpSum = sum + xcor

 correction = (tmpSum – sum) – xcor

 sum = tmpSum
 }

Output: sum

Floating Point Numbers are not Real: Lessons Learned

45

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Solution to the quadratic equation.

• Consider a quadratic equation.

47

𝑎𝑥! + 𝑏𝑥 + 𝑐 = 0

• Using real arithmetic the solution is.

𝑥 =
−𝑏 ± 𝑏! − 4𝑎𝑐

2𝑎

• Take a look at the program quad.c and run it for a few values of a, b, and c.
• Try the case:
 a = .0005, b =. 100 and c = 0.005

• Can you explain the result?

Solution to the quadratic equation.

• Consider a quadratic equation.

48

𝑎𝑥! + 𝑏𝑥 + 𝑐 = 0

• Using real arithmetic the solution is.

𝑥 =
−𝑏 ± 𝑏! − 4𝑎𝑐

2𝑎

Two sources of cancelation

Can you algebraically transform the above equation
to reduce the impact of the cancelation?

Floating Point Numbers are not Real: Lessons Learned

49

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

With arbitrary precision, there is no loss of accuracy
when subtracting real numbers

Subtracting two numbers of similar size cancels
higher order bits

Floating point arithmetic and your
compiler

50

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Source: Wahid Redjeb, ESC’22

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

… so what should you do with this
information.

54

“How do you know the answer to a floating
point computation is correct?”

Common responses:
– Laughter … “of course they are correct … you must be joking”

– “We used double precision.
– “It’s the same answer we’ve always gotten.”

– “It’s the same answer others get.”
– “It agrees with special-case analytic answers.”

… But this is not a joke. It is a very serious question

The Problem

• How often do we have “working” software that is “silently” producing inaccurate
results?
– We don’t know … nobody is keeping count.

• But we do know this is an issue for 2 reasons:
(see Kahan’s desperately needed Remedies…)

– Numerically Naïve (and unchallenged) formulas in text books (e.g. solving quadratic
equations).

– Errors found after years of use (Rank estimate in use since 1965 and in LINPACK, LAPACK, and MATLAB
(Zlatko Drmac and Zvonimir Bujanovic 2008, 2010). Errors in LAPACK’s _LARFP found in 2010.)

How should we respond?
• Programmers should conduct mathematically rigorous analysis of their floating point intensive

applications to validate their correctness.
• But this won’t happen … training of modern programmers all but ignores numerical analysis.

The following tricks* help and are better than nothing …
1. Repeat the computation with arithmetic of increasing precision, increasing it until a desired

number of digits in the results agree.
2. Repeat the computation in arithmetic of the same precision but rounded differently, say

Down then Up and perhaps Towards Zero, then compare results (this wont work with
libraries that require a particular rounding mode).

3. Repeat computation a few times in arithmetic of the same precision but with slightly
different input data, and see how widely results vary.

These are useful techniques, but they don’t go far enough. How can the
discerning skeptic confidently use FLOPs?

*Source: W. Kahan: How futile are mindless Assessments of Roundoff in floating-point computation?

When you don’t know accuracy …
Sleipner Oil Rig Collapse (8/23/91). Loss: $700 million.

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Inaccurate linear elastic model used with NASTRAN underestimated shear
stresses by 47% resulted in concrete walls that were too thin.

… so let’s just use so many bits in
our floating point numbers that we

NEVER have any problems.

59

Solution: use lots of bits and hope for the best …

Is 64 bits enough? Is it too much? We’re guessing.

70

80

1970 1980 1990 2000

Bits

Year

CDC 60

2010

20

30

40

50

60

1940 1950 1960

Zuse 22

Univac, IBM 36

Cray 64 most vendors 64

x86 80 (stack only)

Third party names are the property of their owners

Quad Precision

• There are pathological cases where you lose all the precision in an answer, but
the more common case is that you lose only half the digits.

• Hence, for 32 or 64 bit input data, quad precision (113 significant bits) is
probably adequate to make most computations safe (Kahan 2011).

61

• IEEE 754TM defines a range of formats including quad (128)

binary32 binary64 binary128
P, digits 24 53 113
emax +127 +1023 +16383

How many bits do we really need?

