
Introduction to
Architecture and Performance

Felice Pantaleo, Tim Mattson
CERN Experimental Physics Department

felice@cern.ch
1

Who is Felice?

● CERN Staff Physicist @ CMS Experiment by
day
○ Diaper-Changing Superhero by Night

● Parallel Algorithms, GPU Programming,
Performance Portability

● Optimizing Algorithms vs. Optimizing Nap
Time

● Email: felice@cern.ch

2

Why computing?

"The purpose of computing is [to gain] insight" (Richard Hamming)

We gain and generate insight by solving problems

How do we ensure problems are solved by electrons?

3

Source: http://www.sia-online.org (semiconductor industry association)
4

Source: http://www.sia-online.org (semiconductor industry association)
5

Source: https://iq.intel.com/5-awesome-uses-for-drone-technology/
6

Source:
http://sm.pcmag.com/pcmag_uk/photo/g/google-self-driving-car-the-guts/google-self-driving-car-the-guts_dwx8.jpg

7

8

9

Overview
Algorithm:

Step-by-step procedure that is
guaranteed to terminate where each
step is precisely stated and can be
carried out by a computer

● Finiteness
● Definiteness
● Effective computability

Many algorithms for the same
problem

ISA (Instruction Set Architecture)

● Interface/contract between SW and
HW.

● What the programmer assumes
hardware will satisfy.

Microarchitecture:
● An implementation of the ISA

Digital logic circuits
Building blocks of micro-arch (e.g.,
gates)

10

The Power of Abstraction
Levels of transformation create abstractions
● Abstraction: A higher level only needs to know about the interface to the lower

level, not how the lower level is implemented
● E.g., high-level language programmer does not really need to know what the

ISA is and how a computer executes instructions

Abstraction improves productivity
● No need to worry about decisions made in underlying levels
● E.g., programming in Python vs. C++ vs. assembly vs. binary vs. by specifying

control signals of each transistor every cycle

Then, why would you want to know what goes on underneath or above? 11

Crossing the Abstraction Layers
As long as everything goes well, not knowing what happens underneath (or above) is not a
problem.
What if:

● The program you wrote is running slow?
● The program you wrote does not run correctly?
● The program you wrote consumes too much energy?
● Your system just shut down and you have no idea why?
● Someone just compromised your system and you have no idea how?

What if:
● The hardware you designed is too hard to program?
● The hardware you designed is too slow because it does not provide the right primitives to

the software?
Understand how a processor works underneath the software layer and how decisions
made in hardware affect the software/programmer 12

Past systems
● Computing landscape is very different from 10-20 years ago
● Every component and its interfaces are being re-examined

13

Modern systems
● Applications and technology demand novel architectures

○ Driven by huge hunger for data (Big Data), new applications
(ML/AI, graph analytics, genomics), ever-greater realism

○ We can easily collect more data than we can analyze/understand
○ Five walls: Energy, reliability, complexity, security, scalabilityFPGA

Heterogeneous Processors
and Accelerators

GPU

Hybrid Memory

Persistent memory/Storage

14

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
15

What you will master soon

16

Von Neumann Architecture

17

18

Von Neumann Architecture
● The basic operation that every Processing Unit (PU) has to

process is called instruction and the address in memory
containing the instruction is saved

● A Program Counter (PC) holds the address of the next
instruction

● fetch: the content of the memory stored at the address
pointed by the PC is loaded in the Current Instruction
Register (CIR) and the PC is increased to point to the next
instruction’s address

● decode: the content of the CIR is interpreted to determine
the actions that need to be performed

● execute: an Arithmetic Logic Unit performs the decoded
actions.

19

A glance into CPU performance

20

CPU time

You want to minimize the CPU time and understand what
handles you have

21

Speculative execution
● Modern processors execute many more

instructions than the program flow
needs (Core Out Of Order pipeline).

● The Front-end fetches the program
code decodes instructions into one or
more low-level hardware operations
called micro-ops (uOps).

● The uOps are then fed to the Back-end
in a process called allocation.

