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“How do you know the answer to a floating
point computation is correct?”

Common responses:

— Laughter ... “of course they are correct ... you must be joking”
- “We used double precision.

— “It's the same answer we’ve always gotten.”

— “It's the same answer others get.”

— "It agrees with special-case analytic answers.”

... But this is not a joke. It is a very serious question




Arithmetic on computers

» We do arithmetic on a computer and expect it to work the same as doing arithmetic “by hand”.

» The details of how we do arithmetic on computers and the branch of mathematics that studies the
consequences of computer arithmetic (numerical analysis) is fundamentally boring.
— Even professionals who work on computer arithmetic (other than W. Kahan*) admit (maybe only in private) that its boring.

Computer Science has changed over my lifetime. Numerical Analysis seems
to have turned into a sliver under the fingernails of computer scientists

Prof. W. Kahan, Desperately needed Remedies ... Oct. 14, 2011

* It’s fine to take floating point arithmetic for granted ... until something breaks.

*Professor William Kahan of UC Berkeley is the father of modern floating point arithmetic (IEEE-754)



Exercise: Tracking time in a digital system

You are a software engineer working on a device that tracks objects in time and space.

The device increments time in “clock ticks” of 0.01 seconds.

Write a simple program that tracks time for a large number of clock-ticks and then outputs the
actual time as a float. Assume you are working with an embedded processor that does not
support the type double.

Does your program work?



Real numbers on a computer are represented as Floating Point numbers

« Many decimal numbers do not have an exact representation as floating point
numbers.

float A= 0.01f;

Output: “oops”
If (100 *A = 1.0) printf("oops”);

float c, b = 1000.2f;

¢ =b -1000.0; Output: 0.200012
printf (" %f”, c);

e 0.01 and 0.2 do not have exact binary representations ... so the computer
rounds to the nearest floating point number.



Real numbers on a computer are represented as Floating Point numbers

« Many decimal numbers do not have an exact representation as floating point
numbers.

Who cares?
Does this really matter?

float A= 0.01f;

Output: “oops”
If (100 *A = 1.0) printf("oops”);

float c, b = 1000.2f;

¢ =b -1000.0; Output: 0.200012
printf (" %f”, c);

e 0.01 and 0.2 do not have exact binary representations ... so the computer
rounds to the nearest floating point number.



Patriot Missile system

Patriot missile incident (2/25/91) . Failed to stop a scud missile from hitting a barracks,

- |

See http://www.fas.org/spp/starwars/gao/im92026.htm



Patriot missile system: how it works

Incoming object detected as an enemy missile due to properties of the trajectory. Velocity and position from Radar fixes trajectory

Trackin
y 3

Verification: range
around trajectory

defines a "range gate” z

Search Action: entire
beam processed to get
position and velocity

Missile

Only objects in the “range gate”
are tracked ... to make sure
other flying objects are not
accidentally targeted.

\Range gate area

Patriot Radar
System

24 bit clock counter defines time. Range calculations defined by real arithmetic, so convert to real (i.e. floating point) numbers.



Patriot missile system: Disaster Strikes

Incoming object detected as an enemy missile due to properties of the trajectory. Velocity and position from Radar fixes trajectory

Only objects in the “range gate”
Tracking are tracked ... to make sure
3 other flying objects are not
accidentally targeted.

@outside ra@

Verification: range
around trajectory
defines a "range gate” 2

Search Action: entire

gate location

beam processed to get ;\S Erroneous Range
Y

position and velocity 1

Missile

Patriot Radar
System

Multiplication of clock-ticks (int) by the float representation of 0.01 led to an error of 0.3433 seconds after 100 hours of operation
which, when you are trying to hit a missile moving at mach 5, corresponds to an error of 687 meters 10




Floating Point Numbers are not Real: Lessons Learned

Real Numbers

Floating Point numbers

a closed set

Any number can be represented ... real numbers are

Not all numbers can be represented ... operations

can produce numbers that cannot be represented ...

that is, floating point numbers are NOT a closed set

11



A quick introduction to floating
point numbers

12
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Real Numbers

in mathematics R

Real Numbers

Z
Integers

»=3,-2,—-1,0,1,2,3,...

V2,75

P
Irrational Numbers

Real numbers can be thought of as all
points on a line called the number line or
real line, where the points corresponding
to integers are equally spaced

Source: lanna Osborne, CoDaS-HEP, July 19, 2023 13
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Scientific Notation

real number representation

significand  exponent

Gr6.674%x 107 1m3 kg=1. 572
The above expression means

0.00000000006674 or 6.674¢ — 11

the exponent shows by how far
m, to “float” the decimal point

Source: lanna Osborne, CoDaS-HEP, July 19, 2023 14
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Scientific Notation

real number representation

A real number can be represented by

X = (—1)65‘4 db= - be,
=0

wheres € {0,1},0 >2,i € {0,1,2,...},d; € {0,....b — 1}
and dy > O when x # 0, b and e are integers

For example: G = 6.674 x 107 m?> . kg=1 . 572

6x10°+6X 107 +7x 1072+ 4 x 1073) x 107!

Sourc

e: lanna

Osborne, CoDaS-HEP, July 19, 2023

15
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Sets of Floating-point Data

finite computer representation

* Floating-point number system is defined by the four natural numbers:

In computing, the binary (base-2),

° b Z 2, the radiX, (2 or 10) octal (base-8) and hexadecimal

(base-16) bases are most commonly
used.

e p > 1, the precision (the number of of digits in the significand)

the largest possible exponent

Cmax’
. e,.., the smallest possible exponent, (shall be 1 — ¢, . for all formats)
* Notation:
F(b9 P> €mins emax)

Source: lanna Osborne, CoDaS-HEP, July 19, 2023 16




PRINCETON

A UNIVERSITY . @ h
Floating-point Number Systems O

a finite subset of R

The set F(b,p,e, .., €,...) of real numbers represented by this system consists of
all floating-point numbers of the form:

@-D
(=1 Y db~'-b*,
=0

se€{0,1},d € {0,...b—1}forali,ec{e,.....,e,..}

represented in radix b:

tdy.dy...d,_; X b,

Source: lanna Osborne, CoDaS-HEP, July 19, 2023

17
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Floating-point Number Systems

Representations of the decimal number 0.1 (with b = 10)

1.0x 107%,0.1 x 10% 0.01 x 10%, ...

Different representations due to choice of exponent

Source: lanna Osborne, CoDaS-HEP, July 19, 2023 18
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Normalized Representation

Normalized number:
ido.dl...dp_l X b, dy # 0
The normalized representation is unique and therefore preferred

The number 0, as well as all numbers smaller than b»n, have no normalized
representation

Set of normalized numbers:

F*(b,p, e

min? emax)

Source: lanna Osborne, CoDaS-HEP, July 19, 2023

19
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Quiz:

How many floating point numbers do the systems F*(b,p,e,,. . e

PRINCETON ( ’> IrlS

max) and F(b, D> €ins emax) contain?

Source: lanna Osborne, CoDaS-HEP, July 19, 2023




RN O
Quiz:

How many floating point numbers do the systems F*(b,p,¢, . .e,.)and F(b,p,e, . ,e, ) contain?

