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DATA SCIENCE, STATISTICS, MACHINE LEARNING, Al, ...

STATISTICS

- Statistics is the discipline that studies oroanization.oic i |1 =} §‘
the collection, analysis, interpretation, Statl Stl C

presentation, and organization of data.

statlstlcal
ﬂ erence

- Classical statistical methods:

- Point estimation

- Confidence intervals

+ Hypothesis testing

- Statistical models for regression and classification
- Likelihood-based inference

- Bayesian inference

+ Multivariate methods



- Leo Breiman (“Statistical Modeling: The Two Cultures”, Statistical Science, 2001)
described “two cultures”:

1. “generative” modeling culture which seeks to develop stochastic models
that fit the data, and then make inferences about the data-generating
mechanism based on the structure of those models. Implicit is the notion
that there is a true model generating the data, and often a “best” way to
analyze the data.

2. “predictive” modeling culture which focuses on predictions, ignoring the
underlying data generating mechanism, and discuss only accuracy of
predictions made by different algorithms.

+ According to Breiman “Statistics starts with data. Think of the data as being
generated by a black box [...]"

Two main goals can be pursued when analyzing data:

- Prediction, i.e to be able to predict what the responses are going to be to
future input variables;

+ Inference, i.e to infer how nature is associating the response variables to
the input variables.



MACHINE/STATISTICAL LEARNING

+ Machine learning is the study of how
computer algorithms can improve
automatically through experience and by
the use of data.

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T,
as measured by P, improves with experience E. - Tom Mitchell (1997)

- In the context of predictive modelling, the difference between machine learning
and statistical learning is blurred.

+ Machine learning (ML) tends to be focused more on developing efficient
algorithms that scale to large data in order to optimize a predictive model.

- Statistical learning (SL) generally pays more attention to the probabilistic
structure of the model in order to provide an assessment of the uncertainty.



Data Science is a vaguely defined, constantly
changing, cross-disciplinary field.

From a statistician point of view, data science
can be seen as a broader view of statistics.

When physicists do mathematics, they
don’t say they’re doing “number science”.
They’re doing math. If you're analyzing
data, you're doing statistics. You can call
it data science or informatics or analytics
or whatever, but it's still statistics.

— Karl Broman (U of Wisconsin)

Big Data refers to data sets that are too large
or complex to be dealt with by traditional
data analysis software.

Big data are usually described in terms of
three key concepts: volume, variety, and

velocity.

MATH &
| STATISTICAL
| KNOWLEDGE

“We need to
shift our mindset
from BIG DATA

to GOOD DATA.”

AL

Andrew Ng

‘Chairman and Co-Founder of Coursera
CED & Co-Founder of Landing Al



ARTIFICIAL INTELLIGENCE

Artificial Intelligence (Al) refers to the
ability of digital machines to perform
tasks that typically require human
intelligence.

onara tsigence

0 ool b

]-glg

o 1
Ll
|

Can machines think?
- Alan Turing (1950)

Al can be seen as a branch of CS, and in the years since its introduction in 1950s
has experienced several waves of optimism followed by disappointment and the
loss of funding (aka “Al winter”), followed by new approaches, success and
renewed funding.

There is a large debate and no single
definition of the Al field that is universally
accepted.

In a broad sense, Al is an interdisciplinary
science with multiple approaches, where
advancements in ML and Deep Learning (DL)
play a central role.

Al encompasses various subfields, including
ML, SL, and DL.

Avrtificial intelligence

Machine learning

Deep learning



SUPERVISED LEARNING

- Suppose we collected data for a sample of n observations. The training set is
made of pairs of input and output variables:

Drrain = {1, yi},n:1

+ Assume there exists a dependency between them, so the output y; can be
expressed as a function of the input variables x; and some other unobservable
(latent) variables z;:

vi = f(xi,2;)

- The aim of supervised learning is to fit a model to learn the mapping from the
observable input to the output

Vi=g(x; | 6)
where g(.) is a statistical model and @ the unknown parameters.

+ The learning task corresponds to finding the parameters that minimize a loss
function measuring the deviation of our prediction y; from the observed output

Yit

n n
6 = argmin PALE arg min DL 9(xi | 6)

i=1 i=1 ;



- Different supervised learning algorithms differ in the models or the loss
functions they assume, or the procedures they use in optimization.

+ In regression problems

- the output y; is a numerical value (quantitative response)
- g(.) is a regressor function

- loss is often the squared error, so the aim is to find the best 8 that
minimize the fitting error.

- In classification problems

« the output y; is a discrete label (qualitative response)
- g(.) is a discriminant/classification function

- if the loss function is the Zero-One loss the aim is to minimize the total
number of misclassifications.