62

J.Y.F. Tong, D. Nagle, and R. Rutenbar, “Reducing Power by Optimizing the Necessary Precision Range of Floating Point
Arithmetic,” in IEEE Transactions on VLSI systems, Vol. 8, No.3, pp 273-286, June 2000. [2] M. Stevenson, J. Babb,

They varied the
number of bits used

to see when the
accuracy degraded

Sphinx: speech recognition
ALVIN: Neural net trainer from SPECfp92
PCASYS: NIST finger print recognition
Bench22: image processing
Fast DCT: direct, 2D DCT

Wider floating point formats turn compute bound
problems into memory bound problems

Energy implications of floating point
numbers: 32 bit vs. 64 bit numbers

Operation Approximate
energy consumed

today
64-bit multiply-add 64 pJ
Read/store register data 6 pJ
Read 64 bits from DRAM 4200 pJ
Read 32 bits from DRAM 2100 pJ

Source: S. Borkar, Intel. Data is for 32 nm technology ca. 2010

Simply using single precision in DRAM instead of double saves as much energy as 30 on-chip floating-point operations.

energy savings: replace 64 bit flops with 32 bit flops

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

%
 Energy saved replacing 64-bit

w
ith 32-bit flops

H
PL

M
onte

C
arlo

B
lack-

Scholes

C
PU

06-
C

actus

A crash
code

E3D
segsalt

N
A

M
D

-
stm

v

G
A

M
ESS

-si15h16

Source: Intel … based on a workload data set provided by Hugh Caffey (2010)

How do you decide where you can safely reduce precision?

Assume: energy scales linearly with #of bits, 64 bit FLOP
@ 200 pJ, 64 bit move DRAM to CPU @12000 pJ.

Maybe we don’t want Quad after all?
• If Performance/Watt is the goal, using Quad everywhere to

avoid careful numerical analysis is probably a bad idea.

66

… or give up on floating point
numbers and use a safe arithmetic

system instead.

Interval Arithmetic

67

Interval Numbers
• Interval number: the range of possible values within a closed set

}|{:],[xxxRxxx ££Î=ºx

1/3 ≈ 0.333333

𝑟𝑎𝑑𝑖𝑢𝑠!"#$% ≈ 6371 km 𝑟𝑎𝑑𝑖𝑢𝑠!"#$% ∈ 6353, 6384 	 𝑘𝑚

• Representing real numbers:
– A single floating point number – An interval that bounds the real number

• Representing physical quantities:
– An single value (e.g. an average) – The range of possible values

1/3 ∈ [0.33333, 0.33334]

Interval Arithmetic
Let x = [a, b] and y = [c, d] be two interval numbers

2. Subtraction x - y = [a, b] - [c, d] = [a - d, b - c]

3. Multiplication xy = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

4. Reciprocal 1 / y = [1/d, 1/c]

5. Division x/y = 𝑦	 ∈ 0

𝑦 ∉ 0

[−∞,∞]

𝑥 ? 1/𝑦

1. Addition x + y = [a, b] + [c, d] = [a + c, b + d]

𝑐, 𝑑 ≠ 0	

𝑐, 𝑑 ≠ 0	

Properties of Interval Arithmetic
Let x, y and z be interval numbers
1. Commutative Law

x + y = y + x
xy = yx

3. Distributive Law does not always hold, but
x(y + z) Í xy + xz

2. Associative Law
x + (y + z) = (x + y) + z

x(yz) = (xy)z

Functions and Interval arithmetic
• Interval extension of a function

71

𝑓 𝑥 ⊇ {𝑓(𝑦)|𝑦 ∈ 𝑥 }

• Naively can just replace variables with intervals. But be
careful … you want an interval extension that produces
bounds that are as narrow as possible. For example …

𝑓 𝑥 = 𝑥 − 𝑥 𝑙𝑒𝑡	𝑥 = [1,2]

𝑓 𝑥 = 1 − 2, 2 − 1 = [−1,1]

• An interval extension with tighter bounds can be produced by
modifying the function so the variable x appears only once.

𝑓 𝑥 = 𝑥 − 𝑥 = 𝑥 1 − 1 = 0

… or return to slide rules

72
(an elegant weapon for a more civilized age)

Public Domain, https://commons.wikimedia.org/w/index.php?curid=17480483

Image source: Presbrey advertising agency for International Business Machines, 1951

https://commons.wikimedia.org/w/index.php?curid=17480483

Sleipner Oil Rig Collapse: The slide-rule wins!!!

73

OK, lets wrap this up and
conclude.

74

Floating Point Numbers are not Real: Lessons Learned

75

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

With arbitrary precision, there is no loss of accuracy
when subtracting real numbers

Subtracting two numbers of similar size cancels
higher order bits

Aditional sources of numerical inaccuracy
• Floating Point errors

• Cumulative rounding (“creeping crud”)
• Operations on values of very different magnitudes (catastrophic accuracy destruction;

like,1016 + 3.14 gives 1016.)
• I/O; conversion of decimal to binary numbers and back

• Programmer-caused errors
• Naïve algorithms
• Poor guarding of user input, e.g. sin(x) allowing x = 10+300

• Nature-caused errors (soft errors)
• Cosmic rays hit device and flip bits

Conclusion
• Floating point arithmetic usually works and you can “almost always” be comfortable using it.

• There are well known problems … which we covered today.