For each exponent, F*(b,p,e, ., e, .) has b — 1 possibilities for the first digit, and b possibilities for the
remaining p — 1digits

The size of F*(b,p, e,,;., €,.,,) is therefore
2(e

max

— €in + (B — 1)BP7Y,
if we take the two possible signs into account.
Fb,p,e,,., e,..) has extra nonnegative numbers of the form
0d,... dp_IZemin,
and there are bP 1. Adding the non-positive ones and subtracting 1 for counting 0 twice, we get

2bP~1 — 1 extra numbers.

Source: lanna Osborne, CoDaS-HEP, July 19, 2023
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Normalized Representation

F*(2,3, —2.2)

do.d1d2 €:_2 €=—1 €=0 €=1
1.00, 0.25 0.5 1 2
1.01, 0.3125 0.625 1.25 2.5
1.10, 0.375 0.75 1.5 3
1.11, 0.4375 0.875 1.75 3.5
0
| I | | | | | | | | | |
| I rri | | | | | | | | | |
b T
1.00-272 1.11-22=

F*(Radix, Precision, emin, emax)

Source: lanna Osborne, CoDaS-HEP, July 19, 2023

|r|S
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Floating-point Arithmetic Timeline

“...the next generation of application programmers and error analysts will face new challenges and have

new requirements for standardization. Good luck to them!”
https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/ieee-computer.pdf

Intel 80486
Average calculation speed: addition — 0.8 seconds,
multiplication — 3 secondst! the first tightly-pipelinedr x86 design as well as the first x86
Arithmetic unit: Binary floating-point, 22-bit, add, subtract, chip to include more than one million transistors. It offered « : .
multiply, divide, square root a large on-chip cache and an integrated floating-point unit. new kinds of Compu'fatlonal demands

might eventually encompass new
kinds of standards, particularly for
fields like artificial intelligence,
machine vision and speech

L0 recognition, and machine learning.
BEGEOE ?j Some of these fields obtain greater
. = S0 < accuracy by processing more data
ngylomgns wo.rked B £ ‘% 0 faster rather than by computing with
with floating-point -8 Q B more precision — rather different
sexagesimal numbers ! - Q g IEEE p745 W constraints from those for traditional
By Venusianer, CC BY-SA 3.0, hitp&:// 9 The Sosrpoos i iy el scientific computing.”
l commons.wikimedia.qrg(wﬁndex.php?curid=3632073 l E l l lfloalingpoimarilhmelic.
—@ ara ® -0 ® ® o—
4 tzeusm I P A ¢ *o ‘_.ﬂm ¢ I | @
1750 B.C. 3 8 S ® 1964 IBM 360 B b %o T o I I you are here I
- ~|& CDC 6600 T T T
g DEC 10 IEEE 754-1987 IEEE 754-2008 |EEE 754-2019 |EEE 754-2029
© > binary and
* each hardware manufacturer had its own type of floating point Intel began to des_,igr) 2 floating—ppint de.czlmal. ﬂoatlr?g—
co-processor for its i8086/8 and 432 point arithmetic

« different machines from the same manufacturer might have different |

. types of floating point
' » when floating point was not supported in the hardware, the different
compilers emulated different floating point types Source: lanna Osborne, CoDaS-HEP, July 19, 2023

microprocessors
subjected to review at
least every 10 years




IEEE 754 Floating Point Numbers

sign exponent (8 bits)
|

w

p-1

fraction (23 bits)

A
0|011111000100 0/0|0(0|0Of0|0Of0|Of0OJO|OJO|O|O|O|O]|O| FP32
3130 g Pk P, (bit index) 0
10
Hidden bit ==
IEEE Name | Precision N bits Exponentw | Fraction p e . €
Binary32 Single 32 8 24 -126 +127
Binary64 Double 64 11 53 -1022 +1023
Binary128 Quad 128 15 113 -16382 +16383
Exponent: E = e - e .+ 1,whbits
e = -e + 1

Source: Wahid Redjeb, ESC’'22
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Exceptions :

* The IEEE floating point standard defines several exceptions that occur when the result of a floating point operation is
unclear or undesirable. Exceptions can be ignored, in which case some default action is taken, such as returning a
special value. When trapping is enabled for an exception, an error is signaled whenever that exception occurs.

* Possible floating point exceptions:

* Underflow: The result of an operation is too small to be represented as a normalized float in its format. If trapping is
enabled, the floating-point-underflow condition is signaled. Otherwise, the operation results in a denormalized float or
Zero.

* Overflow: The result of an operation is too large to be represented as a float in its format. If trapping is enabled, the
floating-point-overflow exception is signaled. Otherwise, the operation results in the appropriate infinity.

» Divide-by-zero: A float is divided by zero. If trapping is enabled, the divide-by-zero condition is signaled. Otherwise,
the appropriate infinity is returned.

 Invalid: The result of an operation is ill-defined, such as (0.0/0.0). If trapping is enabled, the floating-point-invalid
condition is signaled. Otherwise, a quiet NaN is returned.

* Inexact: The result of a floating point operation is not exact, i.e. the result was rounded. If trapping is enabled, the
floating-point-inexact condition is signaled. Otherwise, the rounded result is returned.

* Trapping of these exceptions can be enabled through compiler flags, but be aware that the resulting code will run slower.

Source: lanna Osborne, CoDaS-HEP, July 19, 2023




Special values and related operations/exceptions

TABLE D-2 IEEE 754 Special Values

TABLE D-3 Operations That

Exponent Fraction | Represents Progiee S
Operation | nan Produced By
+ ® + (- )
€ = €min - 1 f#0 0.f x 2% % 0 x ®
€min = € = €max | -- 1.f x 2€ / 0/0, ©/®
€ = €emax + 1 =0 = REM X REM 0, % REM y
TABLE D-4 Exceptions in IEEE 754*
Exception |Result when traps disabled | Argument to trap handler
overflow £ % or £Xmax round(x2 @)
underflow 0, ¥ or denormal round(x2a)
divide by zero | £« operands
invalid NaN operands
inexact round(x) round(x)

26
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CERN

openlab

Jeff Arnold of Intel, 2012

Walking Through Floating-point

Numbers

0x0000000000000000
0x0000000000000001

OxO000fffffffffffff
0x0010000000000000

OxO001fffffffffffff
0x0020000000000000

tzero

smallest
subnormal

For the subnormal
numbers (also

called "denormal”)
the hidden bitis O

largest subnormal

smallest normal

2 X smallest

normal

27
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openlab

Jeff Arnold of Intel, 2012

Walking Through Floating-point

Numbers

0x0020000000000000

Ox7fefffffffffffff
O0x7££0000000000000
Ox7££0000000000001

Ox7fffffffffffffff
0x8000000000000000

2 X smallest

normal

largest normal

+infinity

Not a Number

NaN

-Z€ero

28
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openlab

Walking Through Floating-point

Numbers

0x8000000000000000
0x8000000000000001

Ox800fffffffffffff
0x8010000000000000

Oxf££0000000000000

-Z€ero

“smallest” negative
subnormal

“largest” negative
subnormal

“smallest” negative
normal

-infinity

Jeff Arnold of Intel, 2012

29



The properties of operations
over |IEEE 754 floating point
numbers

30
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Correctly Rounded Arithmetic

* The IEEE standard requires that the result of addition, subtraction, multiplication and division be exactly rounded

« Exactly rounded means the results are calculated exactly and then rounded. For example: assuming p = 23,
x = (1.00..00), X 2% and z = (1.00..01), X 272, then x — z is

( 1.00000000000000000000000| )2 X 20
- ( 0.00000000000000000000000/0100000000000000000000001 )5 % 20
= (0.11111111111111111111111{1011111111111111111111111 )5 x 29
Normalize : ( 1.11111111111111111111111/0111111111111111111111110 ) x 27!
Round to
Nearest : ( 1.11111111111111111111111 )o x 271

« Compute the result exactly is very expensive if the operands differ greatly in size
* The result of two or more arithmetic operations are NOT exactly rounded

* How is correctly rounded arithmetic implemented?

