
Pipeline composition via
MLFlow: Connecting the dots

Tommaso Tedeschi
tommaso.tedeschi@pg.infn.it

Building a ML pipeline

Building machine learning pipeline
is hard:

● 100s of software tools to leverage
● Hard to track and reproduce

results: code, data, params, etc
● Hard to share models
● Hard to productionize models
● Needs large scale for best results

2

Get (new)
data

Prepare data

Train (and
select) the
best model

Deploy the
model

Building a ML pipeline

Building machine learning pipeline
is hard:

● 100s of software tools to leverage
● Hard to track and reproduce

results: code, data, params, etc
● Hard to share models
● Hard to productionize models
● Needs large scale for best results

3

In most cases, you end up like this!

Building a ML pipeline

Building machine learning pipeline
is hard:

● 100s of software tools to leverage
● Hard to track and reproduce

results: code, data, params, etc
● Hard to share models
● Hard to productionize models
● Needs large scale for best results

4

In most cases, you end up like this!

MLflow to the rescue!

What is MLFlow?

MLflow is a versatile, expandable, open-source platform for managing workflows and
artifacts across the machine learning lifecycle (developed by Databricks):

● “API-first” framework, built around REST APIs and CLI:
○ Allow submitting runs, models, etc from any library & language
○ Example: a model can just be a lambda function that MLflow can deploy in many places (Docker,

Azure, etc…)
● Modular design: distinct components:

○ Let people use different components individually
○ Easy to integrate into existing ML platforms and workflows

● Cross-cloud
● Open and extensible
● Platform agnostic for maximum flexibility

It has built-in integrations with many popular ML libraries, but can be used with any
library, algorithm, or deployment tool. It is designed to be extensible, so you can write
plugins to support new workflows, libraries, and tools.

5https://mlflow.org/

https://mlflow.org/

Main components

● MLflow Tracking:
○ Tracking ML experiments to record and compare model parameters, evaluate performance,

and manage artifacts
● MLflow Models:

○ Packaging and deploying models from a variety of ML libraries to a variety of model serving
and inference platforms

● MLflow Model Registry:
○ Collaboratively managing a central model store, including model versioning, stage transitions,

and annotations
● MLflow Projects:

○ Packaging ML code in a reusable, reproducible form in order to share with other data
scientists or transfer to production

6

How is each component mapped?

7

Get (new)
data

Prepare data

Train (and
select) the
best model

Deploy the
model

How is each component mapped?

8

Get (new)
data

Prepare data

Train (and
select) the
best model

Deploy the
model MLflow Tracking

How is each component mapped?

9

Get (new)
data

Prepare data

Train (and
select) the
best model

Deploy the
model MLflow TrackingMLflow Models

How is each component mapped?

10

Get (new)
data

Prepare data

Train (and
select) the
best model

Deploy the
model MLflow TrackingMLflow Models

MLflow Projects

MLflow
Tracking

MLFlow tracking

The MLflow Tracking component is an
API and UI for logging parameters,
code versions, metrics, and output files
when running your machine learning
code and for later visualizing the
results.

MLflow Tracking lets you log and query
experiments using Python, REST, R API,
and Java API APIs.

11

https://mlflow.org/docs/latest/tracking.html

Tracking API

Tracking UI

Notebooks

Github

…

https://mlflow.org/docs/latest/tracking.html

MLFlow tracking - main concepts

MLFlow tracking is organized around the concept of runs, which are executions of some piece of data
science code, collected in experiments (useful for comparing runs intended to tackle a particular task).
Each run records the following information:

● Code Version: Git commit hash used for the run, if it was run from an MLflow Project.
● Start & End Time: Start and end time of the run
● Source: Name of the file to launch the run, or the project name and entry point for the run if run from

an MLflow Project.
● Parameters: Key-value input parameters of your choice. Both keys and values are strings.
● Metrics: Key-value metrics, where the value is numeric. Each metric can be updated throughout the

course of the run (for example, to track how your model’s loss function is converging), and MLflow
records and lets you visualize the metric’s full history.

● Artifacts: Output files in any format. For example, you can record images (for example, PNGs),
models (for example, a pickled scikit-learn model), and data files (for example, a Parquet file) as
artifacts.

Once your runs have been recorded, you can query them using the Tracking UI or the MLflow API.
12

Tracking UI

The Tracking UI lets you visualize, search and compare runs, as well as download run artifacts or metadata
for analysis in other tools.

● If you log runs to a local mlruns directory, run mlflow ui in the directory above it, and it loads the
corresponding runs.

● Alternatively, the MLflow tracking server serves the same UI and enables remote storage of run
artifacts.

○ You run an MLflow tracking server using mlflow server
○ In that case, you can view the UI using URL http://<ip address of your MLflow tracking server>:5000 in your browser from any

machine, including any remote machine that can connect to your tracking server.
○ To log to a tracking server, set the MLFLOW_TRACKING_URI environment variable to the server’s URI, along with its scheme

and port (for example, http://10.0.0.1:5000) or call mlflow.set_tracking_uri()

The UI contains the following key features:

● Experiment-based run listing and comparison (including run comparison across multiple experiments)
● Searching for runs by parameter or metric value
● Visualizing run metrics
● Downloading run results

13

Tracking UI

14

Tracking UI

15

Tracking UI

16

Where is data recorded?

