
deepPP weekly meeting

Pruner loss functions

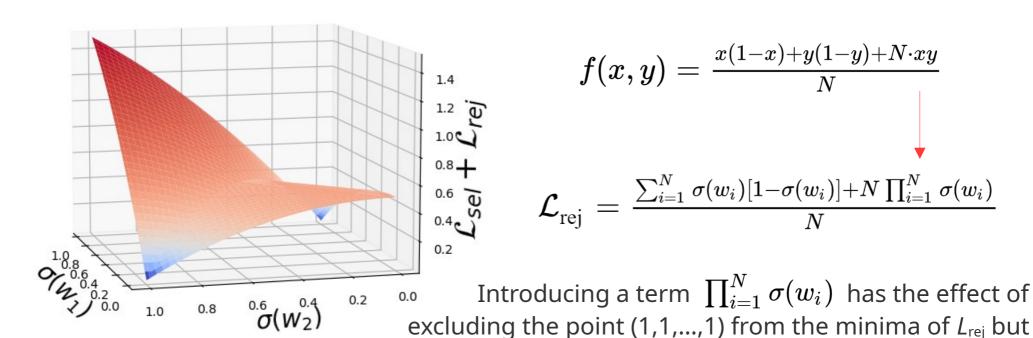
0.2

0.8

$$\mathcal{L}_{ ext{sel}} = rac{|\sum_{i=1}^N \sigma(w_i) - n|}{N}$$

$$\mathcal{L}_{ ext{rej}} = rac{\sum_{i=1}^{N} \sigma(w_i)(1-\sigma(w_i))}{N}$$

→ Is it possible to modify the loss in such a way


0.4 **S** 0.2 **Y**

1.0

0.8

- 1) that the point (1,1,...,1) is no longer a minimum point for L_{rej}
- 2) as to increase the slope of L_{pru} in that region?

Modified rejection loss

$$\prod_{i=1}^N \sigma(w_i) \sim \sigma(w_i)^N o 0$$
 for big values of N and $\sigma(w_i)$ < 1

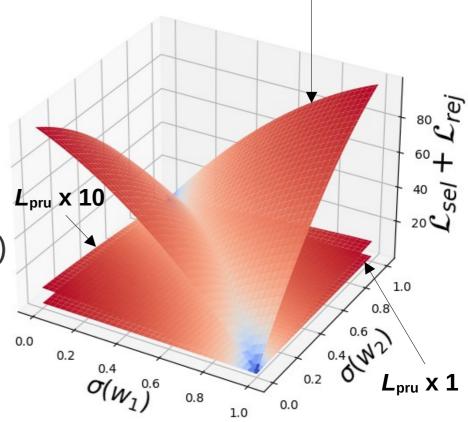
does not increase the slope of L_{pru} in that region because

Result of training with this loss function: the problem of weights updated very slowly still persists, so the reason is not due to the fact that (1,1,...,1) is a minimum point for L_{rej} (therefore it is not a strong point of attraction)

12/05/2023

Increasing the slope

L_{pru} x 100


→ Is increasing the slope of L_{pru} the key?

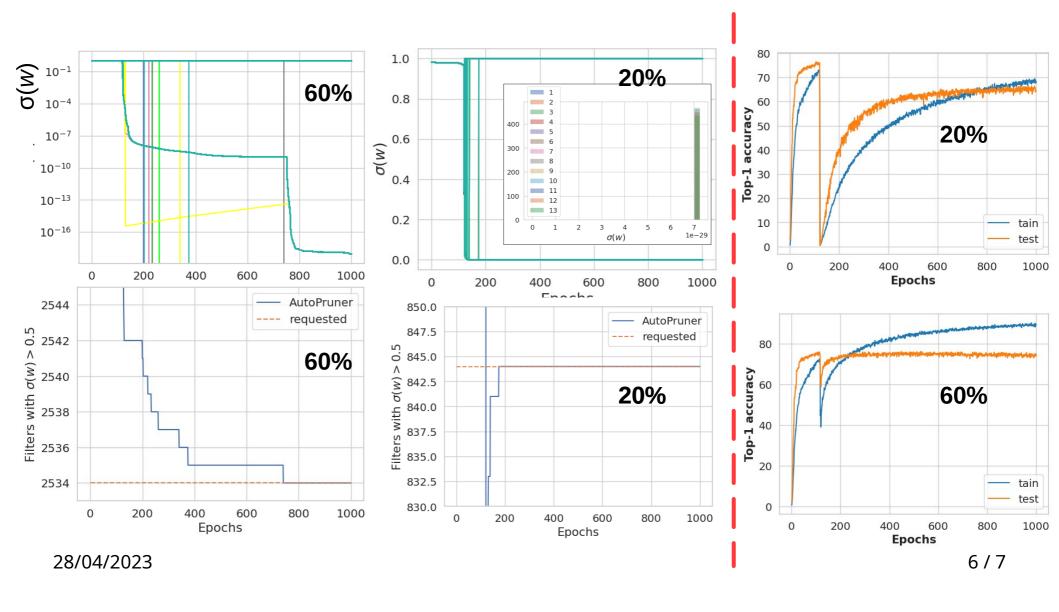
$$L_{\text{tot}} = L_{\text{cla}} + \mu * (\lambda * L_{\text{pru}})$$

$$\mu = \langle L_{cla} \rangle_{last 10 \text{ epochs}} / (\lambda * \langle L_{pru} \rangle_{last 10 \text{ epochs}})$$

Tested with

- $\lambda=\lambda*10$ every 20 epochs, from $\lambda=1$ to $\lambda=10^7$
- $\lambda = 10^5$, $\lambda = 10^6$, $\lambda = 10^7$

→ Not working: weights still updated too little and too drastically


What really works

- In general, pruning occurs well and completely only if $L_{tot} = L_{cla} + \alpha * L_{pru}$ with α increasing gradually
 - When we set a fixed value for α the weights are updated too little or too drastically
 - Defining α as <L_{cla}>_{last 10 epochs} / <L_{pru}>_{last 10 epochs} works fine only if L_{pru} decreases in such a way that α increases gradually
- That's why introducing $L_{tot} = L_{cla} + \mu * \lambda * L_{pru}$ with $\lambda = \lambda * 10$ every 20 epochs from $\lambda=1$ to $\lambda=10^7$ is working fine (see next slide)

 \rightarrow IDEA: define λ in such a way that it increases gradually if the variance of the weights is not changing

Results with increasing λ

 $L_{\text{tot}} = L_{\text{cla}} + \mu * \lambda * L_{\text{pru}}$ with $\lambda = \lambda * 10$ every 20 epochs, from $\lambda = 1$ to $\lambda = 10^7$

Alternative strategy

 Use Markov chain instead of back propagation to update pruner weights

- \rightarrow $w_{new} = w_{old} + \delta rand[-1,1]$
- \rightarrow Weights updated only if $L_{\text{tot}}^{\text{new}} < L_{\text{tot}}^{\text{old}}$

PLAN: investigate both strategies