» Using two additional guard bits plus one sticky bit guarantees that the result will be the same as computed
using exactly rounded [Goldberg 1990]. The above example can be done as

(- 1.00000000000000000000000| )o x 20
— (0.00000000000000000000000/011 )5 x 2
= (0.11111111111111111111111J101 ) x 2°
Normalize : ( 1.11111111111111111111111|01 ), x 27!
Round to Nearest : ( 1.11111111111111111111111 )g x 271

Source: lanna Osborne, CoDaS-HEP, July 19, 2023




> PRINCETON
UNIVERSITY

Correctly Rounded Arithmetic

* The IEEE standard requires that the result of addition, subtraction, multiplication and division be exactly rounded

 Exactly rounded means the results are calculated exactly and then rounded. For example: assuming p = 23,

x = (1.00..00), x 2° and z = (1.00..01), X 272, then x — z is

( 1.00000000000000000000000 )o x 20

— ( 0.00000000000000000000000/0100000000000000000000001 )5 x 2°

= (0.11111111111111111111111{1011111111111111111111111 )5 x 20

Normalize : ( 1.11111111111111111111111/0111111111111111111111110 )5 x 27!
Round to

Nearest : ( 1.11111111111111111111111 )g x 271

« Compute the result exactly is very expensive if the operands differ greatly in size
* The result of two or more arithmetic operations are NOT exactly rounded

* How is correctly rounded arithmetic implemented?

The standard also requires exact

rounding for:

» Square root

* Remainder

* Fused multiply/Add

« Conversion between integer
and floating point

But NOT:

» Conversion between decimal
and floating point.

» Using two additional guard bits plus one sticky bit guarantees that the result will be the same as computed

using exactly rounded [Goldberg 1990]. The above example can be done as

(- 1.00000000000000000000000| )o x 29
— (" 0.00000000000000000000000/011 ), x 2"
= (0.11111111111111111111111J101 )5 x 2°
Normalize : ( 1.11111111111111111111111|01 ) x 27!
Round to Nearest : ( 1.11111111111111111111111 )g x 271
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Rounding

absolute and relative rounding error

» A positive REAL number in the normalized range (x,,,, < x < X

min S ) can be represented as

max.

(X)2 =(1 . b1b2“'bp—1'“) X 28,

where x,,;,(=2°n) and x
omitted since now.)

max

* The nearest floating point number less than or equal to x is
X_ =(1b1b2bp—l) X 2€
* The nearest floating point number larger than x is

x, =(1.byby...b,_; +0.00...1)x 2¢

The gap between x, and x_, called unit in the last place (ulp) is
2-(p=1)2e
* The absolute rounding error is

abserr(x) = |round(x) - X | < 2=(P=1)2e _yp

The relative rounding error is

d(x) — 2-(p=1)ge
relerr(x) = |roun| (xl) *| < > =2-(P=1) _¢
x e

(= (1 — 277)2¢na*1) are the smallest and largest normalized floating point numbers. (Subscript 2 for binary representation is

Source: lanna Osborne, CoDaS-HEP, July 19, 2023




Relative Errors and Ulps

e Rounding error is inherent in floating-point computation
e How do we measure this error.

— Consider radix 10 floating-point format (decimal) numbers with three digits.

— If the result of a floating-point computation is 3.12 x 10-2, and the answer when

computed to infinite precision is .0314, it is clear that this is in error by 2 units in the last
place.

— if the real number .0314159 is represented as 3.14 x 102, then it is in error by .159
units in the last place.

— We define “unit in the last place” by the acronym “ulp”
— Continuing with radix 10 numbers with three digits

— If the result using real arithmetic is 3.14159 is approximated with floating point at 3.14,
we an define the relative error as the difference between the real and the floating point
results divided by the real result .... (3.14159 = 3.14)/3.14159 = 0.0005.
* When a result from an operation is carried out to produce the correct result (as

determined by real arithmetic) and rounded to the nearest floating point number,
the error can be no larger than 0.5 ulp

34



IEEE 754 rounding modes

The 4 rounding modes in IEEE 754

rounding mode

Default rounding mode \
to nearest

Two versions ...

C

toward zero
to +infinity
to —infinity

#include <fenv.h>
#pragma STDC FENV_ACCESS ON

// store the original rounding mode
const int originalRounding = fegetround( );

// establish the desired rounding mode
fesetround(FE_ TOWARDZERO);

// do whatever you need to do ...
// ... and restore the original mode afterwards
fesetround(originalRounding);

C name * Nearest, on a tie, round to even
——————————————:/ * Nearest, on a tie, away from zero
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD < Three directed roundings
FE_DOWNWARD
C++

#include <cfenv>
#pragma STDC FENV_ACCESS ON

// store the original rounding mode
const int originalRounding = std::fegetround( );

// establish the desired rounding mode
std::fesetround(FE_ TOWARDZERO);

// do whatever you need to do ...
// ... and restore the original mode afterwards
std::fesetround(originalRounding);

35



Exercise

» We provide two programs, one in C and one in C++, that demonstrate how to change rounding modes.
— roundC.c. and roundCpp.cc

« Experiment with these programs just to confirm that you know how the rounding modes work and to verify
that you can manipulate them.

« If you have time, use them in other programs you might have, to see if you can see any impact from the
different rounding modes.

rounding mode C name

to nearest FE_TONEAREST
toward zero FE_TOWARDZERO
to +infinity FE_UPWARD

to -infinity FE_DOWNWARD

36



You must be careful how you manage rounding...

Vancouver stock exchange index undervalued by 50%
(Nov. 25, 1983)

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html

Index managed on an IBM/370. 3000 trades a day and for each trade, the
index was truncated to the machine’s REAL*4 format, loosing 0.5 ULP per
transaction. After 22 months, the index had lost half its value.

Third party names are the property of their owners



Condition numbers

e Given a x number you want to compute f(x) = vy
o But there is the rounding in place
m Most of the time you have X = x + Ax

m f(x + Ax) =y + Ay
e \We can compute the following number
Aﬂ '
o3l _ - f@)
8L |f(z)]
~In(z) with z=1
Example: 1 e Small condition number means:
C=-——x o Small Ax produces small Ay

Inx
g o Well Conditioned
e Big condition number means:

o Small Ax produces big Ay

o lll conditioned

Source: Wahid Redjeb, ESC’'22



When moving beyond basic operations, however, you
may not get exactly rounded results

 Floating point numbers are:
— Commutative: A*B=B*A
—NOT Associative: A*(C*B) #(A*C)*B
- NOT Distributive: A*(B+C) # A*B + A*C

* For example, consider addition. To add a pair of numbers, you
must shift the smaller number of the pair to use the same
exponent then combine them.