- Popular supervised learning models are:
+ Linear regression

- Logistic regression

- Generalized Linear Models (GLM)

- Generalized Additive Models (GAM)

- Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA)

- Naive Bayes methods

- Mixture models (e.g. Gaussian mixtures)

- Decision Trees (Regression and Classification Trees)

- Ensemble methos (Bagging, Random Forests, Boosting)
- Support Vector Machines (SVM)

- Neural Networks (NN) and
Deep Learning (DL)



UNSUPERVISED LEARNING

- Suppose we collected a dataset Dy zin = {X; ;’:1 composed of only a set of
variables drawn from some unknown probability/density function

X ~ p(x)
+ In unsupervised learning for each case only the predictors vector x; is observed,

but there is no response y; (i = 1,...,n). Thus, we lack a response variable that
can supervise our analysis.

+ The aim is to estimate a model with parameters
xj~q(x|0)
where g(.) is some working distribution depending on parameters 6.

- The learning task corresponds to finding the parameters that makes q(.) as
close as possible to the unknown p(.) and from that understand the
relationships between the variables or between the observations.

« Cluster analysis is a typical unsupervised learning task: look for the presence of
one or more distinct groups of observations with no explicit assessment
criterion because truth is not known (e.g. market segmentation to detect groups
of customers).



SEMI-SUPERVISED LEARNING

Many problems fall naturally into the supervised or unsupervised learning
paradigms.
However... sometimes the question is less clear-cut.

There can be situations where for a subset of m < n observations we have
information on both the predictors and the response variable, and for the
remaining n — m observations we have only predictor measurements but no
response measurement.

+and - are labeled points
eare unlabeled points
1

Such a scenario is referred to as semi-supervised learning.



REINFORCEMENT LEARNING

- Reinforcement learning focuses on training agents to make sequential decisions
in an environment to maximize a cumulative reward.

+ In reinforcement learning, an agent interacts with an environment, learns from
its actions, and adjusts its behavior to achieve a specific goal or objective.

State (St)
7 Agent
Action
Reward (Rt) (A1)
Rit+1)
 Spa Environment ¢

+ Application domains:

- recommendation systems (e-commerce websites, streaming services, ...)
* robotics

- game playing

- autonomous vehicles



AIMS OF STATISTICAL/MACHINE LEARNING

- In general, suppose that we have observed

- a quantitative response (aka dependent variable, output, target, ...)
denoted as Y, and

- aset of p predictors (aka independent variables, covariates, features, ...)
collected in the input vector X = (X1, X, . .. ,Xp)T.

- Further, assume there exists some relationship between Y and X, i.e.
Y=f(X)+e

where

+ f() is unknown and represents the systematic information that X provides
about Y;

- e isarandom error term, which captures measurement errors and other
discrepancies, independent of X and with zero mean.

+ There are two main reasons to estimate f():

1. inference

2. prediction



INFERENCE

- In descriptive or explanatory modelling we want to understand how Y changes

as a function of (X1,...,Xp).

- Interesting questions:
+ Which predictors are associated with the response?
+ What is the relationship between the response and each predictor?

- What is the functional form of the relationship between Y and each
predictor?

- There exists any cause-and-effect relationship?
(causal inference)



PREDICTION

- In predictive modelling the goal is to predict the response variable based on
the observed values of the predictors:

Y=7(x)

. f() is often treated as a black box: we are not interested in knowing the exact
form of f(), provided that it yields accurate predictions for Y.

+ The prediction error of estimating Y using Y can be decomposed as
Y=Y =fX) +e—F(X) = (FOO) —FO0) + (Y = f(X))

+ Suppose that both f() and X are fixed, then recalling that E[e] = 0, the expected
prediction error (under squared error loss) is given by

EL(Y = V)] = E[(f(X) + € - F(X))?]
= E[(F(X) = F(X))?] + E[€?] + 2E[e(F(X) - F(X))]
=(F0O)-FfX0)? + Vel

R — ——
reducible error irreducible error




ESTIMATING f ()

Estimation (or learning in ML) is the process of applying a statistical/machine
learning method to the training data to estimate the unknown function f().

Main goal: estimate f() with the aim of minimizing the reducible error.

The irreducible error provides a lower bound on the accuracy of our prediction
for Y, and it is almost always unknown in practice.

Several approaches are available, both parametric and non-parametric.



