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Quantum Manifesto 
 

� an initiative of the European Quantum Community 
� published in May 2016, supported by over 

3500 scientists, research institutions and companies 
� main goal: aid the selection of QT as the new 

European flagship project 
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1. Communication

A  Core technology of quantum  
 repeaters 

B  Secure point-to-point  
quantum links

C   Quantum networks between 
distant cities

D Quantum credit cards

E    Quantum repeaters 
with cryptography and 
eavesdropping detection

F    Secure Europe-wide internet 
merging quantum and 
classical communication

2. Simulators

A    Simulator of motion of 
electrons in materials

B    New algorithms for quantum 
simulators and networks 

C   Development and design of 
new complex materials

D   Versatile simulator of quantum 
magnetism and electricity

E    Simulators of quantum 
dynamics and chemical 
reaction mechanisms t o 
support drug design 

3. Sensors

A    Quantum sensors for niche 
applications (incl. gravity and 
magnetic sensors for health 
care, geosurvey and security)

B    More precise atomic clocks 
for 

C    Quantum sensors for larger 
volume applications including 
automotive, construction

D    Handheld quantum navigation 
devices

E    Gravity imaging devices based 
on gravity sensors

F   Integrate quantum sensors 
with consumer applications 
including mobile devices

4. Computers

A    Operation of a logical qubit 
protected by error correction 
or topologically

B   New algorithms for quantum  
 computers

C    Small quantum processor 
executing technologically 
relevant algorithms

D    Solving chemistry and 
materials science problems 
with special purpose quantum 
computer > 100 physical qubit

E    Integration of quantum circuit 
and cryogenic classical control 
hardware

F    General purpose quantum 
computers exceed 
computational power of 
classical computers 

5 ± 10 \ears

0 ± 5 \ears

> 10 years
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FIG. 2: (color online). Parameters of the optimal state: |ψ〉 =
P

N

i=0

√
xi|i, N−i〉, for phase estimation with N = 10 photons

for the case of losses in one only arm, i.e. ηa = η, ηb = 1.
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FIG. 3: (color online). The minimal phase uncertainty
achieved with various N = 10 photon states for losses in one
arm, i.e. ηa = η, ηb = 1. Red, dashed line: N00N state; blue,
solid line: optimal state (cf. Fig. 2); bright green, dotted line:
optimal two-component state; dark green, dashed-dotted line:
N00N chopping strategy. The shaded area is bounded by the
SIL achievable with classical states and the Heisenberg limit
1/N .

a large N − k increases the sensitivity of the state with
respect to an induced phase in channel a. The properties
of large k and large N − k are therefore competing and
the optimal result represents a trade-off between phase
sensitivity and robustness.

An alternative strategy that leads to an improvement
over the SIL, but uses states of a simpler structure than
the optimal state is the N00N “chopping” strategy which
was introduced in Ref. [15]. Instead of a single N00N
state, we use the same number of photons, but send them
successively inN/n smaller portions using n-photon n00n
states. Repeating an experiment N/n times corresponds
to an N/n fold increase in Fisher information, as shown
in Eq. (7). Using Eq. (41) we find that the Fisher infor-

mation for the N00N chopping strategy reads

FQ =
N

n

4n2ηn

(1 + ηn/2)2
. (44)

Treating both n andN/n as real numbers with n ∈ [1, N ],
maximization of this expression over n yields

δϕmin =
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(45)

where the optimal choice of n for the three regimes indi-
cated above is n = 1, n = 1.478/| lnη| (i.e. the solution
of 1 + ηn/2 + n ln η = 0) and n = N . We see that for
very small transmissivities η ≤ η0 the precision is equal
to the SIL, specified in Eq. (39). For higher transmissiv-
ities the chopping strategy beats the SIL, although only
by a constant factor rather than in terms of scaling. For

very high transmissivities η > η1/N0 the best strategy is
to use un-chopped N00N states. We note that a similar
strategy for multipartite qubit states has been devised
in [12].
As mentioned above the N00N state ceases to be op-

timal below a threshold η̄ in which case the coefficient
x1 obtains a nonzero value. By adding an infinitesimal
change δx1 to x1 at the expense of x0, xN (which we as-
sume are kept in the proportion which is optimal in the
absence of x1), we can calculate the corresponding change
in the quantum Fisher information. The change of x1 by
δx1 increases FQ by dFQ

dx1
δx1, but at the same time due

to decreasing weight of the other coefficients decreases it
by FQδx1. On the whole the change of FQ reads:

δFQ =

(

dFQ

dx1
− FQ

)

δx1. (46)

Substituting FQ from Eq. (28) at x0 = ηN/2/(1 + ηN/2),
xN = 1 − x0, xi = 0 (i = 2, . . . , N − 1) and calculating
δFQ we determine the value η̄ below which δFQ/δx1 is
positive. This implies that for η < η̄ an increase in x1

will increase FQ. Writing δFQ/δx1 explicitly we get:

δFQ

δx1
=

4

(1 + ηN/2)2
[(1− 2N)ηN − 2N(N − 1)ηN/2+1

+ 2(N − 1)2ηN/2 −N(N − 2)η + (N − 1)2]. (47)

The roots of the expression in square brackets can be
found numerically. There is one real root in the interval
[0, 1] which corresponds to the threshold η̄. The roots
behave in very good approximation like η̄ = a−1/N where
a ≈ 2.61 which is obtained by a fit to the roots between
N = 5 and N = 100. For example, for N = 10 we find
that the threshold at which the N00N state ceases to be
optimal is at η̄ = 0.91, which agrees with the numerical
results obtained before (see Fig. 2).

N=10
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A paradigm for quantum-enhanced precision
metrology is found in optical interferometry [1],
capable to sense physical quantities as diverse as
position, time delay or temperature through a
measurement of a phase shift. When standard
light sources are employed, the precision of the
phase determination is limited by the shot noise,
whose origin can be traced to the random man-
ner in which individual photons emerge from the
interferometer. Quantum entanglement provides
means to exceed this limit [2, 3, 4, 5, 6] with the
celebrated example of N00N states [7, 8, 9, 10]
that saturate the ultimate Heisenberg limit on
precision [11], but at the same time are extremely
fragile to losses [12, 13, 14]. In contrast, we
provide experimental evidence that appropriately
engineered quantum states [15] outperform both
standard and N00N states in the precision of
phase estimation when losses are present. This
shows that the quantum enhancement of metrol-
ogy is possible even when decoherence is present,
and that the strategy for realising the enhance-
ment is quite distinct from protecting quantum
information encoded in light [16, 17].