— This can cause you to loose digits from the smaller number. Hence it is
dangerous to sum numbers that are of greatly different magnitudes.

—When summing a sequence of numbers, you can get different results
depending on the order of the operations ... i.e. floating point operations
are not associative



Exercise: Summation with floating point arithmetic

* We have provided a C program called sum.c

* |In the program, we generate a sequence of floating point numbers (all greater
than zero). Don'’t look at how we create that sequence ... treat the sequence
generator as a black box (in other words, just work on the sequence, don't use

knowledge of how it was generated).

* Write code to sum the sequence of numbers. You can compare your result to our

estimate of the correct result.
— Only use float types (it's cheating to use double ... at least to start with).

— Using what you know about floating point arithmetic, is there anything you can think of doing to
improve the quality of your sum?

40



Exercise: Summation with floating point arithmetic

» Possible solutions to try.
— Use a double for the accumulator. Does that make any difference?

* Look at the way the sequence is generated and who the “correct value’ was
produced.
— Is it a problem if we add two numbers that have widely different magnitudes?

— What if you sort the array before the summation?

41



Adding floating point numbers

 Lets keep things simple and work with F*(10, 3, -2, 2)

« Findthe sum ... 1.23 x 10" + 3.11 x 101
— Align smaller number to the exponent of the larger number
0.0311 x 101
— Add the two aligned numbers .....

— Round to nearesgt (the default rounding in IEEE 754).
1 . 2 6 x10°

— Adding numbers with greatly different magnitudes causes loss of the low order bits from the exact result.

F*(Radix, Precision, emin, emax)

42



The Summation problem: Numerical Analysis to the rescue

» The branch of mathematics that studies the consequences of computer arithmetic is called numerical
analysis. (and yes, it is fundamentally boring ... and don’t tell Professor Kahan that | said that)..

« Kahan (and collaborators ... there are many forms of this algorithm) came up with a method to sum
sequences of numbers without loosing so much precision.

*Professor William Kahan of UC Berkeley is the father of modern floating point arithmetic (IEEE-754)

43



Exercise: The Kahan Summation Algorithm

* Implement this algorithm in your summation program. Does it improve the sum.
» Spend some time playing with the code to understand EXACTLY how it works.

Input: a sequence of N values, x[ilfor i=1,N

correction = 0.0
sum = 0.0

for 1 = 1 to N:
xcor = x[i] — correction
tmpSum = sum + Xxcor
correction = (tmpSum — sum) — xcor
sum = tmpSum

I3
OQutput: sum

44



Floating Point Numbers are not Real: Lessons Learned

Real Numbers

Floating Point numbers

Any number can be represented ... real numbers are
a closed set

Not all numbers can be represented ... operations

can produce numbers that cannot be represented ...

that is, floating point numbers are NOT a closed set

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

45
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Cancellation

» Cancellation occurs when we subtract two almost equal numbers

* The consequence is the error could be much larger than the machine epsilon

* For example, consider two numbers

x = 3.141592653589793 (16-digit approximation to )
y = 3.141592653585682 (12-digit approximation to )

Their difference is

z = x — y = 0.000000000004111 = 4.111x10~12

In a C program, if we store X, y in single precision and display z in single precision, the difference is

0.000000e+00 Complete loss of accuracy

If we store X, y in double precision and display z in double precision, the difference is

4.110933815582030e-12

Partial loss of accuracy

Source: lanna Osborne, CoDaS-HEP, July 19, 2023
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Solution to the quadratic equation.

« Consider a quadratic equation.
ax’+bx+c=0

 Using real arithmetic the solution is.

—b + Vb2 — 4ac
X =
2a

« Take a look at the program quad.c and run it for a few values of a, b, and c.

* Try the case:
a = .0005, b =.100 and ¢ = 0.005

« Can you explain the result?
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Solution to the quadratic equation.

« Consider a quadratic equation.
ax’+bx+c=0

 Using real arithmetic the solution is.

—b + Vb2 — 4ac

X = W

Two sources of cancelation

Can you algebraically transform the above equation
to reduce the impact of the cancelation?
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Floating Point Numbers are not Real: Lessons Learned

Real Numbers

Floating Point numbers

Any number can be represented ... real numbers are
a closed set

Not all numbers can be represented ... operations
can produce numbers that cannot be represented ...
that is, floating point numbers are NOT a closed set

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

With arbitrary precision, there is no loss of accuracy
when subtracting real numbers

Subtracting two numbers of similar size cancels
higher order bits
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Floating point arithmetic and your
compiler

50



PRINCETON

AN UNIVERS-ITY - - - hep
Optimization levels and related options

GCC has a rich optimization pipeline that is controlled by approximately a hundred command line options

The default is to not optimize. You can specify this optimization level on the command line as -O0. It is often used when developing
and debugging a project. This means it is usually accompanied with the command line switch -g so that debug information is
emitted. As no optimizations take place, no information is lost because of it. No variables are optimized away, the compiler only
inlines functions with special attributes that require it, and so on. As a consequence, the debugger can almost always find
everything it searches for in the running program and report on its state very well. On the other hand, the resulting code is big and
slow

The most common optimization level for release builds is -O2 which attempts to optimize the code aggressively but avoids large
compile times and excessive code growth.

Optimization level -O3 instructs GCC to simply optimize as much as possible, even if the resulting code might be considerably
bigger and the compilation can take longer.

Note that neither -O2 nor -O83 imply anything about the precision and semantics of floating-point operations. Even at the
optimization level -O3 GCC implements math functions so that they strictly follow the respective IEEE and/or ISO rules. This often
means that the compiled programs run markedly slower than necessary if such strict adherence is not required. The command line
switch -ffast-math is a common way to relax rules governing floating-point operations.

The most aggressive optimization level is —0fast which does imply —f fast—-math along with a few options that disregard strict
standard compliance. In GCC 11 this level also means the optimizers may introduce data races when moving memory stores which
may not be safe for multithreaded applications. Additionally, the Fortran compiler can take advantage of associativity of math
operations even across parentheses and convert big memory allocations on the heap to allocations on stack. The last mentioned
transformation may cause the code to violate maximum stack size allowed by ulimit which is then reported to the user as a
segmentation fault.

Source: lanna Osborne, CoDaS-HEP, July 19, 2023




Compilers options!

e There are many compiler options which affect floating point results!

e Some of them can be enabled/disabled by other options!
e Different compilers might have different options!

e gcc default mode is “Strict IEEE 754 mode”
e -01, -02, -03, -Ofast , -ffast-math, -funsafe-math-optimizations

https://gcc.anu.orag/onlinedocs/gcc-
12.2.0/gcc/Optimize-Options.html

Tool for inspecting assembly code

http://gcc.godbolt.org

Source: Wahid Redjeb, ESC’'22
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Optimization level recommendation

» Usually we(*) recommend using -O2, because at this level the compiler makes balanced size and speed trade-offs
when building a general-purpose operating system

* However, we suggest using -OS3 if you know that your project is compute-intensive and is either small or an important
part of your actual workload

* Moreover, if the compiled code contains performance-critical floating-point operations, we strongly advise that you
investigate whether -ffast-math or any of the fine-grained options it implies can be safely used

503 by e

s10.parest+ .
1910 |y
| -0O3 -ffast-math
ARy . ® Plain -03
sad.nct_ |
s54.roms_+ |

0% 20% 40% 60% 80% 100% 120% 140% 160% 180%

FIGURE 18: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF SELECTED FLOATING-POINT BENCHMARKS BUILT WITH GCC 11.2 AND -03
-MARCH=NATIVE, WITHOUT AND WITH -FFAST-MATH

* (") https://documentation.suse.com/sbp/server-linux/single-html/SBP-GCC-11/

| Source: lanna Osborne, CoDaS-HEP, July 19, 2023 |




... 80 what should you do with this
information.
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“How do you know the answer to a floating
point computation is correct?”