● MLflow runs can be recorded to local files, to a SQLAlchemy-compatible
database, or remotely to a tracking server.

● MLflow artifacts can be persisted to local files and a variety of remote file
storage solutions.

For storing runs and artifacts, MLflow uses two components for storage: backend
store and artifact store.

● backend store persists MLflow entities (runs, parameters, metrics, tags,
notes, metadata, etc)

● artifact store persists artifacts (files, models, images, in-memory objects, or
model summary, etc)

17

How to log?

“Manual” logging:

● mlflow.log_param()/mlflow.log_params()
○ logs a single key-value param in the currently active run. The key and value are both strings.
○ Use mlflow.log_params() to log multiple params at once.

● mlflow.log_metric() / mlflow.log_metrics()
○ logs a single key-value metric. The value must always be a number.
○ MLflow remembers the history of values for each metric (supports two alternative methods for distinguishing metric values on the x-axis:

timestamp and step)
○ Use mlflow.log_metrics() to log multiple metrics at once.

● mlflow.log_input()
○ logs a single mlflow.data.dataset.Dataset object corresponding to the currently active run.
○ You may also log a dataset context string and a dict of key-value tags.

● mlflow.log_artifact()/ mlflow.log_artifacts()
○ logs a local file or directory as an artifact, optionally taking an artifact_path to place it in within the run’s artifact URI.
○ Run artifacts can be organized into directories, so you can place the artifact in a directory this way.
○ mlflow.log_artifacts() logs all the files in a given directory as artifacts, again taking an optional artifact_path.

Autolog:

● Automatic logging allows you to log metrics, parameters, and models without the need for explicit log statements.
● There are two ways to use autologging:

○ Call mlflow.autolog() before your training code. This works for each supported library you have installed as soon as you import it.
○ Use library-specific autolog calls for each library you use in your code

■ available: Scikit-learn, Keras, Gluon, XGBoost, LightGBM, Statsmodels, Spark, Fastai, Pytorch 18

MLflow Models

● Flavors: Modules/frameworks that can be
interpreted by deployment tools to understand
the model without any separate integration
mechanism for each tool or library used in the
model.

○ Standard flavors provided by MLflow include
python_function, sklearn, xgboost, etc

● Model signature: Defines the schema of the
model’s input and output parameters that can
either be column-based or tensor-based

● Input example: Defines an instance of valid
model input and stored as separate artifacts

● MLmodel file: a text file in YAML format that
outlines multiple flavors the model can be
viewed in, model signature and input example

19

https://mlflow.org/docs/latest/models.html

A standard format for packaging machine
learning models that can be used in a variety
of downstream tools

● Each MLflow Model is a directory
containing arbitrary files, together with an
MLmodel file in the root of the directory that
can define multiple flavors that the model
can be viewed in

MLflow
Models

YAML file

-Flavor
-Signature
-Input example

Deploy
on x

Deploy
on y

…

https://mlflow.org/docs/latest/models.html

MLflow Model Registry

The MLflow Model Registry component is a centralized model store, set of APIs, and UI, to collaboratively manage the
full lifecycle of an MLflow Model. It provides model lineage (which MLflow experiment and run produced the model), model
versioning, stage transitions (for example from staging to production), and annotations.

The Model Registry introduces a few concepts that describe and facilitate the full lifecycle of an MLflow Model.

● Model:
○ An MLflow Model is created from an experiment or run that is logged with one of the model flavor’s mlflow.<model_flavor>.log_model() methods.
○ Once logged, this model can then be registered with the Model Registry.

● Registered Model:
○ An MLflow Model can be registered with the Model Registry.
○ A registered model has a unique name, contains versions, associated transitional stages, model lineage, and other metadata.

● Model Version:
○ Each registered model can have one or many versions.
○ When a new model is added to the Model Registry, it is added as version 1. Each new model registered to the same model name increments the

version number.
● Model Stage:

○ Each distinct model version can be assigned one stage at any given time.
○ MLflow provides predefined stages for common use-cases (Staging, Production or Archived).
○ You can transition a model version from one stage to another stage.

● Annotations and Descriptions:
○ You can annotate the top-level model and each version individually using Markdown

● Model Alias:
○ You can create an alias for a registered model that points to a specific model version

20

MLflow
Projects

MLflow Projects

MLflow Projects are just a convention for organizing and
describing your code (packaging it in a reusable and
reproducible way) to let other data scientists (or automated
tools) run it

A project is simply a directory of files, or a Git repository,
containing your code + conventions for placing files in this
directory and a MLproject file (YAML formatted). Each project
can specify several properties:

● Name: A human-readable name for the project.
● Entry Points: Commands that can be run within the

project, and information about their parameters. If you
list your entry points in a MLproject file, however, you
can also specify parameters for them, including data
types and default values.