The Mach-Zehnder interferometer shown in Fig. 1(a)
serves to illustrate the principle of phase estimation. The
input light is divided into two beams and one of them
probes the phase shifting element. Recombining the two
beams maps the acquired phase information onto the
output intensity, read out via photodetection. The pho-
todetection signal exhibits fluctuations which result in
the shot noise limiting the measurement precision. In
the semiclassical picture this effect is attributed to the
uncertainty in the photoelectron number generated by
an incident beam even if its intensity is constant [18].
In the fully quantum picture, light is composed of ele-
mentary quanta—photons—whose behaviour can be pre-
dicted only statistically, hence leading to fluctuations at
the interferometer output [2]. The shot noise scales as
1/

√
N , where N is the average number of photons used

for the measurement. For a lossy phase shift, it is nec-
essary to readjust the splitting ratio for the input light
which yields a generalized bound on precision [19] in the
form of the standard interferometric limit (SIL).

More generally, the two beams—one sent through the
sample and the second one serving as the reference—can
be prepared in a certain probe state |ψ〉. According to

FIG. 1: (a) The generic Mach-Zennder interferometer fed with
a classical light beam. The phase shift ϕ inside the interfer-
ometer modulates the output intensities. Possible losses ac-
companying the phase shift are represented by a beam splitter
with power transmission η; (b) Linear network to demonstrate
optimal phase estimation. The beam splitters with power
transmission ϑ1 and ϑ2 prepare the optimal probe state |ψ〉.
Phase information is read out by applying a conditional phase
shift π

4
or π

2
and interfering the paths on a beam splitter with

a suitably chosen transmission ϑD; (c) Experimental realiza-
tion of the linear network. The input to the setup are either
ultraviolet 390 nm (blue solid line) or fundamental 780 nm
(dashed red line) pulses. Ellipses mark locations of effective
beam splitters acting on orthogonal polarizations. For details,
see Methods.

quantum estimation theory [20], the precision δϕ of the
estimate is restricted by the quantum Cramér-Rao bound
δϕ ≥ 1/

√
F , where F is the quantum Fisher information.

In the case of a phase measurement, F is proportional to
the variance of the photon number n̂s sent through the

optimal state design 
based on loss

Coping with Loss
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precision [11], but at the same time are extremely
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provide experimental evidence that appropriately
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standard and N00N states in the precision of
phase estimation when losses are present. This
shows that the quantum enhancement of metrol-
ogy is possible even when decoherence is present,
and that the strategy for realising the enhance-
ment is quite distinct from protecting quantum
information encoded in light [16, 17].

The Mach-Zehnder interferometer shown in Fig. 1(a)
serves to illustrate the principle of phase estimation. The
input light is divided into two beams and one of them
probes the phase shifting element. Recombining the two
beams maps the acquired phase information onto the
output intensity, read out via photodetection. The pho-
todetection signal exhibits fluctuations which result in
the shot noise limiting the measurement precision. In
the semiclassical picture this effect is attributed to the
uncertainty in the photoelectron number generated by
an incident beam even if its intensity is constant [18].
In the fully quantum picture, light is composed of ele-
mentary quanta—photons—whose behaviour can be pre-
dicted only statistically, hence leading to fluctuations at
the interferometer output [2]. The shot noise scales as
1/

√
N , where N is the average number of photons used

for the measurement. For a lossy phase shift, it is nec-
essary to readjust the splitting ratio for the input light
which yields a generalized bound on precision [19] in the
form of the standard interferometric limit (SIL).

More generally, the two beams—one sent through the
sample and the second one serving as the reference—can
be prepared in a certain probe state |ψ〉. According to

FIG. 1: (a) The generic Mach-Zennder interferometer fed with
a classical light beam. The phase shift ϕ inside the interfer-
ometer modulates the output intensities. Possible losses ac-
companying the phase shift are represented by a beam splitter
with power transmission η; (b) Linear network to demonstrate
optimal phase estimation. The beam splitters with power
transmission ϑ1 and ϑ2 prepare the optimal probe state |ψ〉.
Phase information is read out by applying a conditional phase
shift π
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and interfering the paths on a beam splitter with

a suitably chosen transmission ϑD; (c) Experimental realiza-
tion of the linear network. The input to the setup are either
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beam splitters acting on orthogonal polarizations. For details,
see Methods.

quantum estimation theory [20], the precision δϕ of the
estimate is restricted by the quantum Cramér-Rao bound
δϕ ≥ 1/

√
F , where F is the quantum Fisher information.

In the case of a phase measurement, F is proportional to
the variance of the photon number n̂s sent through the

optimal state design 
based on loss

4

!

!

!!

!

"

"
"

"

"

#

#

#

#

#

Η"0.2

0.6

0.8

1.

1.2

1.4

1.6

1.8

2.

∆$

!

!
!
!
!

"
"

"
""

#

#

##

#

Η"0.361

∆$

!

!
!!!

""

"

""

#

#
#
##

Η"0.4

∆$

!
!!!
! ""

"

"
"

#
#
##
#

Η"0.547

∆$

FIG. 5: Uncertainties of phase estimates obtained using two-
photon optimal (circles) and N00N (squares) states, as well
as attenuated laser pulses in the SIL regime (diamonds),
rescaled by the square root of the number of coincidences.
For each transmission η, data are shown for five phases
ϕ = 0,±0.2,±0.4 rad. Horizontal lines represent the theo-
retical Crameŕ-Rao bounds for given classes of input states
taking into account imperfections of the interferometer.

istered coincidences in order to obtain the figure of merit
of the effective uncertainty per photon pair that can be
compared with the theoretical Cramér-Rao bound. The
advantage of using the optimal states is clearly seen for
all the four values of losses used in the measurements.
The results match well the theoretical model including
experimental imperfections.
Quantum-enhanced metrology requires new strategies

to cope with decoherence, which are intrinsically dif-
ferent from those targeting protection of optical qubits
for quantum information processing applications [16, 17].
Our experiment demonstrates the fundamental feasibility
of such strategies. Further developments, such as exploit-
ing multiphoton states [9, 10] and going beyond the co-
incidence basis [30], will allow a proper assessment of the
capabilities of such approaches including all resources.

