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• Speed-up and complexity
• Sample efficiency
• Representational power
• Energy efficiency???

• Evaluate performance on realistic use cases

• QPU as accelerators within classical infrastructure?

QML: Quantum computing to “improve” ML
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Outline

• Introduction: the CERN Quantum Technology Initiative
• Quantum Machine Learning and Applications at CERN
• Anomaly detection
• Beam optimisation in linear accelerators
• Improving robustness
• Summary
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The CERN Quantum 
Technology Initiative

Quantum simulation and HEP theory 
applications
Quantum Computing 
Quantum Sensing
Quantum Communication

QTI Roadmap: https://doi.org/10.5281/zenodo.5553774





6

Quantum Machine 
Learning :

Introduction



QML in HEP

• Does it make sense to use 
QML in HEP?

• How do we understand
when it is useful ?

• Which are the QML 
models we can leverage?
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Classical Intractability:
• No established recipe for classical data
• Compromise between algorithm expressivity vs trainability and generalization



(Quantum) 
ML Lifecycle

Data Embedding

The advantage of many known QML algorithms is impeded today by I/O bottleneck

Readout  and 
measurement “shots”

Data Preparation

Model Definition

Model TrainingModel Testing

Model 
Interpretation

Adapt classical 
learning models to 

quantum space



Models

Gradient-free or gradient-based optimization
Data Embedding can be learned
Ansatz design can leverage data symmetries1

Variational algorithms (ex. QNN)

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical kernel-based training (convex losses)

Identify classes of kernels that relate to specific data
structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021).

Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020.

Representer theorem:

implicit models achieve better accuracy3

Explicit models exhibit better generalization performance

3Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." arXiv preprint arXiv:2110.13162 (2021).
08.06.23 9

Energy-based ML (ex. QBM)
Build network of stochastic binary units and 
optimise their energy.
QBM has quadratic energy function that follows
the Boltzman distribution (Ising Hamiltonian)
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Generative QML and trainability barriers
Representation learning: encoding probability distributions

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). 
Trainability barriers and opportunities in quantum generative modeling. arXiv:2305.02881.

Real World Training data Training distribution

Quantum Circuit Born Machine Sampled data Model distribution

Loss function
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Explicit and  Implicit Losses

Explicit

Implicit

The use of explicit losses hinders trainability of implicit generative models as the 
system size increases since it requires an exponentially larger number of shots. 
Need implicit losses!

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers 
and opportunities in quantum generative modeling. arXiv:2305.02881.
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Quantum Circuit Born Machine for HEP

QCBM
Sample variational pure 
state | ⟩ψ(θ) by projective 
measurement through 
Born rule: 𝐩𝛉 𝐱 =
|*𝐱|𝛙(𝛉 ⟩) |𝟐 .

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers 
and opportunities in quantum generative modeling. arXiv:2305.02881.



Compromise between exponential compression and 
circuit depth

Ex:  Amplitude Encoding

Quantum embedding for 
classical data

08.06.23 13
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Exponential compression
nqubit ∝ O(log(N)) 

Polynomial number of gates
ngate ∝ O(poly(N))

Gianelle, A., Koppenburg, P., 
Lucchesi, D. et al. Quantum 
Machine Learning for b-jet charge 
identification. J. High Energ. Phys.
2022, 14 (2022). 
https://doi.org/10.1007/JHEP08(20
22)014

S.Y. Chang, poster at ”Quantum Tensor Network in Machine Learning, NeurIPS 2021 

Effect of different 
encoding in 
quantum CNN 



• Create classically intractable features 
in the Hilbert space

• Estimate Fidelity kernel
• Use classical training (convex losses)

x z

Quantum embedding and kernel methods

Hilbert space is exponentially larger

Sparser data

Loss of predictive power

F. Di Marcantonio et al. , CHEP2023



Project quantum kernels to lower
dimensionality (i.e. local density matrix):

• Improved generalizion while keeping
features into states classically hard

Projected Quantum Kernel

Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." Nature communications 12.1 (2021): 2631.