Common responses:

— Laughter ... “of course they are correct ... you must be joking”
- “We used double precision.

— “It's the same answer we’ve always gotten.”

— “It's the same answer others get.”

— "It agrees with special-case analytic answers.”

... But this is not a joke. It is a very serious question




The Problem

* How often do we have “working” software that is “silently” producing inaccurate
results?
— We don’t know ... nobody is keeping count.

« But we do know this is an issue for 2 reasons:
(see Kahan'’s desperately needed Remedies...)

— Numerically Naive (and unchallenged) formulas in text books (e.g. solving quadratic
equations).

— Errors found after years of use (Rank estimate in use since 1965 and in LINPACK, LAPACK, and MATLAB
(Zlatko Drmac and Zvonimir Bujanovic 2008, 2010). Errors in LAPACK’s _LARFP found in 2010.)



How should we respond?

* Programmers should conduct mathematically rigorous analysis of their floating point intensive
applications to validate their correctness.
 But this won’t happen ... training of modern programmers all but ignores numerical analysis.
The following tricks* help and are better than nothing ...
1. Repeat the computation with arithmetic of increasing precision, increasing it until a desired
number of digits in the results agree.
2. Repeat the computation in arithmetic of the same precision but rounded differently, say
Down then Up and perhaps Towards Zero, then compare results (this wont work with
libraries that require a particular rounding mode).

3. Repeat computation a few times in arithmetic of the same precision but with slightly
different input data, and see how widely results vary.

These are useful techniques, but they don’t go far enough. How can the
discerning skeptic confidently use FLOPs?

*Source: W. Kahan: How futile are mindless Assessments of Roundoff in floating-point computation?



When you don’t know accuracy ...

Sleipner Oil Rig Collapse (s/23/91). Loss: $700 million.
ks ;: ; '!'

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Inaccurate linear elastic model used with NASTRAN underestimated shear
stresses by 47% resulted in concrete walls that were too thin.



... SO let’s just use so many bits in
our floating point numbers that we
NEVER have any problems.
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Solution: use lots of bits and hope for the best ...

x86 80 (stac

most vendors 64

1940 1950 1960 1970 1980 1990 2000 2010

Is 64 bits enough? Is it too much? We’re guessing.

Third party names are the property of their owners



Quad Precision
« |IEEE 754™ defines a range of formats including quad (128)

binary32 binary64 binary128
P, digits 24 53 113
emax +127 +1023 +16383
1 bit MsB  wbits LsSB MSB t=p-1Dbits LSB
S E T
(sign)| (biased exponent) (trailing significand field)
Egoooeeoeee E g e dp_1

* There are pathological cases where you lose all the precision in an answer, but
the more common case is that you lose only half the digits.

* Hence, for 32 or 64 bit input data, quad precision (113 significant bits) is
probably adequate to make most computations safe (Kahan 2011).



How many bits do we really need?

100.00% e Alvinn
90.00% —g—Bench22
80.00% —ap— Fast DCT
70.00% ——PCASYS

g 60.00% —%— Sphinx

Q

2 50.00%

5 40.00%

§ 2000% | __ They varigd the
oo | B e || mmberofts o
10.00% I?::tcll;égr::igfegcet,pzrlgcgscii'ng accuracy degraded
0.00% -

23 21 19 17 15 13 11 9 7 5 3 1

Mantissa Bitwidth

J.Y.F. Tong, D. Nagle, and R. Rutenbar, “Reducing Power by Optimizing the Necessary Precision Range of Floating Point
Arithmetic,” in IEEE Transactions on VLS| systems, Vol. 8, No.3, pp 273-286, June 2000. [2] M. Stevenson, J. Babb,



Wider floating point formats turn compute bound
problems into memory bound problems

Time

A

secC

msec

sec -

nsec -

15 sec

Atanasoff-

Time for a 64-bit
Memory Fetch

Time for a 64-bit

Multiply-Add

1 usec

Today’s computers now take

much longer to fetch or store

than to add and multiply.

Cray TM
13g Cray2

100 nsec

1 usec 90 nsec
ILLIAC IV )
84 nsec29 e Pentium Il Xeon 5500
4 nsec 1.3 nsec
| | | | | | | 1 >
1940 1950 1960 1970 1980 1990 2000 2010

Year



Energy implications of floating point
numbers: 32 bit vs. 64 bit numbers

Operation Approximate
energy consumed

today

64-bit multiply-add 64 pJ
Read/store register data 6 pJ
Read 64 bits from DRAM 4200 pJ
Read 32 bits from DRAM 2100 pJ

Simply using single precision in DRAM instead of double saves as much energy as 30 on-chip floating-point operations.

Source: S. Borkar, Intel. Data is for 32 nm technology ca. 2010



energy savings: replace 64 bit flops with 32 bit flops

Assume: energy scales linearly with #of bits, 64 bit FLOP
60 - @ 200 pJ, 64 bit move DRAM to CPU @12000 pJ.

50

40
30
20
10

0

sdojj Hg-ZE yIm
JIq-y9 Buioejdaa paaes ABiaug 9,

o »w W OO0 Qo > 4 0w Z y
m§ 0 = 0 O o o @ §> ‘L’:G;
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7] 1 =25 m(mﬂ

How do you decide where you can safely reduce precision?

Source: Intel ... based on a workload data set provided by Hugh Caffey (2010)



Maybe we don’t want Quad after all?

* |[f Performance/Watt is the goal, using Quad everywhere to
avoid careful numerical analysis is probably a bad idea.

energy savings: replace 64 bit flops with 32 bit flops
Assume: energy scales linearly with #of bits, 64 bit FLOP

52 60 - @ 200 pJ, 64 bit move DRAM to CPU@12000 pJ.
z
2 50
$2 40
2 8
W
N @ 30 -
&5
28 20 -
B 8
» 35 10 -
«
2 o
=2 93 mo_u 90 Q » g ;az b O
= 22 23 ac 23 §° 2E 3E
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» ' S

How do you decide where you can safely reduce precision?

Source: Intel ... basedon s workload dsta set provided by Hugh Caffey Third Party names are the property oftheir owners.
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... or give up on floating point
numbers and use a safe arithmetic
system instead.

