Controls

Dr. Burkhard Kolb

GSI Helmholtzzentrum für Schwerionenforschung GmbH ANSiP 2011, Acireale, Italy

Outline

- Motivation
- What are we dealing with
 - Crates
 - Field busses
 - Devices
 - Control systems
- Example
 - Process Variable
 - IOC
 - Host tools

Curriculum Vitae

- PhD @ HD 77
- Crystal ball @ HD 78
- Plastic ball @ LBL 82
- WA8o/93/98 @ CERN 85

HADES @GSI 96 CBM @ GSI 08

- We use
 - Screwdriver / potentiometer
 - To adjust voltages / thresholds/ flows ...

- We use
 - Our eyes and other senses
 - To read voltages, meters ...

- We use
 - A logbook
 - To write down all parameters

- We use
 - Our ears
 - To hear alarms
 - Our nose
 - To smell burning
 - Our skin
 - To feel heat

If our equipment is

In a shielding

If our equipment is

• Far away

© W. M. Keck Observatory

We need a Control System

- Screwdriver
- Eye, nose, skin
- Logbook
- Alarm
- Measurement sequence

- remote actuator
- remote sensors
- archiving, database
- alarm handler
- automation, state machines

Why a Control System?

- We want to solve similar problems only once
- We do this by abstraction
- We provide the same "look and feel"
- Through structuring we hide complexity and large numbers of "control parameters"

What are the benefits?

- Remote setting via a graphical user interface (GUI)
- Remote setting via scripts or "backup and restore" tools
- Remote setting via automation tools state machines, high level physics applications
- Coordinated simultaneous setting

What are the benefits?

- Automatic read back / monitoring
- Automatic archiving of data
- Alarm handling
- Trending

And what about Disadvantages?

- No direct "feeling"
- Time delay
- Some things may be hidden

What have we learned so far?

- •Control systems are used for remote equipment
 - They provide
 - Control
 - Monitoring
 - Alarms
 - Archiving and trending

So? Why a Control System?

- I have a student who wants to program this device...
- ... months later ...
- Device works beautifully
- He gets his degree
- He leaves
 - Program documentation?
 - Reusability?
- Next student comes and throws it all away...

How does the World look like from a Control System?

- There are
 - Crates with modules
 - Field busses connecting to
 - Crates
 - Modules
 - Individual modules
 - Not really

Crate systems

- NIM
- CAMAC
- FASTBUS
- VME/VXI
- ATCA/μTCA

NIM

Nuclear Instrumentation Module
Defined in 1968-1969
Still used, provides only power

http://en.wikipedia.org/wiki/Nuclear_Instrumentation_Module

CAMAC

Computer Automated Measurement and Control

Defined in 1972 Parallel or serial branch 24 bit data/ 1 µs Provides power and master/slave control

http://en.wikipedia.org/wiki/Computer_Automated_Measurement_and_Control

FASTBUS

FASTBUS (IEEE 960)
Defined in 1984
Segment interconnects:
Crate and cable segment
Large cards 14" by 15"
High power
ECL as electrical standard

http://en.wikipedia.org/wiki/FASTBUS

VME

VMEbus (ANSI/IEEE 1014-1987)
Originated from Motorolas 60000 cpus
Uses Eurocard size modules
Many revisions and speed improvements
VME64- VME320
Flat 32 bit memory model
Arbitration, multiple masters
Very widely used today

http://en.wikipedia.org/wiki/VMEbus http://en.wikipedia.org/wiki/VXIbus

ΑΤCΑ/μΤCΑ

ATCA is a crate system developed by the telecommunications industry to house high performance processing cards in a high speed interconnect backplane

http://en.wikipedia.org/wiki/ Advanced_Telecommunications_Computing_Architecture

Field busses

- RS232/485
- Ethernet
- CANbus
- Modbus
- GPIB
- EtherCAT
- OPC server
- Profibus
- WorldFIP

RS232/485

- The good old terminal line...
- Comes as simple RS232 line to connect one piece of equipment with a computer
- Or as RS485 with multi drop capability
- Protocol is normally ASCII command/response
 - SCPI
- Rarely also as binary transmission of bytes
- Connection also via com-servers on TCP/IP
- http://en.wikipedia.org/wiki/Rs232
- http://en.wikipedia.org/wiki/RS-485

Ethernet

- The network standard
 - Protocols:
 - TCP/IP
 - UDP
 - SNMP
 - telnet/socket
 - ...
 - http://en.wikipedia.org/wiki/Ethernet