PARAMETRIC METHODS

A two-step model-based approach:

1. Select the functional form, or shape, of ().
For example, the linear model assumes that f() is linear in X:

F(X) = Bo+BiXa+BaXo+ ...+ BpXp

2. Select a procedure that uses the training data to fit or train the model.
For example, in the linear model case we only need to estimate the parameters
(Bos B1. B2, - . ., Bp)- A popular approach is (ordinary) least squares (OLS), but
many other exists (maximum likelihood, regularized ML, Bayesian estimation,

)

+ This model-based approach is called parametric because it reduces the problem
of estimating f() down to one of estimating a set of parameters (the coefficients
of the model).

Pros: generally is much easier to estimate a set of parameters than it is to fit an
entirely arbitrary function f().

Cons: the selected model can be a poor approximation of true unknown form of f().




NON-PARAMETRIC METHODS

- Non-parametric methods do not make explicit assumptions about the functional
form of ().
- They try to estimate f() getting as close to the data points as possible without
being too rough or wiggly.
Pros: avoid the assumption of a particular functional form for f(), so they have the
potential to accurately fit a wider range of possible shapes for f().

Cons: a large number of observations is required to accurately estimate f().



TRADE-OFF BETWEEN MODEL INTERPRETABILITY AND FLEXIBILITY

- If we are mainly interested in explanatory inference, then simple models
(e.g. Linear Models, Logistic Regression) are much more interpretable than
black-box models (e.g. Random Forest, SVM, Neural Networks).

- Flexible models allow to fit many different possible functional forms for f(), but
usually require estimating a larger number of parameters.

+ In general, as the flexibility of a model/algorithm increases, its interpretability
decreases.

- Qverfitting is the main risk, i.e. to follow the observed data (including the
error/noise component) too closely.

- If we are only interested in prediction, then the interpretability of the predictive
model may be simply not of interest.

- Flexible models may provide good fit but there is the risk of overfitting.

+ Models involving fewer variables are often preferred over more complicated
models involving several variables or features.



Interpretability

Interpretability vs flexibility using different statistical/machine learning methods

High

Low

Subset Selection

Ridge regression, Lasso
Naive Bayes

GLM
GAM

Trees

Bagging
Random Forest
Boosting

svm

Neural Networks

T T
Low High

Flexibility
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ASSESSING MODEL ACCURACY

* Suppose we have fit a model f(x) to some training data Dyain = {(X, ¥i)}_,,
and we wish to assess its performance.

+ Compute the average squared prediction error over Dy ,in:

1 —~
MSEwain =~ D Lyi =F0x))?
’eDtrain
- Since the same data is used both for “learning” and for “evaluating” the fit
of a model, this gives an optimistic evaluation of model accuracy.

- If used for selecting the complexity of a statistical model, it is biased
toward overfitting models.

- Compute the MSE on a test set Diest = {(X;, yi)}‘f’:’1, i.e. a fresh dataset not used
for parameters estimation:

MSEtest =% Z lyi — f(x))]?

i€ Dtest

+ This is a more realistic measure of how accurately an algorithm is able to
predict outcome values for previously unseen data.

21
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BIAS-VARIANCE TRADE-OFF

-+ The expected test error for a new observation value xo can always be
decomposed as

Elyo — f(x0)1% = V[f(x0)] + B[f (x0)]? + V[e]
where

. V[)?(xo)] is the variance expressing the amount by which ?() would change
if we estimated it using a different training dataset;

. B[f(xo)] is the bias expressing the error that is introduced by
approximating the data distribution by a statistical model;

- V[e] is the irreducible error.

+ The expected test error can never be smaller than the irreducible error.

+ In general, more flexible statistical methods have higher variance and smaller
bias. On the contrary, simpler models have smaller variance but higher bias.

- To minimize the expected test error, we need to select a statistical/machine
learning method that simultaneously achieves low variance and low bias.

25
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v

Model Complexity
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CLASSIFICATION ACCURACY

+ Suppose that we seek to estimate f() on the basis of the training observations
Dirrain = {(x,-,y,-)},f’=1, where in this case y; € {C1,Ca, . .., Ck} is the class or label
associated with the ith observation.

+ Training classification error rate is the proportion of misclassified observations,
i.e.
CEyin = ~ 1y Vi
train = ie%‘:ain (i #Yi)
where
- y; is the predicted class label for the ith observation usingf();
- 1(y; #V;) is the indicator function that returns 1if y; # y; and 0 otherwise.

- The test classification error rate associated with a set of test observations
Drest = {(X;.y)}I", is given by

1 —~
CErest=— D>, 10 #7)

i€ -Dtest

28



THE BAYES CLASSIFIER

- The test error rate CEtest is minimized, on average, by a very simple classifier
that assigns each observation to the most likely class, given its predictor values.

