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1. Shockley-Ramo’s theorem
2. Induced current calculation

- planar geometry
- pn junction
- microstrip detector
- pixel vs strips

3. Single-polarity charge sensing
4. Application to special case studies:

- pn detectors for particle identification
- Multi-Linear Silicon Drift Detectors
- Monolithic silicon detector telescopes
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The problem of signal formation

Concept of induced current on electrode k:    
rate of change of electrostatic flux on the 
electrode surface (not the collection of charge 
by the electrode!!!) 

requires to compute the total field 
E(x,y,z,t) (due to bias voltages, fixed space 
charge and moving charges) at every time 
instant, the integral of the flux on the 
electrode surface, etc.

Understanding signal formation is a crucial to 
optimize measurement quality of time, energy, 
position, shape,….

• collection time, amplitude, shape          
depend on type and point of interaction 

• detector topology and readout must be jointly 
optimized for the desired observables

•“tomographic” view of the event,   i.e. 
exploitation of signals on all electrodes’
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Goal: the induced current on a given electrode 
as a function of the instantaneous position of 
the moving charges within the device

A.Castoldi – Politecnico di Milano & INFN



A theorem for two…
S.Ramo, Proc. IRE, 27 (1939) p.584 W.Shockley, J. Appl. Phys. 9, 635 (1938)

Shockley (Bell Labs) and Ramo (General Electric) found independently (!) a more efficient method to 
compute induced charges and currents in vacuum tubes, it turned out valid for gas/solid state detectors 
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Ramo’s Theorem - I
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Ramo’s Theorem - II
Current induced on electrode k by the motion of charge q:

By reciprocity:
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(here charge transport
by drift is assumed)
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Ramo’s Theorem - III
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Limitations of Ramo’s theorem
assume instantaneous field propagation (i.e. 

transit time of charges longer than propagation of 
the field across the volume)

q non-relativistic                                                  
(but electron saturation velocity @RT in Si ~c/3000)

electrode voltages must not vary too fast

the induced charge can be 
computed directly on the 
weighting potential map
(depends only on moving 
charge and topology of device)

Generalizations
multiple moving charges
non-uniform or non-isotropic dielectric constant 
other transport modalities (thermal broadening, 

ballistic motion, etc.) driven by continuity equation 
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Signal Formation and Ramo’s theorem - I
Induced current (charge) in planar electrode geometry
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• equal currents
• hole induction dominant
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Signal Formation and Ramo’s theorem - II
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Induced current (charge) in planar electrode geometry
Continuous ionization
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Signal Formation and Ramo’s theorem - III
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Induced current (charge) in pn junction
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Signal Formation and Ramo’s theorem - IV
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Q=0Q=0 Q=qQ=q

i(ti(t*)=0*)=0

t=t*t=t*

if measurement time      
< pulse duration 

Q≠0 !

Signal Formation and Ramo’s theorem - V
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Induced current (charge) in microstrips
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Weighting field/potential – strips vs pixels
2D case (strip) 3D case (pixel)

strip w idth=1/8 thickness pixel size=1/8 thickness

The shielding effect is proportional to the ratio of the distance between the planar 
electrodes and the strip width (or pixel size)

signal charge independent of the position of the origin of ionization for most of the volume of 
the detector, except near the readout electrodes (small pixel effect)

reduced sensitivity to the problem of  hole trapping (i.e. pulse height dependent on depth of 
interaction)

from V.Radeka
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Single polarity charge sensing
with “coplanar grid” readout - 1

Two inter-digitated coplanar grid electrodes sense the motion of charge carriers in the 
detector (solid-state equivalent of the “Fritsch grid” of gas detectors)

A small potential difference applied btw the C-grid and NC-grid to avoid charge sharing 
and double polarity signals 

When generated in the bulk, a charge carrier induces equal amount of charge on the 2 
grids. A net difference signal is induced only when the carriers to be collected (e.g. 
electrons) are close to the coplanar electrodes. 

The net result is a measured charge nearly  independent of the interaction depth

P.Luke, IEEE Trans Nucl. Sci., vol.42, no.4, Aug. 1995

A.Castoldi – Politecnico di Milano & INFN



Single polarity charge sensing
with “coplanar grid” method - 2

Experimental spectra

Measured charge independent of the depths of 
gamma-ray interactions over much of the detector 
volume excellent energy resolution
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Particle identification of charged ions with
pn detectors
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+ 
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Simulation

Even if neglecting the important contribution of plasma effects, this 
simple analytical model is a precious guide for interpretation of the 

experimental results and for the optimization of the detector topology 
and operating parameters. 
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Energy-RiseTime plots
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Sensitivity studies
Impact of doping level
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The Multi-Linear Silicon Drift Detector

fully depleted n-type bulk 

p+ entrance window on the back side 

implanted p+ strips on the front side  

continuous readout (drift) mode

Rad-hard on-chip JFET for low-noise readout

channel-stops (deep p-implants) for lateral 
confinement 

channel-guides (deep n-implants) for 
lateral confinement and drift enhancement 

fast readout (up to 1 cm/µs)
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Signal Formation in Multi-Linear SDD
IONIZING PARTICLE INTERACTION 
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Present technology: 
depth of potential minimum ~7 µm, 
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Monolithic Silicon detector telescopes

Signal shape interpreted on the basis of induction calculations
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Physical model & 
interpretation of induced signals

ΔE 
detector

E detector

Finite sheet resistance of the deep            
p-implant that forms the buried electrode

local rise of the potential of the 
buried electrode that relaxes to 
equilibrium with a time constant 
comparable with charges’s transit time 
(several hundreds ns)

Voltage signals induced on the buried 
electrode AC coupled to the strips of the 
ΔE detector via the relatively large ΔE 
capacitance 

appear attenuated and inverted at the 
ΔE preamplifier output.

signal charges 
in the E-detector

signals coupled from 
the E-detector

Δ E signal
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Temporal behaviour of the potential of the 
buried electrode - 1
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• potential distribution on the buried resistive electrode computed through the solution 
of the diffusion equation:

• proper boundary conditions describe the behavior of the buried electrode: 
- Dirichlet boundary condition on the grounded side, 
- Neumann conditions at the three other sides. 
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Temporal behaviour of the potential of the 
buried electrode -2 
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Simulated induced output signals - 1

Blue line: voltage signal at the PA output due to ΔE charge collection only.      
Black lines: induction effect at the PA output with an ideal PA.
Red lines: induction at the PA output, taking into account PA finite bandwidth. 

Strip #7 fired
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experimental data