CANbus

- The automotive standard
 - Multi master
 - Multi slave
 - Deterministic
 - In cars for motor control, ABS, traction control
 - In physics for crate control, HV
 - Bit synchronous bus
 - Length limitation
 - http://en.wikipedia.org/wiki/CANbus

Modbus

- Connects to PLC (programmable logic controller)
- Simple protocol
 - read/write
 - Boolean/ 16bit
- Used for "DIN rail" devices
- Practical use via ModTCP
- http://en.wikipedia.org/wiki/Modbus

GPIB

- Older fieldbus invented by HP (HP-IB) (late 1960s)
- Standard IEEE-488 (1975)
- Parallel bus for many measuring instruments
- Now used via Ethernet/GPIB adapters

http://en.wikipedia.org/wiki/GPIB

EtherCAT

- Ethernet based protocol with real time functionality for controls
- Proprietary protocol by BECKHOFF

OPC server

- Ethernet based protocol with control functionality
- Started as proprietary protocol by Microsoft (DCOM, OLE for process automation
- Now standardized

http://en.wikipedia.org/wiki/Opc_server

Profibus and WorldFIP

- Attempts by the german and french authorities to establish fieldbus standards
- Still used in some labs

What have we learned so far?

- Crates and field bus systems exist in a great variety
- They act as housing or transport medium to connect the devices with a control system

Some devices

- High voltage supply
- Low voltage supply
- Temperature control/ monitor
- Gas handling systems
- Discriminators and FEE
- Scalers

And many more

Control Systems

- Commercial systems:
 - PVSS/WinCC
 - Labview
- Open source systems:
 - Tango
 - EPICS
- http://en.wikipedia.org/wiki/WinCC
- http://en.wikipedia.org/wiki/EPICS
- http://en.wikipedia.org/wiki/TANGO
- http://en.wikipedia.org/wiki/Labview

How to decide

- Commercial versus open source
 - Philosophical question
 - License fees
 - Support
 - Dependence on operating system

Let's assume we have chosen EPICS

- So what can we do with it?
- What is EPICS?
 - A Collaboration
 - A Control System Architecture
 - A Software Toolkit

A Collaboration

- Began in 1989 between LANL/GTA & ANL/APS
 - (Bob Dalesio & Marty Kraimer)
- Over 150 license agreements were signed before EPICS became "open source"
- Over 100 installations
- Many hundred collaborators
- List server; *tech-talk*: the collaboration in action
- Collaborative efforts vary
 - Assist in finding bugs
 - Share tools, schemes, and advice

A Control System Architecture

Network-based "client/server" model (hence the EPICS logo

- For EPICS, *client* and *server* speak of their Channel Access role
 - i.e. Channel Access Client & Channel Access Server

A Control System Architecture

- Network-based "client/server" model where the basic data element is a Process Variable
- The Channel Access Protocol defines how Process Variable data is transferred between a server and client
- The entire set of Process Variables establish a Distributed Real-time Database of machine status, information and control parameters

Example EPICS

Ten Really Neat Things About EPICS

- 1. It is free. No license fees, no new payment for every upgrade. You can download EPICS free of charge from the web.
- 2. It is Open Source (i.e. the source code is accessible). Adaptions and changes due to a special environment are therefore possible.
- 3. There are lots of users. It is tested and most bugs are already found.
- 4. All a client needs to know to access data is a PV name. No single point of failure due to a nameserver and no messing around with fixed addresses.
- 5. You can pick the best tools out there ...
- 6. ... or build your own.
- 7. The boring stuff is already done. For example the communication with Channel Access is stable and well tested.
- 8. There is a lot of expertise available close by.
- 9. A good contribution becomes internationally known.
- 10. It doesn't matter whether you need 10 PVs or 10 Million PVs. You can scale EPICS almost freely.

What is a PV

- PV stands for process variable
- It is identified by a name:
 - Myexample
 - HAD:TOF:HV:S1:M8:C5:VMON
- Good practice:
 - Use a facility wide naming convention
- Names must be unique on the network

Attributes of a PV

- NAME
- INPut or OUTput (address specification)
- VALue
- TIMEstamp
- SCANning type
- SEVR severity
- STATus
- RTYP record type
- DTYP device type
- EGU engineering unit
- PRECision
- Alarm/display/driving limits
- ... many more

PV

- A PV is the smallest piece of information about a device
 - It holds for example a set voltage
 - The corresponding read back voltage is a different PV
 - A physical device has usually many PVs
 - You could freely name all those PVs
 - But if you choose a naming convention it is much easier to build GUIs for many similar devices