Methods

Photon pairs are generated in a 1 mm long bismuth bo-
rate crystal X oriented for type-I process, pumped with a
doubled output from a Ti:sapphire oscillator emitting a
80 MHz train of a 780 nm central wavelength and 140 fs
duration pulses. The photons, collected from the oppo-
site ends of a cone with the half-opening angle of 4◦ are
converted into orthogonal polarizations using a half-wave

plate HWP, combined on a polarizing beam splitter PBS,
filtered through a 5 nm interference filter IF, and coupled
into a single-mode fibre. The contribution of higher order
photon numbers is negligible. The relative delay between
the photons is controlled by a motorized trombone placed
in the path of one of the photons. The fibre is wound on
a manual polarization controller PC to recover the |11〉
state at the output of the fibre. We found an adequate de-
scription for the the two-photon state at the output of the
fibre of the form

√
1− ε|11〉+eiδ

√

ε/2
(

|20〉+|02〉
)

, where
ε is typically of the order of 0.05%, and the phase δ is in-
troduced by the fibre. The second term can be attributed
to a combination of polarization-dependent loss and bire-
fringence in the single mode fibre delivering photon pairs
to the interferometer. Its presence is seen in phase scans
for N00N states and non-zero losses shown in Fig. 3(b) as
a faint modulation of coincidences AC and BC, which in
principle should remain constant. The setup also enables
to launch into the fibre 780 nm fundamental-wavelength
laser pulses to determine the SIL.
The actual implementation of the linear optics net-

work, shown in Fig. 1(c), is based on a pair of calcite dis-
placers and a Glan-Taylor polarizer, which ensures high
visibility and stability of interference. The beam splitters
are realized in a common-path version operating on two
orthogonal polarizations, with the splitting ratios defined
by the orientation of half-wave plates located before the
birefringent medium. The second displacer is mounted on
a rotation stage with the axis perpendicular to the plane
of the setup. The orientation of the displacer defines
the phase shift to be determined. The photons leaving
the setup are coupled into 50:50 multimode fibre cou-
plers, whose ends are plugged into single photon count-
ing modules. Coupling into multimode fibres is adjusted
to equalize effective efficiencies of the modules. In this
arrangement, only 50% of events AA, BB, and CC are
detected. In order to compensate for this inefficiency, in
the numerical postprocessing half of events AB, AC, and
BC has been randomly removed.
The indistinguishability of the interfering two-photon

pathways has been tested by setting ϑ1 = 1

2
and sending

the two emerging beams to separate detectors. The ob-
served depth of the Hong-Ou-Mandel dip [22] exceeded
98%. For the subsequent measurements, the relative de-
lay of the two photons was set at the dip minimum.
The classical visibility of the interferometer was above
98%. In order to model accurately experimental data, we
developed generalized expressions for coincidence count
probabilities that include effects of residual photon dis-
tinguishability, non-unit interference visibility, and fibre
delivery [28].

[1] Hariharan, P. Optical Interferometry, 2nd ed. (Elsevier,
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More generally, the two beams—one sent through the
sample and the second one serving as the reference—can
be prepared in a certain probe state |ψ〉. According to

FIG. 1: (a) The generic Mach-Zennder interferometer fed with
a classical light beam. The phase shift ϕ inside the interfer-
ometer modulates the output intensities. Possible losses ac-
companying the phase shift are represented by a beam splitter
with power transmission η; (b) Linear network to demonstrate
optimal phase estimation. The beam splitters with power
transmission ϑ1 and ϑ2 prepare the optimal probe state |ψ〉.
Phase information is read out by applying a conditional phase
shift π

4
or π

2
and interfering the paths on a beam splitter with

a suitably chosen transmission ϑD; (c) Experimental realiza-
tion of the linear network. The input to the setup are either
ultraviolet 390 nm (blue solid line) or fundamental 780 nm
(dashed red line) pulses. Ellipses mark locations of effective
beam splitters acting on orthogonal polarizations. For details,
see Methods.

quantum estimation theory [20], the precision δϕ of the
estimate is restricted by the quantum Cramér-Rao bound
δϕ ≥ 1/

√
F , where F is the quantum Fisher information.

In the case of a phase measurement, F is proportional to
the variance of the photon number n̂s sent through the

optimal state design 
based on loss
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FIG. 5: Uncertainties of phase estimates obtained using two-
photon optimal (circles) and N00N (squares) states, as well
as attenuated laser pulses in the SIL regime (diamonds),
rescaled by the square root of the number of coincidences.
For each transmission η, data are shown for five phases
ϕ = 0,±0.2,±0.4 rad. Horizontal lines represent the theo-
retical Crameŕ-Rao bounds for given classes of input states
taking into account imperfections of the interferometer.

istered coincidences in order to obtain the figure of merit
of the effective uncertainty per photon pair that can be
compared with the theoretical Cramér-Rao bound. The
advantage of using the optimal states is clearly seen for
all the four values of losses used in the measurements.
The results match well the theoretical model including
experimental imperfections.
Quantum-enhanced metrology requires new strategies

to cope with decoherence, which are intrinsically dif-
ferent from those targeting protection of optical qubits
for quantum information processing applications [16, 17].
Our experiment demonstrates the fundamental feasibility
of such strategies. Further developments, such as exploit-
ing multiphoton states [9, 10] and going beyond the co-
incidence basis [30], will allow a proper assessment of the
capabilities of such approaches including all resources.

Methods

Photon pairs are generated in a 1 mm long bismuth bo-
rate crystal X oriented for type-I process, pumped with a
doubled output from a Ti:sapphire oscillator emitting a
80 MHz train of a 780 nm central wavelength and 140 fs
duration pulses. The photons, collected from the oppo-
site ends of a cone with the half-opening angle of 4◦ are
converted into orthogonal polarizations using a half-wave

plate HWP, combined on a polarizing beam splitter PBS,
filtered through a 5 nm interference filter IF, and coupled
into a single-mode fibre. The contribution of higher order
photon numbers is negligible. The relative delay between
the photons is controlled by a motorized trombone placed
in the path of one of the photons. The fibre is wound on
a manual polarization controller PC to recover the |11〉
state at the output of the fibre. We found an adequate de-
scription for the the two-photon state at the output of the
fibre of the form

√
1− ε|11〉+eiδ

√

ε/2
(

|20〉+|02〉
)