Interval Arithmetic
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Interval Numbers

* Interval number: the range of possible values within a closed set

x=[x,x]={xeR|x<x<Xx}

* Representing real numbers:

— A single floating point number — An interval that bounds the real number
1/3 = 0.333333 1/3 € [0.33333, 0.33334]

» Representing physical quantities:

— An single value (e.g. an average)| — The range of possible values

radius,q 5 = 6371 km radius,,+n, € [6353,6384] km



Interval Arithmetic
Let x =[a, b] and y = [c, d] be two interval numbers

1. Addition x+y =Jla b]l+[c, dl=[a+c b+d]

2. Subtraction x-y =J[a,b]l-[c,d]=[a—-d, b -]
3. Multiplication xy = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

4. Reciprocal 1/y=[1/d, 1/c]

x-1/y c,d#0 y &0

5. Division Xy =9 oo, 00] ¢,d # 0 y €0




Properties of Interval Arithmetic

Let x, y and z be interval numbers
1. Commutative Law
xX+y=y+x
Xy = yx

2. Associative Law
x+(y+z)=(x+y)+z
x(yz) = (xy)z

3. Distributive Law does not always hold, but
x(y +z) c xy +xz



Functions and Interval arithmetic

* Interval extension of a function

FIdxD 2 Oly € [x13

» Naively can just replace variables with intervals. But be
careful ... you want an interval extension that produces
bounds that are as narrow as possible. For example ...

fx)=x—x let x = [1,2]

flx]=11-22-1] =[-11]

* An interval extension with tighter bounds can be produced by
modifying the function so the variable x appears only once.

fx)=x—x=x(1-1)=0
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... or return to slide rules

150 Extra Engineers

An IBM Electronic Calculator speeds through thousands of in-
tricate computations so quickly that on many complex problems
it’s like having 150 EXTRA Engineers.

No longer must valuable engineering personnel . . . now in
critical shortage . . . spend priceless creative time at routine
repetitive figuring.

Thousands of IBM Electronic Business Machines . . . vital to
our nation’s defense . . . are at work for science, industry, and the
armed forces, in laboratories, factories, and offices, helping to
meet urgent demands for greater production.

iBM INTERNATIONAL BUSINESS MACHINES

Public Domain, https://commons.wikimedia.org/w/index.php?curid=17480483

(an elegant weapon for a more civilized age)

Image source: Presbrey advertising agency for International Business Machines, 1951



https://commons.wikimedia.org/w/index.php?curid=17480483

Sleipner Oil Rig Collapse: The slide-rule wins!!!

It was recognized that finding and cor-
recting the flaws in the computer anal-
ysis and design routines was going to
be a major task. Further, with the in-
come from the lost production of the
gas field being valued at perhaps $1
million a day, it was evident that a re-
placement structure needed to be de-
signed and built in the shortest possible
time.

A decision was made to proceed with
the design using the pre-computer,
slide-rule era techniques that had been
used for the first Condeep platforms
designed 20 years previously. By the
time the new computer results were
available, all of the structure had been
designed by hand and most of the struc-
ture had been built. On April 29, 1993
the new concrete gravity base structure
was successfully mated with the deck
and Sleipner was ready to be towed to
sea (See photo on title page).

The failure of the Sleipner base struc-
ture, which involved a total economic
loss of about $700 million, was proba-
bly the most expensive shear failure ev-
er. The accident, the subsequent
investigations, and the successful rede-
sign offer several lessons for structural
engineers. No matter how complex the
structure or how sophisticated the com-
puter software it is always possible to
obtain most of the important design pa-
rameters by relatively simple hand cal-
culations. Such calculations should
always be done, both to check the com-
puter results and to improve the engi-
neers’ understanding of the critical
design issues. In this respect it 1s im-
portant to note that the design errors in
Sleipner were not detected by the ex-
tensive and very formal quality assur-
ance procedures that were employed.
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OK, lets wrap this up and
conclude.

74



Floating Point Numbers are not Real: Lessons Learned

Real Numbers

Floating Point numbers

Any number can be represented ... real numbers are
a closed set

Not all numbers can be represented ... operations
can produce numbers that cannot be represented ...
that is, floating point numbers are NOT a closed set

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

With arbitrary precision, there is no loss of accuracy
when subtracting real numbers

Subtracting two numbers of similar size cancels
higher order bits
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Aditional sources of numerical inaccuracy

* Floating Point errors
Cumulative rounding (“creeping crud”)

Operations on values of very different magnitudes (catastrophic accuracy destruction;
like,10'¢ + 3.14 gives 1076.)

|/O; conversion of decimal to binary numbers and back
 Programmer-caused errors

Naive algorithms

Poor guarding of user input, e.g. sin(x) allowing x = 10*300
« Nature-caused errors (soft errors)

« Cosmic rays hit device and flip bits



Conclusion

Floating point arithmetic usually works and you can “almost always” be comfortable using it.

There are well known problems ... which we covered today.

What we did not cover is numerical analysis. Floating point arithmetic is mathematically rigorous.
You can prove theorems and develop rigorous error bounds. It is very powerful.

Unfortunately, almost nobody is learning this mathematics these days. As scientists using
computers in your research, be careful and don’t be shy about testing the fidelity of your
computations.

— Modify rounding modes as an easy way to see if round-off errors are a problem.

— Recognize that unless you impose an order of association, every order is equally valid. If your answers change as the
number of threads changes, that is valuable information suggesting in ill-conditioned problem. Anyone who suggests
the need for bitwise identical results from a parallel code should be harshly criticized/punished.
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... wait, before we go, | have one more
topic to discuss.

78



Hardware Today is Fundamentally Parallel

Moore's Law (ctd.)

100,000

Intel Core i7 4 cores 4.2 GHz (
Intel Core i7 4 cores 4.0 GHz (Boost
Intel Core i7 4 cores 4.0 GHz (Boost to 4.
Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 G
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz aboos( t0 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

31,999
Intel Core Duo Extreme 2 cores, 3.0 GHz
Intel Core 2 Extreme 2 cores, 2.9 GHz
AMD Athlon 64, 2.8 GHz —>

AMD Athlon, 2.6 GHz Z
Intel Xeon EE 3.2 GHz

21,871

10,000 +——

IBM Powerd, 1.3 GHz @%*
Intel VC820 motherboard, 1.0 GHz Pentium IIl processor g4~

Professional Workstation XP1000, 667 MHz 21264A
Digital AlphaServer 8400 6/575. 575 MHz 21264 2

1000

23%lyear
100

IBM RS6000/540, 30 MHz_
MIPS M2000, 25 MHz
MIPS M/120, 16.7 MHz g7

10 T T Sun4i260, 16.7 MHz ',"9
VAX 8700, 22 MHz g%
AX-11/780, 5 MHz
25%lyear
1 T T T T T T T T T T T

T T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2

. Reduce power for a fixed throughput by adding cores (c&v)y

Input

Processor

Output
t

N/

Processor [

f-time

i
Input [~ /2

Capacitance = C
Voltage =V
Frequency = f
Power = CV?f

Output
1

f « time

Processor —

f/2 || Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV?f

The push for parallelism is in the physics ...
stop complaining and learn to love it!

rFing power using transformations," IEEE

Source: Vishwani Agraw:
no.1, pp.12-31, Jan 1995 1
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It’s actually not so bad ... there are only four different hardware
platforms you need to learn how to program

For hardware ... parallelism 1s the path to performance
myor/

All hardware vendors are in the game ... parallelism is ubiquitous so if you care about getting the most fro

hardware, you will peedto-strgate parallel software.