Record type of a PV

- The record type (RTYP) defines the abstract function of the record, i.e.:
 - ai : analog input record
 - Reads a value from a device
 - Converts to engineering units
 - Processes alarm limits
 - Sends monitor values to client
 - bo : binary output record
 - Converts ON/OFF to 1/0
 - Sends 1 or 0 to device
 - Processes alarm limits
 - Sends monitor values to client

Abstraction layers

- Process Variable (PV)
 - Has a record type (RTYP) and record support
 - Uses device support (DTYP) to connect and format communication
 - May use driver support for low level communication/ interrupt handling
- Channel access (CA)
 - Links records to other records and to clients

PV database and IOC

- The PV database is a runtime collection of all PV records in one instance of an IOC (input output controller)
- The IOC is the program which runs the PV database
 - Schedules execution of PVs (scanning)
 - Takes care of communication with clients (CA)
 - Runs state machines (sequencer)
 - Binds together
 - Records
 - Device
 - Driver layers

10C Software in One Slide

EPICS ------

Network (Channel Access)

- Originally running on VME cpus under VxWorks operating system
- Now also on RTEMS
- And as Soft IOC on Linux, MacOSX, Windows, ...
- VxWorks and RTEMS are real time OS
 - Needed for fast feedback

EPICS L L

Channel Access

- Is the protocol that links PVs to clients:
 - GUI
 - Alarm handler
 - Archiver
 - Other tools
- A client may also be another PV on the network
- Protocol usually transmits only value, time stamp, and status
- Control info is sent only once at connection time

Channel Access (2)

- Clients broadcast PV names to find the server in which they exist
- Channel Access Security can be applied to limit access to Process Variables
- Clients can wait until a 'put request ' is completed before proceeding
- Clients can 'set monitors' on PVs and will then be notified when the value changes

Channel Access in One Slide

Host tools

- GUIs
 - Motif based: MEDM, edm
 - Java based: CSS
- Archiver:
 - ChannelArchiver and
 - dataserver
- Alarm Handler: alh
- Backup and restore tool: burt

GUI

MEDM

GUI

CSS

Archiving

ChannelArchiver

Archive Engine

Archive Engine Info					
Version	2.9.2, built Apr 29 2011, 10:39:13				
Description	Hades Archive				
Started	11/09/2011 11:04:38.800317295				
Archive Index	/scratch.local/scs/archiver/aug11/Inde				
Channels	2487				
Connected	2467				
Disconnected	20				
Avg. Process Delay	0.491 sec				
Idle time	98.2 %				
Write Count	168				
Write Duration	0.027 sec				
Next write time	11/11/2011 13:56:00.000000000				
Write Period	30.0 sec				
Get Threshold	20.0 sec				
File Size Limit	30.0 MB				
Disconn. on disable	No				

-Main- -Groups- -Config.-(Status for 11/11/2011 13:55:57. Use *Reload* from the Browser's

Groups

Name	Enabled	Channels	Connected
hadesArchive.cfg	Yes	5	4
mdchv.cfg	Yes	735	576
richhv.cfg	Yes	26	26
rpc.cfg	Yes	594	594
showerhv.cfg	Yes	37	37
temperatures.cfg	Yes	33	33
tofhv.cfg	Yes	1057	1057
Total		2487	2327

Group Info

Group		
Name	showerhv.cfg	

Channels

's	Name	State	Mechanism	Disabling	State
	HAD:SHOWERHV_Disable	connected	Monitored get, 10.0 s, PV CONNECTED, CA Connected	(showerhv.cfg)	enabled
	HAD:SHWR:HV:S1:C0:imon	connected	Monitored, max period 10.0 s, PV CONNECTED, CA Connected		enabled
	HAD:SHWR:HV:S1:C0:vmon	connected	Monitored, max period 10.0 s, PV CONNECTED, CA Connected		enabled
	HAD:SHWR:HV:S1:C1:imon	connected	Monitored, max period 10.0 s, PV CONNECTED, CA Connected		enabled
	HAD:SHWR:HV:S1:C1:vmon	connected	Monitored, max period 10.0 s, PV CONNECTED, CA Connected		enabled

早早

Alarm handling

• alh

Backup and restore

burt

This was a short introduction

- Now a small demo
- You can build this on your own computer and play with it
- All you need is here:
- http://www.aps.anl.gov/epics/download/ base/baseR3.14.12.1.tar.gz
- Unpack
- (gnu)make
- Build the example app

Thank you for your attention