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Outline

Why and how do we use infinite-dimensional systems? 

What do we gain?

What is a genuine resource for quantum computational advantage?



Discrete variables
 (finite dimension, qubits)

 Spin   

    Circuit-QED
    (transmon)   

Optics 
(polarization)



 (infinite dimension, distinguishable bosons)

Many quantum systems are “CVs”

Continuous variables (CVs)Discrete variables
 (finite dimension, qubits)

 Spin   Optics 
(quadratures) 

    Circuit-QED
    (transmon)   

Optics 
(polarization)

    Circuit-QED
   (microwave)   

Mechanical
oscillators



Can we use continuous variables to 
process quantum information?

(Classical Information) History says: “yes...”

“... but you’d better digitize it”

Differential analyzer, 1938 
(University of Cambridge)



Physical Logical

Digitizing classical CVs: 
encoding classical bits in classical continuous variables



Digitizing quantum CVs (bosonic codes): 
encoding qubits in quantum continuous variables

Identify a two-dimensional Hilbert space within the infinite-
dimensional Hilbert space of the physical system

Physical Logical

Physical Logical

Digitizing classical CVs: 
encoding classical bits in classical continuous variables



Encoded qubits (wavefunction) Pros Cons

Natural choice

 Experimentally
“easy” to generate

Benchmark

Not resilient to noise 
(e.g., losses)

Bosonic code (I): Fock encoding   



Outline

Why and how do we use infinite-dimensional systems? 

Most quantum systems are infinite-dimensional 
but we have to digitize them (bosonic codes)

What do we gain?

What is a genuine resource for quantum computational advantage?



Coherent states 

0 q 0 q  α

q

p



Bosonic codes (II): the cat code  

Two locations
(dead/alive) 

at once

Note: - if one photon is lost, not all information is lost
          - the Wigner function displays negative values



Bosonic codes (III): binomial codes  

Resilient to single-excitation loss: 

● The states are left orthogonal

● Error identification without gaining 
information on the logical qubit 

(parity measurements)

● Error correction (ancillary systems) 

Note: the Wigner function displays negative values

single-excitation loss

Even (Fock) parity Odd parity



Discrete variables

3-qubit
repetition

code

To protect 1 logical qubit from
arbitrary single qubit errors at least 

5 physical qubits are needed

(Steane code)



Continuous variablesDiscrete variables

3-qubit
repetition

code

Cat code

Binomial 
code

Hardware efficiency: 
bosonic codes do not need additional physical systems 

To protect 1 logical qubit from
arbitrary single qubit errors at least 

5 physical qubits are needed

(Steane code)



Break-even: 
life-time ratio 
approx 1.1



Note: As long as the overlap is small, errors can be corrected for.
  The Wigner function displays negative values

Bosonic codes (IV): GKP codes  





Additional advantage of CV systems:
record-large number of entangled & controllable systems



Deterministic generation of an entangled state of 216 modes, with mean photon 
number 125, and 1,296 programmable real parameters. 

Sampling (approx 1012 times) faster than a classical computer.



Outline

Why and how do we use infinite-dimensional systems? 

Most quantum systems are infinite-dimensional 
but we have to digitize them (bosonic codes)

What do we gain?

Excellent performances for noise-resilience and scalability

What is a genuine resource for quantum computational advantage?



Bosonic circuits 

A generic bosonic circuits is composed of:

● Initial states    

● Gates          

● Measurements          

Which type of components are needed for quantum computational advantage?



Some bosonic circuits provide no quantum advantage 

Gaussian circuits with vacuum input can be simulated efficiently on a classical computer:

[Bartlett et al., PRL 2002]

[Mari et al. PRL 2012; Veitch et al NJP 2013; Rahimi-Keshari et al.,PRX 2016]

● CV circuits initialized in     

● Gaussian gates            (linear and quadratic interactions) 

● Position (homodyne) measurements          and conditioned Gaussian gates

Wigner negativity is necessary for quantum advantage



● CV systems initialized in              and vacuum states    

● Gaussian gates            (linear and quadratic interactions) 

● Homodyne measurements          and Gaussian gates conditioned on outcomes

GKP states provide quantum advantage 

Adding GKP inputs make these circuit universal (quantum advantage):

[Baragiola et al., PRL ‘19]



State space Free states

Resources

[Albarelli, Genoni, Paris, AF, PRA 2018]

Free operations

Resource theory of CV quantum computation 
(Wigner negativity) 



A resource quantifier: Wigner Logarithmic Negativity

The negative volume of the Wigner function is a natural candidate.

Define the Wigner Logarithmic Negativity as:

It is an additive & computable monotone!