● Leaving the Retirement Unit means
that:

− the instructions are finally executed

− their results are correct and visible in the
architectural state as if they execute
in-order

22

Retired instructions
● Instructions that were “proven” as

indeed needed by the program
execution flow are retired

● Instructions and uOps of
incorrectly predicted paths are
flushed

● Then the uOps associated with the
instruction to be retired have
completed (together with older
instructions)

● Retirement of the correct
execution path instructions can
proceed

23

Clockticks per Instructions Retired (CPI)

● The CPI value of an application or function is an
indication of how much latency affected its execution
− Higher CPI means: on average, it took more clockticks for an

instruction to retire.
− Latency in your system can be caused by cache misses, I/O, or

other bottlenecks

● CPI < 1: instruction bound code
● CPI > 1: stall cycle bound or memory bound.

24

CPI vs Retired instructions
● Optimizations will affect either CPI or the number of

instructions to execute, or both.

● Using CPI without considering the number of instructions
executed can lead to an incorrect interpretation of your
results.

25

Instructions pipeline
● The Front-end of the pipeline can

allocate four uOps per cycle

● The Back-end can retire four uOps per
cycle

● A pipeline slot represents the hardware
resources needed to process one uOp.

● For each CPU core, on each clock
cycle, there are four pipeline slots
available.

● During any cycle, a pipeline slot can
either be empty or filled with a uOp. If
a slot is empty during one clock cycle,
this is attributed to a stall. The next
step needed to classify this pipeline slot
is to determine whether the Front-end
or the Back-end portion of the pipeline
caused the stall

https://en.wikichip.org/w/images/e/ee/skylake_server_block_diagram.svg
26

https://en.wikichip.org/w/images/e/ee/skylake_server_block_diagram.svg

Front-end

● Feeds “decoded” instructions to the scheduler

● Affected by instruction non-locality (iCache-miss, iTLB misses)
and mispredicted branches

27

Front-end

● Feeds “decoded” instructions to the scheduler

● Affected by instruction non-locality (iCache-miss, iTLB misses) and mispredicted branches

● Main metrics:

● L1-icache-load-misses (icache.ifdata_stall) Cycles where a code fetch is
stalled due to L1 instruction cache miss.

● branch-misses (br_misp_retired.all_branches) This event counts all
mispredicted branch instructions retired. 28

TLB
● The CPU has to access main

memory for an instruction-cache
miss, data-cache miss, or TLB miss.

● A translation lookaside buffer
(TLB) is a memory cache that stores
the recent translations of virtual
memory to physical memory.

● TLB miss usually worse than
instruction-cache or data cache miss

29

Helping the Front-end
● Avoid complex branching patterns

● Keep code local (inline)

● Keep loop short (so they fit in µOp cache)

30

Back-end
Computational engine of the CPU:
Affected by
• instruction dependency

• instruction parallelism
• pipelining

• Memory access
• Latency of slow instructions

• div sqrt
• Vectorization

31

?

31

Back-end
Computational engine of the CPU:
Affected by
• instruction dependency

• instruction parallelism
• pipelining

• Memory access
• Latency of slow instructions

• div sqrt
• Vectorization

Main Metrics:
uops_executed.stall_cycles
 This event counts cycles during which no uops were dispatched from the Reservation Station (RS)
uops_executed.thread
 Number of uops to be executed each cycle.
cycle_activity.stalls_mem_any
 Execution stalls while memory subsystem has an outstanding load.
arith.divider_active
 Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point
operations.

32

?

32

Real-life latencies
• Most integer/logic instructions have a one-cycle execution latency:

• For example
• ADD, AND, SHL (shift left), ROR (rotate right)

• Amongst the exceptions:
• IMUL (integer multiply): 3
• IDIV (integer divide): 13 – 23

• Floating-point latencies are typically multi-cycle
• FADD (3), FMUL (5)

• Same for both x87 and SIMD double-precision variants
• Exception: FABS (absolute value): 1
• Many-cycle, no pipepine : FDIV (20), FSQRT (27)
• Other math functions: even more

• As of Haswell:

• FMA (5 cycles)
• As of Skylake:

• SIMD ADD, MUL, FMA: 4 cycles

• http://www.agner.org/optimize/instruction_tables.pdf 33
33

http://www.agner.org/optimize/instruction_tables.pdf

Helping the Back-end
● Keep data at hand

● Vectorize

● Recast loop to help the compiler to vectorize

● Avoid divisions and sqrt!