, where
ε is typically of the order of 0.05%, and the phase δ is in-
troduced by the fibre. The second term can be attributed
to a combination of polarization-dependent loss and bire-
fringence in the single mode fibre delivering photon pairs
to the interferometer. Its presence is seen in phase scans
for N00N states and non-zero losses shown in Fig. 3(b) as
a faint modulation of coincidences AC and BC, which in
principle should remain constant. The setup also enables
to launch into the fibre 780 nm fundamental-wavelength
laser pulses to determine the SIL.
The actual implementation of the linear optics net-

work, shown in Fig. 1(c), is based on a pair of calcite dis-
placers and a Glan-Taylor polarizer, which ensures high
visibility and stability of interference. The beam splitters
are realized in a common-path version operating on two
orthogonal polarizations, with the splitting ratios defined
by the orientation of half-wave plates located before the
birefringent medium. The second displacer is mounted on
a rotation stage with the axis perpendicular to the plane
of the setup. The orientation of the displacer defines
the phase shift to be determined. The photons leaving
the setup are coupled into 50:50 multimode fibre cou-
plers, whose ends are plugged into single photon count-
ing modules. Coupling into multimode fibres is adjusted
to equalize effective efficiencies of the modules. In this
arrangement, only 50% of events AA, BB, and CC are
detected. In order to compensate for this inefficiency, in
the numerical postprocessing half of events AB, AC, and
BC has been randomly removed.
The indistinguishability of the interfering two-photon

pathways has been tested by setting ϑ1 = 1

2
and sending

the two emerging beams to separate detectors. The ob-
served depth of the Hong-Ou-Mandel dip [22] exceeded
98%. For the subsequent measurements, the relative de-
lay of the two photons was set at the dip minimum.
The classical visibility of the interferometer was above
98%. In order to model accurately experimental data, we
developed generalized expressions for coincidence count
probabilities that include effects of residual photon dis-
tinguishability, non-unit interference visibility, and fibre
delivery [28].
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Fig. 1. Experimental setup for the N = 2 NOON state
optical interferometer. Laser pulses of ⇠ 170 fs duration,
and centred at 775 nm, pump a 2 mm periodically poled KTP
(pp-KTP) crystal, phase-matched for type-II collinear, group-
velocity-matched, degenerate down-conversion at 1550 nm.
A compensation crystal (1 mm KTP) was used to compen-
sate the temporal walk-o↵ between signal and idler photons.
Pump and collection spatial modes were set by F (focusing)
and C (collimating) lenses correspondingly. A silicon filter,
AR-coated for 1550 nm, was used to block the pump beam.
Transmitted (t) and reflected (r) modes of the interferome-
ter, corresponding to H and V polarisations respectively, were
separated by a polarising beam-splitter (PBS) and then cou-
pled into single mode fibres and sent to SNSPDs. A HWP
mounted in an automated rotation stage is used to implement
a controlled phase rotation, '.

NOON-state phase sensing protocol, preparation and use
of an N -photon NOON state constitutes a trial. In the
ideal case, each trial leads to a detection event at the out-
put of the interferometer. Since each trial gives only a
little information about the phase, a number of such tri-
als may be performed. In our work, two-photon NOON
states were generated probabilistically at random times
by the SPDC source. Each detection event (i.e. any com-
bination of detector registrations) represented a recorded
trial. We counted k such detection events to complete the
protocol. However, due to imperfect transmission and
detection e�ciency ⌘, some NOON states did not lead
to detections. Furthermore, due to higher-order SPDC
events (the occasional simultaneous emission of 4, 6, . . .
photons), the resources equivalent to multiple (2, 3, . . .)
trials were overlapped in time and could not be distin-
guished by our non-photon-number-resolving detectors.
Therefore, the actual number of trials (i.e. the number of
photon pairs passing the phase shift), k̃, was larger than
the number of recorded trials. Because the ideal classical
scheme is assumed to be lossless and to use all resources
passing the phase shift, it must be attributed an e↵ective
number of resources n = Nk̃ = 2k̃. This makes the SNL
harder to beat. For the loss and downconversion param-
eters of our experiment, the worst-case estimate, based
on the lowest possible value for the overall experimental
e�ciency, we determined k̃/k = 1.048125.

Our experimental scheme is shown in Figure 1. We
used collinear type-II parametric down-conversion, pro-
ducing degenerate 1550 nm photon pairs [22]. Careful
design and implementation of the source’s output mode
structure allowed us to achieve high fiber-coupling ef-

ficiency and state-of-the-art superconducting nanowire
single photon detectors (SNSPDs) [23] provided high
detection e�ciency. The down-conversion process gen-
erates two photons in the |1iH |1iV polarisation state
(H ⌘ horizontal; V ⌘ vertical) in the same spatial mode,
which can be written as the NOON-polarisation state
| i = 1p

2
(|2iL |0iR+|0iL |2iR). These right- (R) and left-

circular (L) polarisation modes constituted the two arms
of the interferometer. A half-wave plate (HWP) set at
an angle '/4 relative to its optic axis was used to imple-
ment the birefringent phase shift ' between the arms. A
common misconception about two-photon NOON states
generated from SPDC is that the same phase sensitiv-
ity can be usefully achieved by using a pump photon (at
half the wavelength) instead of the two-photon entangled
state. However, this is clearly not correct for sensing in
any material with dispersion.

After the phase shift, the modes were interfered on
a polarising beam-splitter (PBS) and the output count-
ing statistics were detected with SNSPDs and analysed
with coincidence or time-tag logic. The output signal
consisted of three possible types of detection outcomes:
C11, a coincidence detection between both output modes;
C20, a detection occurring only in the transmitted output
mode; and C02, a detection occurring only in the reflected
output mode. The numbers of each type of detection in
a time period ⌧ were, respectively, c11('), c20(') and
c02(').

In order to test and calibrate our setup we first mea-
sured interference fringes. Detection events (⇡ 250000
per phase value) were collected for a fixed amount of
time for various ' 2 [0, 2⇡). We observed an interfer-
ence visibility of (98.9 ± 0.02)%, calculated from fitting
to the c11(') detection fringe. The transmissions of the
reflected and transmitted outputs of the interferometer
were measured to be ⌘r = (79.41 ± 0.09)% and ⌘t =
(80.26± 0.09)%, calculated from c11(0)/(c11(0) + c20(0))
and c11(0)/(c11(0) + c02(0)) ratios, respectively (a slight
variation of transmission was observed when HWP was
rotated, see Methods for details). Calculated transmis-
sions include all the loss in the setup and the non-unit de-
tection e�ciency of SNSPDs. Probability fringes p11('),
p20(') and p02(') were then obtained by fitting detection
signals, ci('), i 2 {11, 20, 02}, which were appropriately
normalised for each phase value. We used the Fisher in-

formation per recorded trial, F =
P

i

⇣
@ ln pi

@'

⌘2
pi where

i 2 {11, 20, 02}, to quantify the phase sensitivity of our
phase measurement setup [3]. Our results (Fig. 2b) show
a clear violation, for a range of phase values ', of the
adjusted SNL bound that takes into account the infor-
mation in unrecorded trials: FSNL = Nk̃/k = 2.09625.

