

Torino, 08-06-2023

Quantum sensing con centri NV in diamante

Workshop Tecnologie quantistiche INFN CSN4 & CSN5 - Università di Torino

Jacopo Forneris

Physics Department, University of Torino Istituto Nazionale di Fisica Nucleare, Sez. Torino Istituto Nazionale di Ricerca Metrologica

http://www.solid.unito.it

P. Olivero

F. Picollo

E. Nieto Hernandez

E. Corte

G. Andrini

E. Vittone

V. Pugliese

E. Redolfi

Istituto Nazionale di Fisica Nucleare

INFN

European

Commission

G. Zanelli

2020 CSN5 QT Call "QUANTEP"

EMPIR

S. Ditalia Tchernij

Research Projects, "SEQUME", "QADET"

Marie-Curie "LaslonDef" Project

EURAME'

Experimental research at UniTO - Physics Department

Multi-elemental **ion implanter** embedded in ISO-6 cleanroom environment

RT and 4K **confocal microscopy** setups

Electrical Probe Stations

Color centers in semiconductors

Point defects in solids

Diamond color centers

Point defects (vacancies, interstitials, substitutional impurities) Formation of discrete energy levels with optical transitions

Individual defects: single-photon sources

Large band gap (5.5 eV):

Emission in the visible light spectrum

- Operation at high temperatures
- Hundreds of optically active defects

Many having high quantum efficiency and RT photo-stability

Jacopo Forneris - ISOLDE Workshop and Users Meeting 2019

Single-photon confocal microscopy

The nitrogen-vacancy complex in diamond

Wavelength (nm)

The NV- center ground state spin properties

D~2.88 GHz fine structure splitting

10/38

The NV- center ground state spin properties

$$H = D (S_z^2 - S(S+1)/3) + H_f$$

spin-spin interaction

D~2.88 GHz fine structure splitting

Ground state interaction Hamiltonian Phys. Reports 528 (2013) 1

The NV- center ground state spin properties

Optical readout of the NV- center's spin

Optically detected magnetic resonance (ODMR) Annu. Rev. Phys. Chem. 2014. 65:83

$$H = D (S_z^2 - S(S+1)/3) + H_f$$

spin-spin interaction

D~2.88 GHz fine structure splitting

Optical readout of the NV- center's spin

Monochromator

ODMR

The NV center as a nanoscale magnetometer

The NV- center as a nanoscale magnetometer

Magnetic field sensing: applications and perspectives

Individual NV centers

Nanoscale imaging of magnetic domains, Nat. Commun. 4 (2013) 2279 Paris

Spatial gradient of the magnetic field: a quantum **spectrum analyzer**. Communications engineering 1 (2022) 19 Thales

Time (ms)

Magnetic field sensing: applications and pe

Current imaging in 2D materials using NV centers arrays. Science Advances 2017, 3 e1602429. Melbourne

The NV⁻ center as a nanoscale electrometer

Electric field sensing: applications an

Individual centers

NV ensembles

Direct measurement of band bending in surface functionalized diamond Nat. Electr. 1 (2018) 502 Melbourne

ves

Electric field sensing: device diagnostics ²⁰

b

Tokyo

С

21/38

The NV center under pressure

The NV center under pressure

The NV center as a nanoscale thermometer

The NV center as a nanoscale thermometer

Temperature increase : lattice thermal expansion

Nano Lett., 2014, 14 (9) 4989

Thermometry: applications and perspectives

First direct measurement of cell temperature increase related to the activity of hyppocampal neurons Advanced Science 9 (2022) 14. **Torino**

Coherent control

Hamiltonian of the system

where $\ \Psi({f r},t)$ is a superposition (with time-dependent coefficients of the solution to the unperturbed system

$$\Psi(\mathbf{r},t) = c_0(t)\psi_0(\mathbf{r}) + c_1(t)\psi_1(\mathbf{r}) = c_0(t)e^{-i\omega_0 t}a_0(\mathbf{r}) + c_1(t)e^{-i\omega_1 t}a_1(\mathbf{r})$$
Rabi oscillations, coherent control of the spin state of the NV center
$$\left\{ \begin{array}{l} |c_0(t)|^2 = \cos^2\left(\frac{\Omega t}{2}\right) \\ |c_1(t)|^2 = \sin^2\left(\frac{\Omega t}{2}\right) \end{array} \right\} \quad \Omega = \frac{E_0}{\hbar} \int d^3 a_0^*(\mathbf{r}) e \,\hat{r} \, a_1(\mathbf{r})$$
Jacopo Forneris - 08-06-2023