• What we did not cover is numerical analysis. Floating point arithmetic is mathematically rigorous.
You can prove theorems and develop rigorous error bounds. It is very powerful.

• Unfortunately, almost nobody is learning this mathematics these days. As scientists using
computers in your research, be careful and don’t be shy about testing the fidelity of your
computations.
– Modify rounding modes as an easy way to see if round-off errors are a problem.
– Recognize that unless you impose an order of association, every order is equally valid. If your answers change as the

number of threads changes, that is valuable information suggesting in ill-conditioned problem. Anyone who suggests
the need for bitwise identical results from a parallel code should be harshly criticized/punished.

77

… wait, before we go, I have one more
topic to discuss.

78

Hardware Today is Fundamentally Parallel

79

The push for parallelism is in the physics …
stop complaining and learn to love it!

It’s actually not so bad … there are only four different hardware
platforms you need to learn how to program

80

1
2

3

4

It’s actually not so bad … there are only four different hardware
platforms you need to learn how to program

81

1
2

3

4

Let’s briefly talk
about programming

a vector unit

For hardware … parallelism is the path to performance

CPU + SIMD/Vector

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

The vector units are
integrated with the

CPU cores.

83

An alternative way to think of vector operations

84

For N streams,
we think of the
vector unit as

having N vector-
lanes (in this

case, 10)

Different Vector Instruction sets (x86 only)

85

Writing vectorized code

• You can write “assembly-like” code to use the vector units.

• But almost nobody (outside of performance fanatics … mostly working at Intel)
does this. They get the compiler to generate the code for them.

• Compiler driven vectorization happens in two ways …
– Super-word parallelization
– Loop vectorization

86

87

88

Even though you
are going let the
compiler
vectorize code
for you … it
helps if you
understand
EXACTLY how it
does this.

Transform a loop into N streams …

• The first thing the compiler must do is to create a number of streams corresponding to the number
of ”vector lanes”

• Example … consider a simple loop that adds two vectors.

89

for (int i=0; i<N;i++)
 C[i] = A[i] + B[i];

• Assume the vectors are a type float (4 bytes, or 32 bits)and we have a SIMD/Vector unit of width
128 bits. That means 128/32 = 4 streams.

• To unroll a loop, we block the loop so each iteration of the new loop body handles 4 iterations of
the original loop (for now, let’s keep things simple and assume four evenly divides N).

for (int i=0; i<N/4;i+4){
 C[i] = A[i] + B[i];
 C[i+1] = A[i+1] + B[i+1];
 C[i+2] = A[i+2] + B[i+2];
 C[i+3] = A[i+3] + B[i+3];
}

90

An Interesting Problem to Play With
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of N
rectangles:

Where each rectangle has width Dx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

i = 0

N

91

Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (int i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

See esc23/hands-on/flop/pi.c

Exercise: Unroll the pi program

• Make a copy of the pi.c program. You want to save the original one so you can
compare to it later.

• Unroll the loop in the pi program four-fold.
• Note: I use OpenMP to use its simple timer … omp_get_wtime() so you will need

to compile the program as:

92

• Start with optimization level 0. This tells the compiler do NOT do anything fancy
(such as autovectorization).

• Once you have the unrolled program running, so how it changes with other
optimization levels.

• How does the performance compare to the original program?

gcc –fopenmp –O0 pi.c

Pi unrolled

93

$ gcc -O0 -fopenmp -o pi_unroll pi_unroll.c

$./pi_unroll

Base (double) 8388608 steps 3.141593: ave=0.027333 min=0.021463 max=0.060666 secs
Base (float) 8388608 steps 2.991987: ave=0.021593 min=0.020670 max=0.022706 secs
Unroll 4 (float) 8388608 steps 3.139504: ave=0.014700 min=0.014274 max=0.015405 secs
Unroll 4 (double) 8388608 steps 3.141593: ave=0.015834 min=0.014840 max=0.016305 secs

sum=0.0;

 for (int i=0;i< num_steps; i=i+4){
 x0 = (i+0.5f)*step;
 x1 = (i+1.0f)*step;
 x2 = (i+1.5f)*step;
 x3 = (i+2.0f)*step;
 sum = sum + 4.0f*(1.0f/(1.0f+x0*x0) + 1.0f/(1.0f+x1*x1) +
 1.0f/(1.0f+x2*x2) + 1.0f/(1.0f+x3*x3));

 }

Replace the unrolled loop body with the vector intrinsics
• Vector intrinsics use an assembly code style … explicit vector registers and low-level register-to-

register instructions.