0 o
2 SIMD/Vector

e \[EE O
B B3 D

B T

L]

e b 22

--

s ([EEE [S5as s 1)

(e (B (=222

== EBEE
EBEEE BB e

4 Cluster Heterogeneous node

80



It’s actually not so bad ... there are only four different hardware
platforms you need to learn how to program

For hardware ... parallelism 1s the path to performance
rnyor/

All hardware vendors are in the game ... parallelism is ubiquitous so if you care about getting the most fro
stgate parallel software.

hardware, you will peed

0 o
2 SIMD/Vector
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about programming
a vector unit
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For hardware

All hardware vendors are in the game ...

parallelism is the path to performance

parallelism is ubiquitous so if you care about getting the most from your hardware,
yau will need to create parallel software.

The vector units are
integrated with the

CPU cores.

CPU + SIMD/Vector
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‘ Single Instruction Multiple Data

» Scalar processing + SIMD processing (Intel)
- traditional mode - with SSE / SSE2
- one operation produces - one operation produces
one result multiple results

X x3
Y y3
X+Y | x3+y3

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

VALILLLIAU 11uLTelLiLe A
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An alternative way to think of vector operations

4

7 4

What is Stream Computing? CAPS

« A similar computation is performed on a collection of

data (stream)

o There is no data dependence between the computation on
different stream elements

« Stream programming is well suited to GPU  and vector-cpu!

kernel void Fct (float a<>, float b<>, out float c<>) {
c =a + b;
}
int main(int argc, char** argv) ({
aljghe al, 9)p
floatha<l 0 10> Bb<10 1 0> <0 10>
float input a[10][10],input b[10][10], input G
for (i=0; i<10; i++) {
for (j=0; 3<10; Jj++) {

streamRead (b, input b) ;
Fet(a, b, ¢):;
streamWrite (¢, input c);

Brook+ example

www:.cap

}
June 2011

Vincenzo Innocente

input_a[i] [j] = (float) i;
input b[i] [j] = (float) j;
}
}
streamRead (a, input a); cio1 e L ez e | ci41 | ers1 | cie) | e

c[8]

A0l Al1] Al2] A[3]  Al4] A[5] Ale] A[7]  Alg] Alf]

'B(0) | B[1) | B2l B3| B4 Bls) | BlE] | BT | Big) oo

Clol

y

For N streams,
we think of the
vector unit as
having N vector-
lanes (in this
case, 10)
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Different Vector Instruction sets (x86 only)

. AVX-512
512-bit - IMCT
Intel
Xeon Phi
— KNC
256-bit— AVX KNI, —
. SSE SSE2 SSE3 ... SSE4.2
128-bit—
64-bit-| X

1995 2000 2005 2010 2015 2020



Writing vectorized code

* You can write "assembly-like” code to use the vector units.

« But almost nobody (outside of performance fanatics ... mostly working at Intel)
does this. They get the compiler to generate the code for them.

« Compiler driven vectorization happens in two ways ...
— Super-word parallelization
— Loop vectorization
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‘ Single Instruction Multiple Data

m SLP (Superword Level Parallelism)
0 Direct mapping to underling SIMD machine instruction

0 Usually implemented using array/vector notation
m Loop Vectorization
0 Transform a loop into N streams (N=SIMD-width)

0 Compiler assisted or implemented in a “vector-library”

m Loop vectorization is more efficient than SLP

= Transform your problem in a long loop over simple
quantities

Vincenzo Innocente
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‘ Single Instruction Multiple Data

m SLP (Superword Level Parallelism)
0 Direct mapping to underling SIMD machine instruction

0 Usually implemented using array/vector notation

oop Vectorization
0 Transform a loop into N streams (N=SIMD-width)
0 Compiler assisted or implemented in a “vector-library”
m Loop vectortzatienis-moere-effiete an SL.P

= Transform your problem in a long loop over simple
quantities

Even though you
are going let the
compiler
vectorize code
foryou ... it
helps if you
understand
EXACTLY how it
does this.

Vincenzo Innocente
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Transform a loop into N streams ...

 The first thing the compiler must do is to create a number of streams corresponding to the number
of "vector lanes”

 Example ... consider a simple loop that adds two vectors.

for (int i=0; i<N;i++)
CIi] = Ali] + BIi;

« Assume the vectors are a type float (4 bytes, or 32 bits)and we have a SIMD/Vector unit of width
128 bits. That means 128/32 = 4 streams.

« To unroll a loop, we block the loop so each iteration of the new loop body handles 4 iterations of
the original loop (for now, let’s keep things simple and assume four evenly divides N).

for (int i=0; i<N/4;i+4 )
Cli] =A[] +BIJ
Cli+1] = Ali+1] + B[i+1];
Cli+2] = Ali+2] + B[i+2];
C[i+3] = A[i+3] + B[i+3];
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An Interesting Problem to Play With
Numerical Integration

Mathematically, we know that:

1

40 TS ‘\\ I 4.0
\ (1+x2) dx =TT
N,
\ 0
\\ We can approximate the integral as a sum of N
rectangles:

4.0/(1+x2)

N

N
Z F(X)AX = AX Z F(x)~ TU
i=0

i=0

F(x)

Where each rectangle has width Ax and height F(x;) at
0.0 X 1.0 the middle of interval i.




Serial Pl Program

static long num_steps = 100000;
double step;

int main ()

{ double x, pi, sum = 0.0;

step = 1.0/(double) num_ steps;

for (int i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

See esc23/hands-on/flop/pi.c
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Exercise: Unroll the pi program

« Make a copy of the pi.c program. You want to save the original one so you can
compare to it later.

 Unroll the loop in the pi program four-fold.
* Note: | use OpenMP to use its simple timer ... omp_get wtime() so you will need
to compile the program as:

gcc —fopenmp —O0 pi.c

 Start with optimization level 0. This tells the compiler do NOT do anything fancy
(such as autovectorization).

* Once you have the unrolled program running, so how it changes with other
optimization levels.

« How does the performance compare to the original program?
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Pi unrolled

sum=0.0;

for (int i=@;i< num_steps; i=i+4){

X0 = (i+0.5f)*step;
x1 = (i+1.0f)x*step;
x2 = (i+1.5f)*step;
X3 = (i+2.0f)*step;
sum = sum + 4.0f%(1.0f/(1.0f+x0%x0) + 1.0f/(1.0f+x1%xx1l) +

1.0F/(1.0F+x2%x2) + 1.0f/(1.0f+x3%x3));

$ gcc -00 —-fopenmp —o pi_unroll pi_unroll.c
$ ./pi_unroll

Base (double) 8388608 steps 3.141593: ave=0.027333 min=0.021463 max=0.060666 secs
Base (float) 8388608 steps 2.991987: ave=0.021593 min=0.020670 max=0.022706 secs
Unroll 4 (float) 8388608 steps 3.139504: ave=0.014700 min=0.014274 max=0.015405 secs
Unroll 4 (double) 8388608 steps 3.141593: ave=0.015834 min=0.014840 max=0.016305 secs




Replace the unrolled loop body with the vector intrinsics

Vector intrinsics use an assembly code style ... explicit vector registers and low-level register-to-
register instructions.