27/38

Rabi oscillations for a NV center

Readout and initialization of the NV center's spin

28/38

Pulsed ODMR protocols

 $\sim 0.1 \text{ kV cm}^{-1}$

 $\sim nT$

 $\sim K$ with < μs temporal resolution

 $\sim 100 \mbox{ Pa}$

Pulsed ODMR protocols

 $\sim 0.1 \text{ kV cm}^{-1}$

 $\sim nT$

 \sim K with < μ s temporal resolution

 $\sim 100 \mbox{ Pa}$

Property	Coupling coefficient		Typical sensitivity ^a
Magnetic field ^b	γ	28 GHz/T	$0.36 \ \mu T / \sqrt{Hz}$
Electric field ^b	ϵ_z	0.17 Hz/(V/m)	$5.8 \text{ kV cm}^{-1}/\sqrt{\text{Hz}}$
Electric field ^c	ϵ_{xy}	3.5 ×	$280 \mathrm{kV} \mathrm{cm}^{-1}/\sqrt{\mathrm{Hz}}$
		10^{-3} Hz/(V/m)	
Strain ^d	$\sim \epsilon_{xy}/d^{ m c}$	$\sim 10^{11} \text{ Hz}/(\delta l/l)$	$\sim 10^{-7} / \sqrt{\text{Hz}}$
Orientation ^e	γB	100 kHz/°	$0.1^{\circ}/\sqrt{\text{Hz}}$
Temperature	$\partial D/\partial T$	-74 kHz/K	0.13 K/√Hz
Pressure	$\partial D/\partial P$	1.5 kHz/bar	$6.8 \text{ bar}/\sqrt{\text{Hz}}$

Detectable frequency shift

$$\Delta\omegapproxrac{a}{2\eta\sqrt{I_0T}},$$

a: resonance linewidth eta: optical contrast (≤30%) l₀: photon count rate T: integration time

Perspectives

NV-Flurescence

0

π/2

$$|\psi\rangle = c_0(t)|0\rangle + c_1(t)|1\rangle$$

$$\begin{cases} c_0(t) = i\cos\left(\frac{\Omega t}{2}\right) \\ c_1(t) = \sin\left(\frac{\Omega t}{2}\right) \end{cases}$$

10>

|1>

 $1/\sqrt{2} |0>+|1>$

MW pulses: Qubit preparation and control

Optical fluorescence: Qubit readout

Several issues to be addressed

Decoherence of the quantum state

Interaction with external noise (fields, spin bath) alterates the spin state **Dynamical decoupling** methods: periodical spin flipping to preserve coherence

Carr-Purcell-Meiboom-Gill

Hahn Echo

XY-4

31/38

Perspectives

$$|\psi\rangle = c_0(t)|0\rangle + c_1(t)|1\rangle$$

$$\begin{cases} c_0(t) = i\cos\left(\frac{\Omega t}{2}\right) \\ c_1(t) = \sin\left(\frac{\Omega t}{2}\right) \end{cases}$$

MW pulses: Qubit preparation and control Optical fluorescence: Qubit readout

Path towards quantum computing

Several issues to be addressed

Qubits entanglement

First demonstration from Stuttgart

Requires:

Adjacent qubits (deterministic implantation, < 20 nm spacing) Control and interaction gate (MW pulses for e-e- interaction) Information swap on nuclear spin (longer coherence, but ¹⁵N) Remove centers electron for longer storage (electrical control)

Efficient fabrication of close NV centers? How to scale up to many qubits?

Color centers zoology in diamond

- NV center J. Appl. Phys. 109, 083530 (2011)
- SiV center J. Phys. B 39 (2006) 37
- Xe-center J. Lumin 107 (2004) 26
- NE8 Center J. Appl. Phys. 107 (2010) 093512

SnV center - ACS Phot. 4 (2017) 2580 - PRL 119, 253601 (2017) PbV center - ACS Phot. 5 (2018) 4864 He-center - J. Lumin 179 (2016) 59 F-center

- GeV center Sci. Reports 5 (2015) 12882 - Sci. Reports 5 (2015) 14789
- O-center J. Phys. D 51 (2018) 483002 P-center Ca-center Mg-center F-center

Color centers zoology in semiconductors

TADA

Color centers in semiconductors

binary materials: difficult fabrication of specific defects **intrinsic** defects only

handful of emitters overall very **active** research field

Jacopo Forneris - 08-06-2023

Color centers manufacturing in integrated platforms

Integration in photonic chips by means of ion implantation

in practice, we need to **fabricate** sources **deterministically.** Each implanted ion \Rightarrow One single photon emitter

Limiting factors:

- delivery of predefined number of ions (Poisson statistics, unless ion detection technique implemented)
- nanoscale ion implantation (enabling entanglement between adjacent centers)
- conversion of implanted ions in color centers (typical: <10%. state of the art: >50 %)
- center environment for charge state configurations (e.g., device doping)

Jacopo Forneris - 08-06-2023

Summary

NV center in diamond

Promising, versatile tool for environment sensing Solid state, portable Nanoscale system Biocompatible High sensitivities for vector and scalar field measurements

Challenges

Increase coherence time Controlled fabrication schemes and protocols Alternative systems vastly unexplored

Potential for industry

Standardization Integration Best practices, optimal procedures

Thank you for your kind attention!

http://www.solid.unito.it

P. Olivero

F. Picollo

E. Nieto Hernandez

V. Pugliese

E. Corte

G. Andrini

E. Vittone

G. Zanelli

S. Ditalia Tchernij

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA L232/2016 Dept. Excellence

Jacopo Forneris - 08-06-2023

E. Redolfi

Istituto Nazionale di Fisica Nucleare

European Commission

Research Projects, "SEQUME", "QADET"

Marie-Curie "LaslonDef" Project

37/38