[Albarelli, Genoni, Paris, AF, PRA 2018]



Comparison of resources

[McConnell, AF, Puebla, arXiv:2209.07958]

Fock states are not the 
most resourceful states 
at fixed energy

Conversion between resources

Probabilistic conversion of 
three-squeezed states 
to cubic-phase states 
with high fidelity (F=99.6, prob 7%)

[Zheng, …, AF, Ferrini, PRX Quantum 2021; Hahn,,Holmvall, Stadler, Ferrini, AF, PRA 2022]

Quantification of DVs resources: GKP-magic

[Hahn, AF, Ferrini, Garcia-Alvarez, PRL 2022]        
                   



Some bosonic circuits provide no quantum advantage 

Gaussian circuits with vacuum input can be simulated efficiently on a classical computer:

[Bartlett et al., PRL 2002]

[Mari et al. PRL 2012; Veitch et al NJP 2013; Rahimi-Keshari et al.,PRX 2016]

● CV circuits initialized in     

● Gaussian gates            (linear and quadratic interactions) 

● Position (homodyne) measurements          and conditioned Gaussian gates

Wigner negativity is ncessary for quantum advantage



And if we consider GKP input?

Gaussian circuits with only 0-GKP input can be simulated efficiently on a classical computer:

● CV circuits initialized in     

● Gaussian gates          (linear and quadratic interactions, …) 

● Position (homodyne) measurements          and conditioned Gaussian gates

No quantum advantage despite Wigner negativity

[García-Álvarez, Calcluth, AF, Ferrini, PRR 2020; Calcluth, AF, Ferrini, Quantum 2022 & arXiv:2205.09781]



GKP states provide quantum advantage to otherwise simulatable circuits

[Baragiola et al., PRL ‘19]



GKP states provide quantum advantage to otherwise simulatable circuits

[Baragiola et al., PRL ‘19]

[Calcluth, AF, Ferrini, arXiv:2205.09781]

Vacuum provides quantum advantage to otherwise simulatable circuits
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Why and how do we use infinite-dimensional systems? 

Most quantum systems are infinite-dimensional 
but we have to digitize them (bosonic codes)

What do we gain?

Excellent performances for noise-resilience and scalability

What is a genuine resource for quantum computational advantage?

Wigner negativity and classical simulatability









A lot of the quantum world is “CVs”

 
Trapped Ions

Cavity- and
Circuit-QED

Opto- and 
electro-mechanics

Photonics

Atomic ensembles



Digitizing CVs classical signals



Note: for classical systems DVs are more the exception than the rule!

Digitizing CVs classical signals



Fock
state

encoding

GKP
state

encoding

(n-locations
at once)

Encoded qubits (wavefunction) Pros Cons

Experimentally
“easy” to generate

Not resilient to noise 
(e.g., losses;

small displacements
break even/odd sym)

● Resilient to noise 
(losses, 
displacements)

● Hardware efficient
(fault-tolerant
quantum 
computation)

“Difficult” to generate 
experimentally

Digitizing quantum CVs: bosonic encoding   



Two pigeons with one stone:
hardware efficiency and resilience to noise

Continuous variablesDiscrete variables

3-qubit
repetition

code

9-qubit
Shor
code Cat code

Binomial 
code



CV codes (II): 4-headed cat code  



Photon loss can be corrected (code cycle: monitoring plus mapping to 
transmon with the proper mapping function depending on the syndrome 
monitoring):



As long as the 
overlap is small, 
errors can be 
corrected for.



[Fluhmann, PRX 8, 021001 (2018)]



Resourcefulness comparison (at fixed energy)

[McConnell, AF, Puebla, arXiv:2209.07958]

Trisqueezed States

Fock states are not the most resourceful states at fixed energy



[Zheng, Hahn, 
Stadler, Holmvall, 
Qijandría, AF and 
Ferrini, PRXQ 2021]

Resource conversion: 
Trisqueezed to Cubic-Phase State

beam
splitter

rotation

Target:

Input:

Sweet spot: F = 99.6% with p = 7%



[Hahn, Holmvall, Stadler, Ferrini, AF, PRA 2022]    
                       

Resource conversion: 
photon-subtracted/added and cat states

Photon-subtracted/added squeezed state 

   N = 3, s = 0.7

High-fidelity conversions
from photon-subtracted/added states

to large-amplitude cat states
can be achieved for optimized N and squeezing

(rotation + squeezing protocols)

s

F

          Odd cat α = 2



Many resource states in labs



Selective 
Number-dependent 
Arbitrary 
Phase
gate (eg, F, Kerr,...)

Interaction
picture wrt
field

(decoupled form the qubit)



Universal gate set, with typically short sequences 























Rotating

First

“Half” 

Deterministic generation 

Which type of components are needed ?
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