• gCQ: geometric difference
between classical and 
quantum embeddings
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• N training events
• gCQ: geometric difference between

classical and quantum embeddings
• S (Ν): model complexity
• d : feature space dimension

Quantum Advantage
Geometry Test

gCQ ∝ √N

Complexity
Test

elsesQ << N
sC ≈ N

sC << N

Classical Potential
QA

Classical
Quantum 

gCQ << √N

Dimensionality
Test

d << N else

Classical Classical
Quantum 

Define an upper bound on classical and 
quantum kernels prediction error

Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." Nature communications 12.1 (2021): 2631.



Higgs classification
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Quantum Support Vector Machine for the ttH(bb) 
event classification[5]

[1] V Belis et al, (2021), Higgs Analysis with Quantum Classifiers, EPJ Web Conf08.06.23
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Optimized quantum and classical kernels

• gCQ moderate to √N

• sC and sQ moderate/comparable to N

Projected kernels work best Geometry Test

gCQ ∝ √N

Complexity Test

elsesQ << N
sC ≈ N

sC << N

Classical Potential
QA

Classical
Quantum 
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Quantum Machine 
Learning examples:

Analysis and Anomaly Detection
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Unsupervised learning for Anomaly 
Detection
Anomaly detection can point to new physics at the LHC
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Simulate QCD multi-jets at the LHC

Build jet from 100 highest pt particles
Apply realistic event selection

Standard Model jets

Convolutional AutoEncoder
learns the  jet internal structure

ℝ$%% → ℝℓ , ℓ = 4, 8,16

Jet table
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Find the hyperplane that maximizes the 
distance of the data from the origin of the 
feature vector space

Unsupervised kernel
machine

Upper bound on fraction of anomalies in training data at 0.01 (at
most 1% QCD training data are falsely flagged) 



Quantum anomaly detection in the latent space 
of proton collision events at the LHC
Vasileios Belis et al., arXiv:2301.10780.
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Results

Is this an «advantage» 
we can use?



Quantum anomaly detection in the latent space 
of proton collision events at the LHC
Vasileios Belis et al., arXiv:2301.10780.
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In reality….

Higher
is better

Increasing entanglement & expressivity

Classical is
better
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More AD results…

Unravelling physics beyond the Standard Model with unbiased 
classical and quantum anomaly detection
Julian Schumacher et al., arXiv:2301.10787.

Quantum Generative Adversarial Networks For
Anomaly Detection In High Energy Physics
Elie Bermot et al., arXiv:2304.14439.
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Quantum Machine 
Learning examples:

Reinforcement Learning
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Reinforcement learning

27

… in a nutshell

Trial-and-error learning
• Agent takes actions in environment and collects rewards

Q-learning
• Estimate return using Q-function Q(𝐬, 𝐚)
• Learn iteratively using collected interactions
• Once trained, select action greedily

𝑎 = arg max% 𝑄(𝒔, 𝒂)

RL book: Sutton & Barto

State
where am I? Where are 
ghosts, snacks, cookies?
Actions
up, down, left, right
Reward
food (+), ghosts (-)
Return
how much food am I 
going to eat over time

Example: Pacman

Schenk, M et al. Hybrid actor-critic algorithm for quantum reinforcement learning at 
CERN beam lines. arXiv preprint arXiv:2209.11044.,  CHEP2023

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
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1st study: 1D beam steering
CERN North Area transfer line (discrete action space)

50x fewer 
training steps

DQN

FERL

300x fewer network 
parameters

Free-energy based RL (FERL)

28

RL performance depends on type of Q-
function approximator 
Ø Classical Deep Q-learning (DQN)

Feed-forward neural net
Ø Free-energy based RL (FERL)

Quantum Boltzmann machine (QBM)

Key concept: sample-efficiency
Ø Relevant for particle accelerator control 

given cost of beam time (online training)
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∈ ℝ!

DDPG family

Developing a hybrid actor-critic scheme

29

Accelerator optimization requires continuous action space        develop hybrid actor-critic 
algorithm
Ø QBM replaces classical critic net

QBMClassical

Q-learning

𝑄(𝑠, 𝑎!)