• Use the include file … #include<intrinsics.h>. Tell the compiler to enable the native vector
instruction sets with –mach=nativer

• Common instructions:
• __m128 var0; //var is a variable of type 128 bit vector register
• __m128 var1 _mm_setr_ps(a, b, c, d); // pack 4 single precision values into a vector register
• __m128 var2 = _mm_load1_ps(&val); // pack 4 SP values with the value pointed to by val
• __m128 var3 = _mm_add_ps(var1,var2); // add two packed SP registers and put the result in var3
• __m128 var3 = _mm_mul_ps(var1,var2); // multiply two packed SP registers and put the result in var3
• __m128 var3 = _mm_div_ps(var1,var2); // divide two packed SP registers and put the result in var3
• _mm_store_ps(&varrauy[0],var3); // move 4 values in a packed SP (var3) into 4 elements of varray

• You can chain the vector instructions:
• __m128 var4 = _mm_mul_sp(_mm_vadd_ps(v1,v2),v3);

94
For more info … https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Replace the unrolled loop body with the vector intrinsics

95

step = 1.0/(float) num_steps;
 __m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
 __m128 one = _mm_load1_ps(&scalar_one);
 __m128 four = _mm_load1_ps(&scalar_four);
 __m128 vstep = _mm_load1_ps(&step);
 __m128 sum = _mm_load1_ps(&scalar_zero);
 __m128 xvec;
 __m128 denom;
 __m128 eye;

 for (i=0;i< num_steps; i=i+4){ // assume num_steps%4 = 0

 ival = (float)i;
 eye = _mm_load1_ps(&ival);
 xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
 denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
 sum = _mm_add_ps(_mm_div_ps(four,denom),sum);
 }
 _mm_store_ps(&vsum[0],sum);

 pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);

This is hard and not portable between vector
instruction sets
• Most of us let the compiler do the vectorization for us. The following table lists the

most important compiler switches.

96

• There is much more we could cover in a complete discussion of compiler
vectorization. Our goal here was to explain how it works using a simple example
and give you some basic options to get you started.

-O2 vectorize qnd other optimizations, but try to keep code size down and keep
compile-time down

-O3 vectorize and other aggressive optimizations, don’t worry about how long it
takes or code size

-Ofast vectorize VERY aggressively relaxing floating point standards if needed
-fopt-info-vec Generate a detailed report about vectorization
-march=native Enable native vector instruction sets

Why not just ignore the vector/SIMD units?
• If you are not using the vector unit, you are ignoring much of the available

performance (even though you are paying for it … in dollars/euros and power).
• For example, consider an Intel i7 CPU (SandyBridge … an old CPU, 2010) with

SSE vector instructions.

97

• 6 cores, 3.2 Ghz, 2-wide hyperthreading,
4-wide Single Precision (SP) Vector unit,
2-wide scale SP scalar*.
– 6*3.2*2*2 = 76.8 SP Gigaflops Scalar
– 6*3.2*2*4 = 153.6 SP Gigaflops Vector

https://www.anandtech.com/show/5091/intel-core-i7-3960x-sandy-bridge-e-review-keeping-the-high-end-alive

Peak perf estimates based on: “Debunking the 100X CPU vs. GPU myth”,
Lee et al, https://dl.acm.org/doi/10.1145/1815961.1816021

Most of the performance comes from
the vector unit.

How do you access that performance?

Conclusion

• Floating point arithmetic … we typically pretend its real and we take whatever
performance we can get.

• Hopefully you now see that this can be dangerous. Be careful and watch out for
problems.
– Check condition numbers when they are provided by libraries.
– Try different rounding modes and make sure answers are stable
– Run loops backwards (when you can) and make sure answers are stable
– Think about algorithms and watch for round-off error accumulations and cancelation problems

• When all else fails, find a good numerical analyst to help
• And finally … if you have a nice CPU to use, make the most of it. Make your

loops friendly to vectorize and turn on vectorization compiler flags

98

Back-up slides

99

Exercise: The Kahan Summation Algorithm

• Using the properties of floating point arithmetic, algorithms that reduce round-off errors can be designed.
• A famous one is the Kahan Summation Algorithm. Here it is in pseudo-code

100

Input: a sequence of N values, x[i] i=1,N

 correction = 0.0
 sum = 0.0

 for i = 1 to N:

 xcor = x[i] – correction

 tmpSum = sum + xcor

 correction = (tmpSum – sum) – xcor

 sum = tmpSum
 }

Output: sum

sum is big, but xcor is small. à Low order digits of xcor are lost

(tmpSum-sum) recovers xcor, but without the
bits lost in computation of tmpSum.
Xcor has those bits. Subtracting xcor recovers
those lost bits. But xcor is later than (tmpSum-
sum) so you must apply the correction by
subtracting it.

apply the correction term to x[i] since it’s a small number and we’d
loose precision if we corrected sum (which is much larger, so we’d
loose low order bits in the operation)

Source: Wahid Redjeb, ESC’22

Notes to support the “how
many bits do we need” slide