For the second experiment, we performed phase sens-
ing for individual settings of the phase shifter within the
range where we expected to beat the SNL. At each set-
ting, time-tag hardware was used to acquire detection
events corresponding to k = 10000 trials. From the dis-
tribution of Ci events (i 2 {11, 20, 02}), corresponding
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Fig. 1. Experimental setup for the N = 2 NOON state
optical interferometer. Laser pulses of ⇠ 170 fs duration,
and centred at 775 nm, pump a 2 mm periodically poled KTP
(pp-KTP) crystal, phase-matched for type-II collinear, group-
velocity-matched, degenerate down-conversion at 1550 nm.
A compensation crystal (1 mm KTP) was used to compen-
sate the temporal walk-o↵ between signal and idler photons.
Pump and collection spatial modes were set by F (focusing)
and C (collimating) lenses correspondingly. A silicon filter,
AR-coated for 1550 nm, was used to block the pump beam.
Transmitted (t) and reflected (r) modes of the interferome-
ter, corresponding to H and V polarisations respectively, were
separated by a polarising beam-splitter (PBS) and then cou-
pled into single mode fibres and sent to SNSPDs. A HWP
mounted in an automated rotation stage is used to implement
a controlled phase rotation, '.

NOON-state phase sensing protocol, preparation and use
of an N -photon NOON state constitutes a trial. In the
ideal case, each trial leads to a detection event at the out-
put of the interferometer. Since each trial gives only a
little information about the phase, a number of such tri-
als may be performed. In our work, two-photon NOON
states were generated probabilistically at random times
by the SPDC source. Each detection event (i.e. any com-
bination of detector registrations) represented a recorded
trial. We counted k such detection events to complete the
protocol. However, due to imperfect transmission and
detection e�ciency ⌘, some NOON states did not lead
to detections. Furthermore, due to higher-order SPDC
events (the occasional simultaneous emission of 4, 6, . . .
photons), the resources equivalent to multiple (2, 3, . . .)
trials were overlapped in time and could not be distin-
guished by our non-photon-number-resolving detectors.
Therefore, the actual number of trials (i.e. the number of
photon pairs passing the phase shift), k̃, was larger than
the number of recorded trials. Because the ideal classical
scheme is assumed to be lossless and to use all resources
passing the phase shift, it must be attributed an e↵ective
number of resources n = Nk̃ = 2k̃. This makes the SNL
harder to beat. For the loss and downconversion param-
eters of our experiment, the worst-case estimate, based
on the lowest possible value for the overall experimental
e�ciency, we determined k̃/k = 1.048125.

Our experimental scheme is shown in Figure 1. We
used collinear type-II parametric down-conversion, pro-
ducing degenerate 1550 nm photon pairs [22]. Careful
design and implementation of the source’s output mode
structure allowed us to achieve high fiber-coupling ef-

ficiency and state-of-the-art superconducting nanowire
single photon detectors (SNSPDs) [23] provided high
detection e�ciency. The down-conversion process gen-
erates two photons in the |1iH |1iV polarisation state
(H ⌘ horizontal; V ⌘ vertical) in the same spatial mode,
which can be written as the NOON-polarisation state
| i = 1p

2
(|2iL |0iR+|0iL |2iR). These right- (R) and left-

circular (L) polarisation modes constituted the two arms
of the interferometer. A half-wave plate (HWP) set at
an angle '/4 relative to its optic axis was used to imple-
ment the birefringent phase shift ' between the arms. A
common misconception about two-photon NOON states
generated from SPDC is that the same phase sensitiv-
ity can be usefully achieved by using a pump photon (at
half the wavelength) instead of the two-photon entangled
state. However, this is clearly not correct for sensing in
any material with dispersion.

After the phase shift, the modes were interfered on
a polarising beam-splitter (PBS) and the output count-
ing statistics were detected with SNSPDs and analysed
with coincidence or time-tag logic. The output signal
consisted of three possible types of detection outcomes:
C11, a coincidence detection between both output modes;
C20, a detection occurring only in the transmitted output
mode; and C02, a detection occurring only in the reflected
output mode. The numbers of each type of detection in
a time period ⌧ were, respectively, c11('), c20(') and
c02(').

In order to test and calibrate our setup we first mea-
sured interference fringes. Detection events (⇡ 250000
per phase value) were collected for a fixed amount of
time for various ' 2 [0, 2⇡). We observed an interfer-
ence visibility of (98.9 ± 0.02)%, calculated from fitting
to the c11(') detection fringe. The transmissions of the
reflected and transmitted outputs of the interferometer
were measured to be ⌘r = (79.41 ± 0.09)% and ⌘t =
(80.26± 0.09)%, calculated from c11(0)/(c11(0) + c20(0))
and c11(0)/(c11(0) + c02(0)) ratios, respectively (a slight
variation of transmission was observed when HWP was
rotated, see Methods for details). Calculated transmis-
sions include all the loss in the setup and the non-unit de-
tection e�ciency of SNSPDs. Probability fringes p11('),
p20(') and p02(') were then obtained by fitting detection
signals, ci('), i 2 {11, 20, 02}, which were appropriately
normalised for each phase value. We used the Fisher in-

formation per recorded trial, F =
P

i

⇣
@ ln pi

@'

⌘2
pi where

i 2 {11, 20, 02}, to quantify the phase sensitivity of our
phase measurement setup [3]. Our results (Fig. 2b) show
a clear violation, for a range of phase values ', of the
adjusted SNL bound that takes into account the infor-
mation in unrecorded trials: FSNL = Nk̃/k = 2.09625.

For the second experiment, we performed phase sens-
ing for individual settings of the phase shifter within the
range where we expected to beat the SNL. At each set-
ting, time-tag hardware was used to acquire detection
events corresponding to k = 10000 trials. From the dis-
tribution of Ci events (i 2 {11, 20, 02}), corresponding
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Fig. 1. Experimental setup for the N = 2 NOON state
optical interferometer. Laser pulses of ⇠ 170 fs duration,
and centred at 775 nm, pump a 2 mm periodically poled KTP
(pp-KTP) crystal, phase-matched for type-II collinear, group-
velocity-matched, degenerate down-conversion at 1550 nm.
A compensation crystal (1 mm KTP) was used to compen-
sate the temporal walk-o↵ between signal and idler photons.
Pump and collection spatial modes were set by F (focusing)
and C (collimating) lenses correspondingly. A silicon filter,
AR-coated for 1550 nm, was used to block the pump beam.
Transmitted (t) and reflected (r) modes of the interferome-
ter, corresponding to H and V polarisations respectively, were
separated by a polarising beam-splitter (PBS) and then cou-
pled into single mode fibres and sent to SNSPDs. A HWP
mounted in an automated rotation stage is used to implement
a controlled phase rotation, '.

