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Who is Felice?

● CERN Staff  Physicist @ CMS Experiment by 
day
○ Diaper-Changing Superhero by Night

● Parallel Algorithms, GPU Programming, 
Performance Portability

● Optimizing Algorithms vs. Optimizing Nap 
Time

● Email: felice@cern.ch
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Why computing?

"The purpose of  computing is [to gain] insight" (Richard Hamming)

We gain and generate insight by solving problems

How do we ensure problems are solved by electrons?
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Source: http://www.sia-online.org (semiconductor industry association)
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Source: http://www.sia-online.org (semiconductor industry association)
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Source: https://iq.intel.com/5-awesome-uses-for-drone-technology/
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Source: 
http://sm.pcmag.com/pcmag_uk/photo/g/google-self-driving-car-the-guts/google-self-driving-car-the-guts_dwx8.jpg
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Overview
Algorithm:

Step-by-step procedure that is 
guaranteed to terminate where each 
step is precisely stated and can be 
carried out by a computer

● Finiteness
● Definiteness
● Effective computability

Many algorithms for the same
problem

ISA (Instruction Set Architecture)

● Interface/contract between SW and 
HW.

● What the programmer assumes 
hardware will satisfy.

Microarchitecture:
● An implementation of  the ISA

Digital logic circuits
Building blocks of  micro-arch (e.g., 
gates)
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The Power of  Abstraction
Levels of  transformation create abstractions
● Abstraction: A higher level only needs to know about the interface to the lower 

level, not how the lower level is implemented
● E.g., high-level language programmer does not really need to know what the 

ISA is and how a computer executes instructions

Abstraction improves productivity
● No need to worry about decisions made in underlying levels
● E.g., programming in Python vs. C++ vs. assembly vs. binary vs. by specifying 

control signals of  each transistor every cycle

Then, why would you want to know what goes on underneath or above? 11



Crossing the Abstraction Layers
As long as everything goes well, not knowing what happens underneath (or above) is not a 
problem.
What if:

● The program you wrote is running slow?
● The program you wrote does not run correctly?
● The program you wrote consumes too much energy?
● Your system just shut down and you have no idea why?
● Someone just compromised your system and you have no idea how?

What if:
● The hardware you designed is too hard to program?
● The hardware you designed is too slow because it does not provide the right primitives to 

the software?
Understand how a processor works underneath the software layer and how decisions 
made in hardware affect the software/programmer 12



Past systems
● Computing landscape is very different from 10-20 years ago
● Every component and its interfaces are being re-examined
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Modern systems
● Applications and technology demand novel architectures

○ Driven by huge hunger for data (Big Data), new applications 
(ML/AI, graph analytics, genomics), ever-greater realism

○ We can easily collect more data than we can analyze/understand
○ Five walls: Energy, reliability, complexity, security, scalabilityFPGA

Heterogeneous Processors 
and Accelerators

GPU

Hybrid Memory

Persistent memory/Storage
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Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 
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What you will master soon
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Von Neumann Architecture
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Von Neumann Architecture
● The basic operation that every Processing Unit (PU) has to 

process is called instruction and the address in memory 
containing the instruction is saved 

● A Program Counter (PC) holds the address of  the next 
instruction

● fetch: the content of  the memory stored at the address 
pointed by the PC is loaded in the Current Instruction 
Register (CIR) and the PC is increased to point to the next 
instruction’s address

● decode: the content of  the CIR is interpreted to determine 
the actions that need to be performed

● execute: an Arithmetic Logic Unit performs the decoded 
actions.
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A glance into CPU performance
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CPU time

You want to minimize the CPU time and understand what 
handles you have
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Speculative execution
● Modern processors execute many more 

instructions than the program flow 
needs (Core Out Of  Order pipeline). 

● The Front-end fetches the program 
code decodes instructions into one or 
more low-level hardware operations 
called micro-ops (uOps). 

● The uOps are then fed to the Back-end 
in a process called allocation.

● Leaving the Retirement Unit means 
that:

− the instructions are finally executed 

− their results are correct and visible in the 
architectural state as if  they execute 
in-order
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Retired instructions
● Instructions that were “proven” as 

indeed needed by the program 
execution flow are retired

● Instructions and uOps of  
incorrectly predicted paths are 
flushed 

● Then the uOps associated with the 
instruction to be retired have 
completed (together with older 
instructions)

● Retirement of  the correct 
execution path instructions can 
proceed 
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Clockticks per Instructions Retired (CPI)

● The CPI value of  an application or function is an 
indication of  how much latency affected its execution
− Higher CPI means: on average, it took more clockticks for an 

instruction to retire. 
− Latency in your system can be caused by cache misses, I/O, or 

other bottlenecks

● CPI < 1: instruction bound code
● CPI > 1: stall cycle bound or memory bound.
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CPI vs Retired instructions
● Optimizations will affect either CPI or the number of  

instructions to execute, or both. 