Use the include file ... #include<intrinsics.h>. Tell the compiler to enable the native vector
instruction sets with —-mach=nativer

Common instructions:
__ml128 varo, //var is a variable of type 128 bit vector register
_m128 varl _mm_setr_ps(a, b, ¢, d); // pack 4 single precision values into a vector register

e _ ml28 var2 = _mm_loadl_ps(&val); // pack 4 SP values with the value pointed to by val

e _ ml28 var3 = _mm_add_ps(varl,var2); // add two packed SP registers and put the result in var3

e _ ml28 var3 = _mm_mul_ps(varl,var2); // multiply two packed SP registers and put the result in var3
e _ ml28 var3 = _mm_div_ps(varl,var2); // divide two packed SP registers and put the result in var3

_mm_store_ps(&varrauy[0],var3); // move 4 values in a packed SP (var3) into 4 elements of varray

You can chain the vector instructions:
__m128 var4 = _mm_mul_sp(_mm_vadd_ps(v1,v2),v3);

For more info ... https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html



Replace the unrolled loop body with the vector intrinsics

step =
_ ml28
_ ml28
_ ml28
_ ml28
_ ml28
_ ml28
_ ml28
_ ml28

for (i=

ival
eye
xvec
deno
sum

}

_mm_sto

pi = st

1.0/ (float) num_steps;

ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
one = _mm_loadl_ps(&scalar_one);

four = _mm_loadl_ps(&scalar_four);
vstep = _mm_loadl_ps(&step);

sum = _mm_loadl_ps(&scalar_zero);
XVecC;

denom;

eye;

0;i< num_steps; i=i+4){ // assume num_steps%4 = 0

(float)i;

_mm_loadl_ps(&ival);
_mm_mul_ps(_mm_add_ps(eye, ramp),vstep)
_mm_add_ps(_mm_mul_ps(xvec,xvec),one);
_mm_add_ps(_mm_div_ps(four,denom), sum)

m

re_ps(&vsum[0@],sum);

ep * (vsum[@]+vsum[1]l+vsum[2]+vsum[3]);
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This is hard and not portable between vector
instruction sets

* Most of us let the compiler do the vectorization for us. The following table lists the
most important compiler switches.

-02 vectorize qnd other optimizations, but try to keep code size down and keep
compile-time down

-0O3 vectorize and other aggressive optimizations, don’t worry about how long it
takes or code size

-Ofast vectorize VERY aggressively relaxing floating point standards if needed

—fopt—-info-vec Generate a detailed report about vectorization

—march=native Enable native vector instruction sets

e There is much more we could cover in a complete discussion of compiler

vectorization.

Our goal here was to explain how it works using a simple example

and give you some basic options to get you started.
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Why not just ignore the vector/SIMD units?

* |f you are not using the vector unit, you are ignoring much of the available
performance (even though you are paying for it ... in dollars/euros and power).

« For example, consider an Intel i7 CPU (SandyBridge ... an old CPU, 2010) with
SSE vector instructions. R W

- 6 cores, 3.2 Ghz, 2-wide hyperthreading, =g = §“e‘ge1/%”c°fe
4-wide Single Precision (SP) Vector unit, Lo T

2-wide scale SP scalar®.

- 673.2*2*2=76.8 | ar
- 6*3.2*2*4 € 153.6 SP Gigaflops Vector

Most of the performance comes from
the vector unit.

How do you access that performance?

Peak perf estimates based on: “Debunking the 100X CPU vs. GPU myth”, : :
Lee et al’ https//dlacmorg/d0|/1 O 1 1 45/1 81 5961 - 1 81 6021 https://www.anandtech.com/show/5091/intel-core-i7-3960x-sandy-bridge-e-review-keeping-the-high-end-alive




Conclusion

* Floating point arithmetic ... we typically pretend its real and we take whatever
performance we can get.

* Hopefully you now see that this can be dangerous. Be careful and watch out for
problems.
— Check condition numbers when they are provided by libraries.
— Try different rounding modes and make sure answers are stable
— Run loops backwards (when you can) and make sure answers are stable
— Think about algorithms and watch for round-off error accumulations and cancelation problems

 When all else fails, find a good numerical analyst to help

« And finally ... if you have a nice CPU to use, make the most of it. Make your
loops friendly to vectorize and turn on vectorization compiler flags
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Back-up slides
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Exercise: The Kahan Summation Algorithm

« Using the properties of floating point arithmetic, algorithms that reduce round-off errors can be designed.
« A famous one is the Kahan Summation Algorithm. Here it is in pseudo-code

Input: a sequence of N values, x[i] i=1,N

correction = 0.0

sum = 0.0

for 1 = 1 to N:

/

apply the correction term to x[i] since it's a small number and we'd
loose precision if we corrected sum (which is much larger, so we’'d
loose low order bits in the operation)

xcor = x[i] — correction

sum is big, b

ut xcor is small. > Low order digits of xcor are lost

tmpSum = sum + xcor«/”//////’

correction = (tmpSum — sum) — xcor

sum = tmpSum

I3
Output: sum

N

(tmpSum-sum) recovers xcor, but without the
bits lost in computation of tmpSum.

Xcor has those bits. Subtracting xcor recovers
those lost bits. But xcor is later than (tmpSum-
sum) so you must apply the correction by

subtracting it.
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Rounding - Catastrophic Cancellation - Quadratic Equation

2 e=b . |
az” +br+c=0 o —b+ Vb — dac
L 2a
b dace
= —s=(LFYLl— =)

2a b2

e Let's rewrite the

. b -
solutions ry =——(1—-+v1-4)

e Let's define [0 = 4ac/ b? 2a

e Whenb?>>4ac — []<<1
o (1 —+/1—4) contains a possible cancellation!
e We can remove one cancellation rationalizing the

expression ‘ N
o  Multiply by 1 + v/1 — 4 numerator and - _ SIFL =42 =)
denominator R % WY ey
e Now no catastrophic cancellation can occur! 2 1
) <1 + V1 — (5)

Source: Wahid Redjeb, ESC’'22



Workload Description Accuracy Measurement

Sphinx I CMU'’s speech recognition pro- | Accuracy is estimated by dividing
gram based on fully continuous | the number of words recognized
hidden Markov models. The correctly over the total number of
input set is taken from the words in the input set.

DARPA evaluation test set which
consists of spoken sentences
from the Wall Street Joufnal.

ALVINN Taken from SPECfp92. A neural | The input set consists of 50 road
network trainer using backprop- | scenes and the accuracy is mea-
agation. Designed to take input | sured as the number of correct
sensory data from a video cam- | travel direction decisions made by
era and a laser range finder and | the network.
guide a vehicle on the road.

PCASYS A pattern-level finger print classi- | The input set consists of 50 differ-
fication program developed at ent finger print images and the
NIST. The program classifies classification result is measured
images of fingerprints into six as percentage error in putting the
pattern-level classes using a image in the wrong class. The
probabilistic neural network. accuracy of the recognition is sim-

ply (1 - percentage error).

Bench22 An image processing bench- Percentage deviation from the
mark which warps a random original outputs are used as a
image, and then compares the | measure of accuracy.
warped image with the original
one.

Fast DCT A direct implementation of both | 100 random blocks of 8x8 pixels

2-dimensional forward Discrete
Cosine Transform (DCT) and
inverse DCT of blocks of 8x8 pix-
els.

are transformed by forward DCT
and then recovered by inverse
DCT. Accuracy measured as per-
centage of correctly recovered
pixels.

Notes to support the “how
many bits do we need” slide