𝑄(𝑠, 𝑎"#!)
𝑄(𝑠, 𝑎")

Discrete set 
of 𝑚 actions
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2nd study: 10D continuous beam steering
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Environment: e- beam line of AWAKE
Ø Action: deflection angles at 10 correctors
Ø State: beam positions at 10 BPMs
Ø Objective: minimize beam trajectory rms
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Training: on D-Wave Advantage quantum annealer (QA)

Exploring & learning Success

Objective

Evaluation: on actual beam line

Ø Agent minimizes rms in 1 step in 60 % cases
Ø Minor improvement with respect to classical
Ø Linear dynamics (too simple?)
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1-slide excursion: quantum fuzzy logic controller

31

Knowledge Base

Fuzzification 
Interface

Defuzzification 
Interface

Fuzzy Inference Engine

Database Rule Base

Input Output

Fuzzy Fuzzy

Crisp Crisp

• Alternative control algorithm to RL
• Fuzzy Logic is used to develop control systems based on linguistic rules highly interpretable
• Quantum Fuzzy Control System (G. Acampora, R. Schiattarella, A. Vitiello)

Exploit exponential advantage in computing fuzzy rules on quantum computers
• Successfully evaluated on AWAKE beam line, no training required Evaluation: on AWAKE beam line

Objective reached typically in 1 step

https://ieeexplore.ieee.org/document/9869303
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3rd study: Cartpole-v1
Discrete action problem, non-linear dynamics

FERL (simulated QA)

• Cartpole-v1: official OpenAI gym env from classic control problems domain
• Continuous state (4D), discrete action (right, left) problem with non-linear dynamics
• Terminate episodes after max. 500 steps

DQN
Preliminary

FERL (trained on D-Wave)

before
after

• Big gain in sample-efficiency and robustness for FERL vs DQN

https://www.gymlibrary.dev/environments/classic_control/cart_pole/
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Improving Robustness of QML applications

• Understanding conditions to advantage 
• Stabilizing training on NISQ  (arXiv:2212.11826, arXiv:2303.11283)

• Trainability vs expressivity for generative models (arXiv:2305.02881)

• Evaluating generalisation
• Quantum vs classical data, phase transitions  (Physical Review B, 107(8), L081105)

• Algorithms beyond QML (Physical Review C, 106(3), 034325.)
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Outlook and open questions

• HEP provides challenges to Quantum Computing
• What are the most promising applications?
• How do we define performance and validate results on realistic use 

cases?
• Experimental data has high dimensionality

• Can we train Quantum Machine Learning algorithms effectively?
• Can we reduce the impact of data reduction techniques?

• Experimental data is shaped by physics laws
• Can we leverage them to build better algorithms? 
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QML is the right 
solution

QML Exclusion
Region in HEP?

M. Grossi, CERN



3636

Thank you!

November 20th-24th, 2023 
@CERN

Sofia.Vallecorsa@cern.ch



The size of the Hilbert space requires compromises between 
expressivity, convergence and generalization
Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173



Kernel values can 
concentrate 
exponentially 
around a common 
value
Need exponentially 
larger number of 
measurements to 
resolve

Kernel trainability and kernel concentration

Study kernel trainability in our Anomaly Detection model (arxiv:2208.11060)



Characterize models behaviour, similarities among them
and link to data properties. 
Ex: 

• Data Re-Uploading circuits: alternating data encoding and 
variational layers. 

• Represented as explicit linear models (variational) in larger 
feature space

à can be reformulated as implicit models (kernel)

• Representer theorem: implicit models achieve better 
accuracy

• Explicit models exhibit better generalization performance

Equivalent interpretations?  

Jerbi, Sofiene, et al. "Quantum machine learning beyond 
kernel methods." arXiv preprint arXiv:2110.13162 (2021).

KERNEL-BASED

DATA RE-UP

VARIATIONAL



Comparison to 
unsupervised
clustering
Quantum* clustering algorithms do not outperform
classical counterpart

QMEANS performs worst
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Preliminary hardware runs

Stable performance on ibmq_toronto :

• Design circuit taking qubits topology into
account

• Use 8 qubits and native gates
• Reduced training set size (100 )  à

increased statistical uncertainty
• Use AUC (less affected by statistics)
• Monitor mean purity of states to verify

state coherence during computation
• Fully mixed state yields a purity of 0.39 

10-2 (1/2n)
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Ensembles of quantum 
neural networks

Incudini, M. , et al. "Resource Saving via Ensemble Techniques for 
Quantum Neural Networks." arXiv:2303.11283 (2023).