● Using CPI without considering the number of  instructions 
executed can lead to an incorrect interpretation of  your 
results.
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Instructions pipeline 
● The Front-end of  the pipeline can 

allocate four uOps per cycle

● The Back-end can retire four uOps per 
cycle 

● A pipeline slot represents the hardware 
resources needed to process one uOp. 

● For each CPU core, on each clock 
cycle, there are four pipeline slots 
available. 

● During any cycle, a pipeline slot can 
either be empty or filled with a uOp. If  
a slot is empty during one clock cycle, 
this is attributed to a stall. The next 
step needed to classify this pipeline slot 
is to determine whether the Front-end 
or the Back-end portion of  the pipeline 
caused the stall

https://en.wikichip.org/w/images/e/ee/skylake_server_block_diagram.svg
26
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Front-end

● Feeds “decoded” instructions to the scheduler

● Affected by instruction non-locality (iCache-miss, iTLB misses) 
and mispredicted branches
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Front-end

● Feeds “decoded” instructions to the scheduler

● Affected by instruction non-locality (iCache-miss, iTLB misses) and mispredicted branches

● Main metrics:

● L1-icache-load-misses (icache.ifdata_stall ) Cycles where a code fetch is 
stalled due to L1 instruction cache miss.

● branch-misses (br_misp_retired.all_branches) This event counts all 
mispredicted branch instructions retired. 28



TLB
● The CPU has to access main 

memory for an instruction-cache 
miss, data-cache miss, or TLB miss.

● A translation lookaside buffer 
(TLB) is a memory cache that stores 
the recent translations of  virtual 
memory to physical memory.

● TLB miss usually worse than 
instruction-cache or data cache miss
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Helping the Front-end
● Avoid complex branching patterns

● Keep code local (inline)

● Keep loop short (so they fit in µOp cache)
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Back-end
Computational engine of  the CPU:
Affected by 
• instruction dependency

• instruction parallelism
• pipelining

• Memory access
• Latency of  slow instructions

• div sqrt
• Vectorization

31
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Back-end
Computational engine of  the CPU:
Affected by 
• instruction dependency

• instruction parallelism
• pipelining

• Memory access
• Latency of  slow instructions

• div sqrt
• Vectorization

Main Metrics:
uops_executed.stall_cycles                 
     This event counts cycles during which no uops were dispatched from the Reservation Station (RS) 
uops_executed.thread                       
     Number of uops to be executed each cycle.
cycle_activity.stalls_mem_any              
     Execution stalls while memory subsystem has an outstanding load.
arith.divider_active                       
     Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point 
operations.
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Real-life latencies
• Most integer/logic instructions have a one-cycle execution latency:

• For example 
• ADD, AND, SHL (shift left), ROR (rotate right)

• Amongst the exceptions:
• IMUL (integer multiply): 3
• IDIV (integer divide): 13 – 23

• Floating-point latencies are typically multi-cycle
• FADD (3), FMUL (5)

• Same for both x87 and SIMD double-precision variants
• Exception: FABS (absolute value): 1
• Many-cycle, no pipepine : FDIV (20), FSQRT (27)
• Other math functions: even more 

• As of  Haswell:

• FMA (5 cycles)
• As of  Skylake:

• SIMD ADD, MUL, FMA: 4 cycles

• http://www.agner.org/optimize/instruction_tables.pdf 33
33
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Helping the Back-end
● Keep data at hand 

● Vectorize 

● Recast loop to help the compiler to vectorize

● Avoid divisions and sqrt! 
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Helping the compiler to vectorize
● Vectorization is enabled in gcc by the flags:

− -ftree-vectorize

− -O3

● Vectorizable:
− Countable innermost loops

− No variations in the control flow

− Contiguous memory access

− Independent memory access

● Avoid aliasing problems with restrict

● Use countable loops, with no side effects (break, continue, non-inlined function calls )

● Avoid indirect memory access (x[y[i]])
35



Not vectorizable
  while(x[i] != 42)

{
if(x[i] == 0) 

x[i] = x[i-1]

}
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Previously, in Moore's Paradise

● The main contribution to the gain in microprocessor performance at 
this stage came by increasing the clock frequency. 