NOON-state phase sensing protocol, preparation and use
of an N -photon NOON state constitutes a trial. In the
ideal case, each trial leads to a detection event at the out-
put of the interferometer. Since each trial gives only a
little information about the phase, a number of such tri-
als may be performed. In our work, two-photon NOON
states were generated probabilistically at random times
by the SPDC source. Each detection event (i.e. any com-
bination of detector registrations) represented a recorded
trial. We counted k such detection events to complete the
protocol. However, due to imperfect transmission and
detection e�ciency ⌘, some NOON states did not lead
to detections. Furthermore, due to higher-order SPDC
events (the occasional simultaneous emission of 4, 6, . . .
photons), the resources equivalent to multiple (2, 3, . . .)
trials were overlapped in time and could not be distin-
guished by our non-photon-number-resolving detectors.
Therefore, the actual number of trials (i.e. the number of
photon pairs passing the phase shift), k̃, was larger than
the number of recorded trials. Because the ideal classical
scheme is assumed to be lossless and to use all resources
passing the phase shift, it must be attributed an e↵ective
number of resources n = Nk̃ = 2k̃. This makes the SNL
harder to beat. For the loss and downconversion param-
eters of our experiment, the worst-case estimate, based
on the lowest possible value for the overall experimental
e�ciency, we determined k̃/k = 1.048125.

Our experimental scheme is shown in Figure 1. We
used collinear type-II parametric down-conversion, pro-
ducing degenerate 1550 nm photon pairs [22]. Careful
design and implementation of the source’s output mode
structure allowed us to achieve high fiber-coupling ef-

ficiency and state-of-the-art superconducting nanowire
single photon detectors (SNSPDs) [23] provided high
detection e�ciency. The down-conversion process gen-
erates two photons in the |1iH |1iV polarisation state
(H ⌘ horizontal; V ⌘ vertical) in the same spatial mode,
which can be written as the NOON-polarisation state
| i = 1p

2
(|2iL |0iR+|0iL |2iR). These right- (R) and left-

circular (L) polarisation modes constituted the two arms
of the interferometer. A half-wave plate (HWP) set at
an angle '/4 relative to its optic axis was used to imple-
ment the birefringent phase shift ' between the arms. A
common misconception about two-photon NOON states
generated from SPDC is that the same phase sensitiv-
ity can be usefully achieved by using a pump photon (at
half the wavelength) instead of the two-photon entangled
state. However, this is clearly not correct for sensing in
any material with dispersion.

After the phase shift, the modes were interfered on
a polarising beam-splitter (PBS) and the output count-
ing statistics were detected with SNSPDs and analysed
with coincidence or time-tag logic. The output signal
consisted of three possible types of detection outcomes:
C11, a coincidence detection between both output modes;
C20, a detection occurring only in the transmitted output
mode; and C02, a detection occurring only in the reflected
output mode. The numbers of each type of detection in
a time period ⌧ were, respectively, c11('), c20(') and
c02(').

In order to test and calibrate our setup we first mea-
sured interference fringes. Detection events (⇡ 250000
per phase value) were collected for a fixed amount of
time for various ' 2 [0, 2⇡). We observed an interfer-
ence visibility of (98.9 ± 0.02)%, calculated from fitting
to the c11(') detection fringe. The transmissions of the
reflected and transmitted outputs of the interferometer
were measured to be ⌘r = (79.41 ± 0.09)% and ⌘t =
(80.26± 0.09)%, calculated from c11(0)/(c11(0) + c20(0))
and c11(0)/(c11(0) + c02(0)) ratios, respectively (a slight
variation of transmission was observed when HWP was
rotated, see Methods for details). Calculated transmis-
sions include all the loss in the setup and the non-unit de-
tection e�ciency of SNSPDs. Probability fringes p11('),
p20(') and p02(') were then obtained by fitting detection
signals, ci('), i 2 {11, 20, 02}, which were appropriately
normalised for each phase value. We used the Fisher in-

formation per recorded trial, F =
P

i

⇣
@ ln pi

@'

⌘2
pi where

i 2 {11, 20, 02}, to quantify the phase sensitivity of our
phase measurement setup [3]. Our results (Fig. 2b) show
a clear violation, for a range of phase values ', of the
adjusted SNL bound that takes into account the infor-
mation in unrecorded trials: FSNL = Nk̃/k = 2.09625.

For the second experiment, we performed phase sens-
ing for individual settings of the phase shifter within the
range where we expected to beat the SNL. At each set-
ting, time-tag hardware was used to acquire detection
events corresponding to k = 10000 trials. From the dis-
tribution of Ci events (i 2 {11, 20, 02}), corresponding
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Fig. 1. Experimental setup for the N = 2 NOON state
optical interferometer. Laser pulses of ⇠ 170 fs duration,
and centred at 775 nm, pump a 2 mm periodically poled KTP
(pp-KTP) crystal, phase-matched for type-II collinear, group-
velocity-matched, degenerate down-conversion at 1550 nm.
A compensation crystal (1 mm KTP) was used to compen-
sate the temporal walk-o↵ between signal and idler photons.
Pump and collection spatial modes were set by F (focusing)
and C (collimating) lenses correspondingly. A silicon filter,
AR-coated for 1550 nm, was used to block the pump beam.
Transmitted (t) and reflected (r) modes of the interferome-
ter, corresponding to H and V polarisations respectively, were
separated by a polarising beam-splitter (PBS) and then cou-
pled into single mode fibres and sent to SNSPDs. A HWP
mounted in an automated rotation stage is used to implement
a controlled phase rotation, '.

NOON-state phase sensing protocol, preparation and use
of an N -photon NOON state constitutes a trial. In the
ideal case, each trial leads to a detection event at the out-
put of the interferometer. Since each trial gives only a
little information about the phase, a number of such tri-
als may be performed. In our work, two-photon NOON
states were generated probabilistically at random times
by the SPDC source. Each detection event (i.e. any com-
bination of detector registrations) represented a recorded
trial. We counted k such detection events to complete the
protocol. However, due to imperfect transmission and
detection e�ciency ⌘, some NOON states did not lead
to detections. Furthermore, due to higher-order SPDC
events (the occasional simultaneous emission of 4, 6, . . .
photons), the resources equivalent to multiple (2, 3, . . .)
trials were overlapped in time and could not be distin-
guished by our non-photon-number-resolving detectors.
Therefore, the actual number of trials (i.e. the number of
photon pairs passing the phase shift), k̃, was larger than
the number of recorded trials. Because the ideal classical
scheme is assumed to be lossless and to use all resources
passing the phase shift, it must be attributed an e↵ective
number of resources n = Nk̃ = 2k̃. This makes the SNL
harder to beat. For the loss and downconversion param-
eters of our experiment, the worst-case estimate, based
on the lowest possible value for the overall experimental
e�ciency, we determined k̃/k = 1.048125.