Bagging: best for high variance; reduces BPs by 
keeping the feature space limited
• 10 independently trained instances
• rf :% of samples, rn:% features

Boosting: high bias models (little sensitivity to 
subsampling)
• AdaBoost, 10 repetitions

Study regression and classification tasks in 
toy and realistic datasets



QNN setup and simulated results
1 layer

Measure the generalisation error on test sample (20 %)
Bagging methods outperform full model and Boosting: shallower networks, fewer input features

Choose relatively simple QNN:
n qubits = n features
Ry single rotation gates
CNOT in linear entanglement
Local observable (σz) 

Concrete (MSE) Diabetes (MSE) Diabetes (CCE)



Bagging brings significant advantage

Reducing resources:
Best performance for low
dimensionality

Robustness against noise:
Linear regression task on IBM QPU 
(ibm_lagos):

Bagging: 80% features, 20% 
samples
QNN: 4 qubit, 1 layer

Linear 
Concrete
Diabetes
Wine

Linear 
Concrete
Diabetes
Wine



Quantum Generative Models

QCBM
Sample variational pure state | ⟩ψ(θ)
by projective measurement through 
Born rule: 𝐩𝛉 𝐱 = |4𝐱|𝛙(𝛉 ⟩) |𝟐 .

QGAN
Multiple implementations, mostly classical-quantum hybrid

Quantum Generator

Measurement Real
Data

Fake
Data

Classical 
Discriminator

Classical 
Data

Evaluate Gradients &
Update Parameters 

Uniform 
Initialization

QBM
Network of stochastic binary units with a quadratic energy function
that follows the Boltzman distribution (Ising Hamiltonian)

Delgado and Hamilton, arXiv:2203.03578 (2022)
Zoufal, et al., npj Quantum Inf 5, 103 (2019)
Leadbeater et al., Entropy 2021, 23, 1281.
Amin, et al. Physical Review X 8.2 (2018): 021050.

n dimensional 
binary strings
map to 2n bins of 
the discretized 
dataset.

Typical metrics:

45



Muon Force Carriers, in muon fixed-target 
experiments (FASER) or muon interactions in 
calorimeters (ATLAS)1. 

Generate multivariate distribution (E, pt, η)

Maximum Mean Discrepancy for training

QCBM for event generation

1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS 
detector". In: Phys. Rev. D 101, 011701 (2020)

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)

08.06.23 46



qGAN for event generation

Generate  Mandelstam (s,t) + y
variables for t-tbar production
Introduce a style-based
approach

Bravo-Prieto et al. "Style-based quantum generative 
adversarial networks for Monte Carlo events." Quantum 6, 
777 (2022) , arXiv preprint arXiv:2110.06933 (2021).

IBM Q Santiago

Quantum simulator

08.06.23 47



QML training process seems robust
against noise (error mitigation is needed
in extreme cases)

Robustness against noise
Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum 
Generative Adversarial Networks." ACAT2021, arXiv preprint 
arXiv:2203.01007 (2022).

08.06.23 48



Train models using noisy simulator and  test the inference of the model on the  superconducting (IBMQ) and 
trapped-ion (IONQ) quantum hardware

• For IBMQ machines, choose the qubits with the lowest CNOT gate error

qGAN Benchmarks on hardware
Chang S.Y. et al., Running the Dual-PQC GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21



QML for quantum data: drawing phase diagrams

1. Supervised classification of the 
ground state using a convolutional 
QNN

2. Quantum states are exponentially 
hard to save classically. 

3. Bottleneck from access to classical 
training labels (Interpolation does not 
work)
§ Train in integrable subregions 
§ Generalize to a full model1

Model: Axial Next Nearest Neighbor Ising 

(ANNNI) Hamiltonian:

Integrable for 
𝜅 = 0 or ℎ = 0.

Senk, Physics Reports, 170, 4 (1988)



Setting the stage

Binary Cross-entropy

Variational quantum data 

Monaco, at al.  arXiv: 2208.08748 (2022), accepted PRB 

Autoencoder1QCNN (95%)

1Kottman, et al., Phys. Rev. Research 3, 043184 (2021)
2M..Caro et al., arxiv:2204.10268, Banchi et all., PRX QUANTUM 2, 040321 (2021)

1. Out of Distribution Generalization2? 
2. Performance increases with the system’s 

size N=6 à N=12). 
3. QCNN gives quantitative predictions