● Applications’ performance doubled every 18 months without having 
to redesign the software or changing the source code 37



Moore's Law (ctd.)
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Moore's Law (ctd.)
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Moore's Law (ctd.)

40



●

“The party isn't exactly over, but the police have arrived, and the music has been 
turned way down” (P. Kogge, IBM) 41



Power and Energy
● Thermal Design Power (TDP)
● Characterizes sustained power consumption
● Used as target for power supply and cooling system
● Lower than peak power (usually 1.5X higher), higher than average 

power consumption

● Clock rate can be reduced dynamically to limit power consumption
● Energy per task is often a better measurement
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Consider power in a chip … 
C = capacitance  … it measures the ability of  a circuit to store 
energy:

C = q/V 🡪    q = CV

Work is pushing something (charge or q) across a “distance” 
… in electrostatic terms  pushing q from 0 to V:

V * q = W.     

But for a circuit    q = CV   so 
    

 W = CV2     

power is work over time … or how many times per second we 
oscillate the circuit 

      Power = W* f    🡪      Power = CV2f

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time



Back to Earth
● The power dissipated by a processor scales as

● Q number of  transistors
● C capacity
● V voltage across the gate
● f  the clock frequency
● I current
● In the early 2000s, the layer of  silicon dioxide insulating the 

transistor’s gate from the channels through which current flows was 
just five atoms thick and could not be shrunk anymore 44



... Reduce power for a fixed throughput by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations," IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995 

Source:  Vishwani Agrawal

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor 

f/2

Processor 

f/2

Input Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time



... Many core: we are all doing it

GPU

CPU



For hardware … parallelism is the path to performance

CPU  

All hardware vendors are in the game … parallelism is ubiquitous so if  you care about getting the most from your 
hardware, you will need to create parallel software.

GPU  

Cluster

Cloud

Heterogeneous node

SIMD/Vector



Evolution of  system architecture
● Increased number of  Processing Units
● More complex control

− Pipelining
− hardware threading 
− out-of-order execution 
− instruction-level parallelism 

● Deeper memory hierarchy
● Accelerators
● Interconnects
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Serial computation
● Software traditionally written for serial computation:
● the sequence of  instructions that forms the problem is executed by one 

Processing Unit (PU) 
● every instruction has to wait for the previous one to be completed before 

its execution can start 
● at any moment in time, only one instruction may execute
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Parallel computing
Parallel computing requires that

● The problem can be decomposed into sub-problems that can be safely solved at 
the same time

● The programmer structures the code and data to solve these sub-problems 
concurrently

The goals of  parallel computing are
● To solve problems in less time (strong scaling), and/or
● To solve bigger problems (weak scaling), and/or
● To achieve better solutions (advancing science)

The problems must be large enough to justify parallel computing and to exhibit 
exploitable concurrency
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Parallel computation
● In parallel computation, if two instructions have no data 

dependency, they can be executed in parallel, at the same 
time, by two PUs
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Pizza Wall
● How many cooks does a pizzeria need to achieve the best 

production rate possible?

● If  all the ingredients are in the same fridge and there is 
only one oven? Maybe 1, 2, 64, infinity?
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Mitigating the Pizza Wall
● Reuse of  ingredients and tools which are used often: put them 

on a small table close to you

● Increase the frequency of  travels to the fridge

● Increase the amount of  ingredients you transfer from the fridge

● If  ingredients are located all in the same box in the fridge, you 
can carry more of  them with a single transfer

● Better organization of  order of  instructions, keeping cooks busy
53



Memory Wall
● How many PUs does a program need to achieve the best 

performance possible? 
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Mitigating the Memory Wall
● Reuse data and instructions: data and instructions which are used often are stored in 

a on-chip memory called cache.

● Increase the memory transfer speed: this can be done by increasing frequency, which 
is limited by the power wall.

● Increase the amount of  data to transfer: memory transfers have overheads, which 
can become negligible if  more memory is transferred in one instruction.

● Improve the access pattern to memory: if  more processing units are reading adjacent 
memory locations, they can all be fed by a single memory transfer.

● Better organization of  order of  instructions, keeping PU busy

● Smarter prefetching
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Latency vs Bandwidth
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Three orders of  magnitude difference between the energy consumption of  a double 
addition wrt reading from main memory

57



Conclusion

● Knowing what’s going underneath your code helps you write better 
high level code

● Parallel computing key to achieve efficient hardware utilization with 
reasonable power budget

Think parallel and enjoy the school!!! 
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