Our experimental scheme is shown in Figure 1. We
used collinear type-II parametric down-conversion, pro-
ducing degenerate 1550 nm photon pairs [22]. Careful
design and implementation of the source’s output mode
structure allowed us to achieve high fiber-coupling ef-

ficiency and state-of-the-art superconducting nanowire
single photon detectors (SNSPDs) [23] provided high
detection e�ciency. The down-conversion process gen-
erates two photons in the |1iH |1iV polarisation state
(H ⌘ horizontal; V ⌘ vertical) in the same spatial mode,
which can be written as the NOON-polarisation state
| i = 1p

2
(|2iL |0iR+|0iL |2iR). These right- (R) and left-

circular (L) polarisation modes constituted the two arms
of the interferometer. A half-wave plate (HWP) set at
an angle '/4 relative to its optic axis was used to imple-
ment the birefringent phase shift ' between the arms. A
common misconception about two-photon NOON states
generated from SPDC is that the same phase sensitiv-
ity can be usefully achieved by using a pump photon (at
half the wavelength) instead of the two-photon entangled
state. However, this is clearly not correct for sensing in
any material with dispersion.

After the phase shift, the modes were interfered on
a polarising beam-splitter (PBS) and the output count-
ing statistics were detected with SNSPDs and analysed
with coincidence or time-tag logic. The output signal
consisted of three possible types of detection outcomes:
C11, a coincidence detection between both output modes;
C20, a detection occurring only in the transmitted output
mode; and C02, a detection occurring only in the reflected
output mode. The numbers of each type of detection in
a time period ⌧ were, respectively, c11('), c20(') and
c02(').

In order to test and calibrate our setup we first mea-
sured interference fringes. Detection events (⇡ 250000
per phase value) were collected for a fixed amount of
time for various ' 2 [0, 2⇡). We observed an interfer-
ence visibility of (98.9 ± 0.02)%, calculated from fitting
to the c11(') detection fringe. The transmissions of the
reflected and transmitted outputs of the interferometer
were measured to be ⌘r = (79.41 ± 0.09)% and ⌘t =
(80.26± 0.09)%, calculated from c11(0)/(c11(0) + c20(0))
and c11(0)/(c11(0) + c02(0)) ratios, respectively (a slight
variation of transmission was observed when HWP was
rotated, see Methods for details). Calculated transmis-
sions include all the loss in the setup and the non-unit de-
tection e�ciency of SNSPDs. Probability fringes p11('),
p20(') and p02(') were then obtained by fitting detection
signals, ci('), i 2 {11, 20, 02}, which were appropriately
normalised for each phase value. We used the Fisher in-

formation per recorded trial, F =
P

i

⇣
@ ln pi

@'

⌘2
pi where

i 2 {11, 20, 02}, to quantify the phase sensitivity of our
phase measurement setup [3]. Our results (Fig. 2b) show
a clear violation, for a range of phase values ', of the
adjusted SNL bound that takes into account the infor-
mation in unrecorded trials: FSNL = Nk̃/k = 2.09625.

For the second experiment, we performed phase sens-
ing for individual settings of the phase shifter within the
range where we expected to beat the SNL. At each set-
ting, time-tag hardware was used to acquire detection
events corresponding to k = 10000 trials. From the dis-
tribution of Ci events (i 2 {11, 20, 02}), corresponding
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Fig. 2. Experimentally measured output detection
probability and the corresponding Fisher informa-
tion. a, Yellow circles, blue triangles and red squares rep-
resent our experimentally determined p11('), p20(') and
p02(') probabilities, respectively. Error bars are smaller than
the markers. Lines represent a theoretical model with cor-
responding transmission and interference visibility parame-
ters. b, The yellow curve represents the Fisher information
per recorded trial determined from the probability fringes,
p11('), p20(') and p02('), as a function of the unknown phase
'. The dashed red line represents the Fisher information (per
recorded trial) at the SNL, while the solid blue line represents
the SNL Fisher information taking into account the ine�-
ciency and multi-photon emission—see text and Methods for
details. Shaded areas correspond to the 95% confidence re-
gion, derived from the uncertainty in the fit parameters.

Pi probabilities were obtained by normalisation. This
set of three probabilities corresponds to a single phase
estimate value '

est. In practice, finding this estimate
required to minimise the squared di↵erence between the
measured probabilities and their corresponding calibra-
tion curves, pi(') (Fig. 2a). The phase search range was
restricted to '

est 2 [0,⇡/2]. This process was repeated
for s = 14520 samples (for each angle of the HWP), de-
termining '

est
j for each sample j. The mean and stan-

dard deviation of the mean (standard error of the mean)
{'est

j } are shown in Fig. 3. This measurement proce-
dure was repeated for a range of phase values around the
region of interest. When compared to the standard de-
viation of the mean (= 1/

p
ntot) that is achievable with
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Fig. 3. Experimentally measured phase estimate and
phase uncertainty. a, Lines represent theoretically mod-
elled p11('), p20(') and p02(') probabilities from Fig.2a.
Yellow circles, blue triangles and red squares, correspond to
average P11, P20, and P02 probabilities, correspondingly, cal-
culated from 145200000 detection events per angle of HWP.
Their positions on horizontal axis represent the measured
phase estimate—see text for details. Error bars are smaller
than the markers. b, Data points correspond to the standard
deviation of the mean of corresponding phase measurements
of a. The purple line corresponds to standard deviation of the
mean at the SNL, adjusted for correct number of resources Ñ .
The yellow line corresponds to the expected standard devia-
tion of the mean, calculated from the Fisher information from
Fig. 2b. The shaded areas correspond to 95% confidence re-
gions, derived from the uncertainty in the fit parameters. The
uncertainty in standard deviation of the mean was determined
via the standard bootstrapping technique [26], similarly to
Ref. [27].

n
tot = ns = Nk̃s = 304375500 classical resources (ad-

justed for loss and higher order terms, as before) per data
point, our results show a clear advantage of our quantum
approach.

In conclusion, we demonstrated unconditional viola-
tion of the SNL in photonic phase sensing. We recover the
estimate of the phase shift applied to the mode, and its
corresponding standard deviation of the mean, directly
from our measurement data without additional adjust-
ments. Moreover, all the parameters necessary for the
calculation of the SNL of our measurement apparatus,
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Fig. 1. Experimental setup for the N = 2 NOON state
optical interferometer. Laser pulses of ⇠ 170 fs duration,
and centred at 775 nm, pump a 2 mm periodically poled KTP
(pp-KTP) crystal, phase-matched for type-II collinear, group-
velocity-matched, degenerate down-conversion at 1550 nm.
A compensation crystal (1 mm KTP) was used to compen-
sate the temporal walk-o↵ between signal and idler photons.
Pump and collection spatial modes were set by F (focusing)
and C (collimating) lenses correspondingly. A silicon filter,
AR-coated for 1550 nm, was used to block the pump beam.
Transmitted (t) and reflected (r) modes of the interferome-
ter, corresponding to H and V polarisations respectively, were
separated by a polarising beam-splitter (PBS) and then cou-
pled into single mode fibres and sent to SNSPDs. A HWP
mounted in an automated rotation stage is used to implement
a controlled phase rotation, '.