34

Helping the compiler to vectorize
● Vectorization is enabled in gcc by the flags:

− -ftree-vectorize

− -O3

● Vectorizable:
− Countable innermost loops

− No variations in the control flow

− Contiguous memory access

− Independent memory access

● Avoid aliasing problems with restrict

● Use countable loops, with no side effects (break, continue, non-inlined function calls)

● Avoid indirect memory access (x[y[i]])
35

Not vectorizable
 while(x[i] != 42)

{
if(x[i] == 0)

x[i] = x[i-1]

}

36

Previously, in Moore's Paradise

● The main contribution to the gain in microprocessor performance at
this stage came by increasing the clock frequency.

● Applications’ performance doubled every 18 months without having
to redesign the software or changing the source code 37

Moore's Law (ctd.)

38

Moore's Law (ctd.)

39

Moore's Law (ctd.)

40

●

“The party isn't exactly over, but the police have arrived, and the music has been
turned way down” (P. Kogge, IBM) 41

Power and Energy
● Thermal Design Power (TDP)
● Characterizes sustained power consumption
● Used as target for power supply and cooling system
● Lower than peak power (usually 1.5X higher), higher than average

power consumption

● Clock rate can be reduced dynamically to limit power consumption
● Energy per task is often a better measurement

42

Consider power in a chip …
C = capacitance … it measures the ability of a circuit to store
energy:

C = q/V 🡪 q = CV

Work is pushing something (charge or q) across a “distance”
… in electrostatic terms pushing q from 0 to V:

V * q = W.

But for a circuit q = CV so

 W = CV2

power is work over time … or how many times per second we
oscillate the circuit

 Power = W* f 🡪 Power = CV2f

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Back to Earth
● The power dissipated by a processor scales as

● Q number of transistors
● C capacity
● V voltage across the gate
● f the clock frequency
● I current
● In the early 2000s, the layer of silicon dioxide insulating the

transistor’s gate from the channels through which current flows was
just five atoms thick and could not be shrunk anymore 44

... Reduce power for a fixed throughput by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Source: Vishwani Agrawal

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor

f/2

Processor

f/2

Input Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time

... Many core: we are all doing it

GPU

CPU

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your
hardware, you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

Evolution of system architecture
● Increased number of Processing Units
● More complex control

− Pipelining
− hardware threading
− out-of-order execution
− instruction-level parallelism

● Deeper memory hierarchy
● Accelerators
● Interconnects

48

Serial computation
● Software traditionally written for serial computation:
● the sequence of instructions that forms the problem is executed by one

Processing Unit (PU)
● every instruction has to wait for the previous one to be completed before

its execution can start
● at any moment in time, only one instruction may execute

49

Parallel computing
Parallel computing requires that

● The problem can be decomposed into sub-problems that can be safely solved at
the same time

● The programmer structures the code and data to solve these sub-problems
concurrently

The goals of parallel computing are
● To solve problems in less time (strong scaling), and/or
● To solve bigger problems (weak scaling), and/or
● To achieve better solutions (advancing science)

The problems must be large enough to justify parallel computing and to exhibit
exploitable concurrency

50

Parallel computation
● In parallel computation, if two instructions have no data

dependency, they can be executed in parallel, at the same
time, by two PUs

51

Pizza Wall
● How many cooks does a pizzeria need to achieve the best

production rate possible?

● If all the ingredients are in the same fridge and there is
only one oven? Maybe 1, 2, 64, infinity?

52

Mitigating the Pizza Wall
● Reuse of ingredients and tools which are used often: put them

on a small table close to you

● Increase the frequency of travels to the fridge

● Increase the amount of ingredients you transfer from the fridge

● If ingredients are located all in the same box in the fridge, you
can carry more of them with a single transfer

● Better organization of order of instructions, keeping cooks busy
53

Memory Wall
● How many PUs does a program need to achieve the best

performance possible?

54

Mitigating the Memory Wall
● Reuse data and instructions: data and instructions which are used often are stored in

a on-chip memory called cache.

● Increase the memory transfer speed: this can be done by increasing frequency, which
is limited by the power wall.

● Increase the amount of data to transfer: memory transfers have overheads, which
can become negligible if more memory is transferred in one instruction.

● Improve the access pattern to memory: if more processing units are reading adjacent
memory locations, they can all be fed by a single memory transfer.

● Better organization of order of instructions, keeping PU busy

● Smarter prefetching
55

Latency vs Bandwidth

56

Three orders of magnitude difference between the energy consumption of a double
addition wrt reading from main memory

57

Conclusion

● Knowing what’s going underneath your code helps you write better
high level code

● Parallel computing key to achieve efficient hardware utilization with
reasonable power budget

Think parallel and enjoy the school!!!

58