● Environment: The software environment that should be
used to execute project entry points. This includes all
library dependencies required by the project code
(local, Conda, Virtualenv, and Docker) 21

https://mlflow.org/docs/latest/projects.html

YAML file

-Name
-Entry point(s)
-Environment

Local
execution

Cloud
execution

https://mlflow.org/docs/latest/projects.html

MLflow Projects

22

name: My Project

python_env: python_env.yaml

entry_points:
 main:
 parameters:
 data_file: path
 regularization: {type: float, default: 0.1}
 command: "python train.py -r {regularization}
{data_file}"
 validate:
 parameters:
 data_file: path
 command: "python validate.py {data_file}"

MLflow
Projects

https://mlflow.org/docs/latest/projects.html

YAML file

-Name
-Entry point(s)
-Environment

Local
execution

Cloud
execution

https://mlflow.org/docs/latest/projects.html

MLflow Projects

23

name: My Project

python_env: python_env.yaml

entry_points:
 main:
 parameters:
 data_file: path
 regularization: {type: float, default: 0.1}
 command: "python train.py -r {regularization}
{data_file}"
 validate:
 parameters:
 data_file: path
 command: "python validate.py {data_file}"

Python version required to run the project.
python: "3.8.15"
Dependencies required to build packages. This
field is optional.
build_dependencies:
 - pip
 - setuptools
 - wheel==0.37.1
Dependencies required to run the project.
dependencies:
 - mlflow==2.3
 - scikit-learn==1.0.2

MLflow
Projects

https://mlflow.org/docs/latest/projects.html

YAML file

-Name
-Entry point(s)
-Environment

Local
execution

Cloud
execution

https://mlflow.org/docs/latest/projects.html

Building pipelines with MLflow Projects

The mlflow.projects.run() API, combined with other functions, makes it possible to build
multi-step workflows with separate projects (or entry points in the same project) as the
individual steps.

● Each call to mlflow.projects.run() returns a run object, that you can use with
mlflow.client to determine when the run has ended and get its output artifacts

● These artifacts can then be passed into another step that takes path or uri parameters.
● You can coordinate all of the workflow in a single Python program that looks at the results

of each step and decides what to submit next using custom code.
○ Modularizing Your Data Science Code

■ Different users can publish reusable steps for data featurization, training, validation, and so on, that
other users or team can run in their workflows

■ Sometimes you want to run the same training code on different random splits of training and validation
data

○ Hyperparameter Tuning
■ Using mlflow.projects.run() you can launch multiple runs in parallel
■ Your driver program can then inspect the metrics from each run in real time to cancel runs, launch new

ones, or select the best performing run on a target metric
24

Papermill

Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

Papermill lets you:

● parameterize notebooks
● execute notebooks

You can programmatically execute a workflow without having to copy and paste from
notebook to notebook manually

To parameterize your notebook designate a cell with the tag parameters:

● Papermill looks for the parameters cell and treats this cell as defaults for the parameters
passed in at execution time. Papermill will add a new cell tagged with
injected-parameters with input parameters in order to overwrite the values in parameters.
If no cell is tagged with parameters the injected cell will be inserted at the top of the
notebook.

25
https://github.com/nteract/papermill

https://github.com/nteract/papermill

Worldwide integration/adoption

● MLflow is well integrated with most of the Machine Learning ecosystem:
○ Tensorflow
○ Pythorch
○ Keras
○ Scikit-learn
○ XGBoost
○ Onnx
○ …

● Also integrated with different computing environments: docker, kubernetes,
commercial clouds…

● Adopted by 80+ companies

26

Let’s start by examples

● We already set up an MLflow tracking server for you at:
https://<your-username>-mlflow.131.154.99.220.myip.cloud.infn.it

27

https://yourusername-mlflow.131.154.99.220.myip.cloud.infn.it

Let’s start by examples

● We already set up an MLflow tracking server for you at:
https://<your-username>-mlflow.131.154.99.220.myip.cloud.infn.it

● Didactic examples:
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflo
w

28

https://yourusername-mlflow.131.154.99.220.myip.cloud.infn.it
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow

Let’s start by examples

● We already set up an MLflow tracking server for you at:
https://<your-username>-mlflow.131.154.99.220.myip.cloud.infn.it

● Didactic examples:
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflo
w

○ Exercise for you:
■ Try and add a test for the trained model on a dummy pandas dataframe
■ Bonus:

● Try and modify the main.py function in order to make a grid search on the
parameters of the elasticnet model and then test the best model on a dummy
pandas dataframe

29

https://yourusername-mlflow.131.154.99.220.myip.cloud.infn.it
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow

Let’s start by examples

● We already set up an MLflow tracking server for you at:
https://<your-username>-mlflow.131.154.99.220.myip.cloud.infn.it

● Didactic examples:
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflo
w

○ Exercise for you:
■ Try and add a test for the trained model on a dummy pandas dataframe
■ Bonus:

● Try and modify the main.py function in order to make a grid search on the
parameters of the elasticnet model and then test the best model on a dummy
pandas dataframe

● More sophisticated example:
https://github.com/mlflow/mlflow/tree/master/examples/hyperparam 30

https://yourusername-mlflow.131.154.99.220.myip.cloud.infn.it
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow
https://github.com/mlflow/mlflow/tree/master/examples/hyperparam