NOON-state phase sensing protocol, preparation and use
of an N -photon NOON state constitutes a trial. In the
ideal case, each trial leads to a detection event at the out-
put of the interferometer. Since each trial gives only a
little information about the phase, a number of such tri-
als may be performed. In our work, two-photon NOON
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by the SPDC source. Each detection event (i.e. any com-
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trial. We counted k such detection events to complete the
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detection e�ciency ⌘, some NOON states did not lead
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ducing degenerate 1550 nm photon pairs [22]. Careful
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| i = 1p

2
(|2iL |0iR+|0iL |2iR). These right- (R) and left-

circular (L) polarisation modes constituted the two arms
of the interferometer. A half-wave plate (HWP) set at
an angle '/4 relative to its optic axis was used to imple-
ment the birefringent phase shift ' between the arms. A
common misconception about two-photon NOON states
generated from SPDC is that the same phase sensitiv-
ity can be usefully achieved by using a pump photon (at
half the wavelength) instead of the two-photon entangled
state. However, this is clearly not correct for sensing in
any material with dispersion.

After the phase shift, the modes were interfered on
a polarising beam-splitter (PBS) and the output count-
ing statistics were detected with SNSPDs and analysed
with coincidence or time-tag logic. The output signal
consisted of three possible types of detection outcomes:
C11, a coincidence detection between both output modes;
C20, a detection occurring only in the transmitted output
mode; and C02, a detection occurring only in the reflected
output mode. The numbers of each type of detection in
a time period ⌧ were, respectively, c11('), c20(') and
c02(').

In order to test and calibrate our setup we first mea-
sured interference fringes. Detection events (⇡ 250000
per phase value) were collected for a fixed amount of
time for various ' 2 [0, 2⇡). We observed an interfer-
ence visibility of (98.9 ± 0.02)%, calculated from fitting
to the c11(') detection fringe. The transmissions of the
reflected and transmitted outputs of the interferometer
were measured to be ⌘r = (79.41 ± 0.09)% and ⌘t =
(80.26± 0.09)%, calculated from c11(0)/(c11(0) + c20(0))
and c11(0)/(c11(0) + c02(0)) ratios, respectively (a slight
variation of transmission was observed when HWP was
rotated, see Methods for details). Calculated transmis-
sions include all the loss in the setup and the non-unit de-
tection e�ciency of SNSPDs. Probability fringes p11('),
p20(') and p02(') were then obtained by fitting detection
signals, ci('), i 2 {11, 20, 02}, which were appropriately
normalised for each phase value. We used the Fisher in-

formation per recorded trial, F =
P

i

⇣
@ ln pi

@'

⌘2
pi where

i 2 {11, 20, 02}, to quantify the phase sensitivity of our
phase measurement setup [3]. Our results (Fig. 2b) show
a clear violation, for a range of phase values ', of the
adjusted SNL bound that takes into account the infor-
mation in unrecorded trials: FSNL = Nk̃/k = 2.09625.

For the second experiment, we performed phase sens-
ing for individual settings of the phase shifter within the
range where we expected to beat the SNL. At each set-
ting, time-tag hardware was used to acquire detection
events corresponding to k = 10000 trials. From the dis-
tribution of Ci events (i 2 {11, 20, 02}), corresponding

H

V

3

Fig. 2. Experimentally measured output detection
probability and the corresponding Fisher informa-
tion. a, Yellow circles, blue triangles and red squares rep-
resent our experimentally determined p11('), p20(') and
p02(') probabilities, respectively. Error bars are smaller than
the markers. Lines represent a theoretical model with cor-
responding transmission and interference visibility parame-
ters. b, The yellow curve represents the Fisher information
per recorded trial determined from the probability fringes,
p11('), p20(') and p02('), as a function of the unknown phase
'. The dashed red line represents the Fisher information (per
recorded trial) at the SNL, while the solid blue line represents
the SNL Fisher information taking into account the ine�-
ciency and multi-photon emission—see text and Methods for
details. Shaded areas correspond to the 95% confidence re-
gion, derived from the uncertainty in the fit parameters.

Pi probabilities were obtained by normalisation. This
set of three probabilities corresponds to a single phase
estimate value '

est. In practice, finding this estimate
required to minimise the squared di↵erence between the
measured probabilities and their corresponding calibra-
tion curves, pi(') (Fig. 2a). The phase search range was
restricted to '

est 2 [0,⇡/2]. This process was repeated
for s = 14520 samples (for each angle of the HWP), de-
termining '

est
j for each sample j. The mean and stan-

dard deviation of the mean (standard error of the mean)
{'est

j } are shown in Fig. 3. This measurement proce-
dure was repeated for a range of phase values around the
region of interest. When compared to the standard de-
viation of the mean (= 1/

p
ntot) that is achievable with
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Fig. 3. Experimentally measured phase estimate and
phase uncertainty. a, Lines represent theoretically mod-
elled p11('), p20(') and p02(') probabilities from Fig.2a.
Yellow circles, blue triangles and red squares, correspond to
average P11, P20, and P02 probabilities, correspondingly, cal-
culated from 145200000 detection events per angle of HWP.
Their positions on horizontal axis represent the measured
phase estimate—see text for details. Error bars are smaller
than the markers. b, Data points correspond to the standard
deviation of the mean of corresponding phase measurements
of a. The purple line corresponds to standard deviation of the
mean at the SNL, adjusted for correct number of resources Ñ .
The yellow line corresponds to the expected standard devia-
tion of the mean, calculated from the Fisher information from
Fig. 2b. The shaded areas correspond to 95% confidence re-
gions, derived from the uncertainty in the fit parameters. The
uncertainty in standard deviation of the mean was determined
via the standard bootstrapping technique [26], similarly to
Ref. [27].

n
tot = ns = Nk̃s = 304375500 classical resources (ad-

justed for loss and higher order terms, as before) per data
point, our results show a clear advantage of our quantum
approach.

In conclusion, we demonstrated unconditional viola-
tion of the SNL in photonic phase sensing. We recover the
estimate of the phase shift applied to the mode, and its
corresponding standard deviation of the mean, directly
from our measurement data without additional adjust-
ments. Moreover, all the parameters necessary for the
calculation of the SNL of our measurement apparatus,
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