- According to the Bayes classifier, a test observation with predictor vector xq
should be assigned to the class Cj, (with k =1, ... ,K) for which

Pr[Y = Cy | xo] is maximum

- The Bayes error rate is the lowest possible test error rate produced by the Bayes

classifier:
- error rate at xq is 1—maxg Pr[Y = Cg | Xo].
- overall Bayes error rate is 1—E[maxg Pr[Y = Cx | X]]

The Bayes error rate is analogous to the irreducible error for classification tasks.

The Bayes decision boundary defines the regions in which a test observation
will be assigned to one of the K classes.




X,

Two-class simulated dataset. The dashed line represents the
Bayes decision boundary with Bayes error rate ~ 13%

- For real data, we do not know the conditional distribution of Y given X, and so
computing the Bayes classifier is impossible.

30



LOSS FUNCTIONS

- In supervised machine learning problems, a training set of n data points is

available, Dyyin = {X;, y,-}lf':1, where x; represents the p features on the ith

observation and y; represents the value of the response variable.

- The main goal is to build a model whose predictions y; are as close as possible
to the true response values y;.

+ A loss function aims at measuring model’s prediction error:
n
L= Ly
i=1

+ Properties of a loss function:
- continuous and differentiable (everywhere);

+ convex, i.e. only one global minimum point exists, so optimization methods
like gradient descent are guaranteed to return the globally optimal
solution. In practice, this is hard to achieve, and most loss functions are
non-convex (i.e. they have multiple local minima);
+ symmetric, i.e. the error above the target should cause the same loss as
the same error below the target;
- computationally efficient, i.e. fast and scalable. 3




Loss FUNCTIONS AND MAXIMUM LIKELIHOOD

- Many of the loss functions used in ML are derived from the maximum likelihood
principle.

+ In maximum likelihood estimation (MLE) we are trying to fit a model with
parameters 6 that maximizes the probability of the observed data given the
model: Pr(D|0).

+ MLEs are computed as

6= arg max log Pr(D10)
6
+ Thus, the loss function for a random sample D = {x;, y,-}‘f’:1 can be defined as

n
L=—logPr(D|6) = — Z log Pr(x;|0)
i=1
so L(y;,y;) = — log Pr(x;|6).
- Because negative logarithm is a monotonically decreasing function, maximizing
the likelihood is equivalent to minimizing the loss.

32



Loss FUNCTIONS IN REGRESSION PROBLEMS

SQUARED LOSS

+ The squared loss is defined as
Lsq(vi, Vi) = (i = ¥)?
« This is the loss function used in ordinary least squares (OLS), the most common
method for solving linear regression problems.

« Pros:

- continuous and differentiable everywhere;

- convex (has only one global minimum);

- easy to compute;

- obtained assuming a Gaussian distribution for the errors.

Cons:

- sensitive to outliers.

33



ABSOLUTE LOSS

- The absolute loss is defined as
Labs(vi, Vi) = lyi = Vil
* Pros:
- not overly affected by outliers;
- easy to compute;
- obtained assuming a Laplace distribution for the errors.
Cons:

- non-differentiable at 0, which makes it hard to be used by derivative-based
optimization methods, such as gradient descent.

34



HUBER LOSS

- The Huber loss is a combination of squared loss and absolute loss and it is
defined as
1 =32 ; =
_ 2V —=vi) iflyi-vil <6
Lhuber (Vi» ¥i) = 2 ~ . —~
8(lyi Vil - 38) iflyi—vil>6

for some hyperparameter § > 0.
* Pros:

- continuous and differentiable everywhere;
- less sensitive to outliers than squared loss.

Cons:

- slower to compute;
+ requires tuning of the hyperparameter &;
- does not have a maximum likelihood interpretation.

35
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Loss function:

_— Squared
— Absolute
—— Huber (5=1)

-2 -1 0 1 2
N
Yi—Vi
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LoSS FUNCTIONS IN BINARY CLASSIFICATION PROBLEMS

ZERO-ONE LOSS

- The simplest loss function is the zero-one loss function defined as
Loy yi) = 1(y; # Vi)
where y; € {0,1} is the observed class, y; the corresponding predicted class, and
1() the indicator function that returns 1if its argument is true, and 0 otherwise.

- By encoding y; € {—1, + 1}, the zero-one loss can also be defined as
Lo1(yj»si) = L(yjsj < 0)
where s; € R is the linear score s.t. Pr(y; = +1) = 1/(1+ exp(-s;))-

« This loss function counts the number of prediction errors made by the classifier
(misclassification error).

* Pros:
- easy to compute.
Cons:
- non-differentiable and non-continuous.

37



LoG LOSS OR CROSS-ENTROPY LOSS

- Denote the binary response as y; € {0,1} and the probability of positive case as
Pr(y; = 1) = p;, then the log loss is defines as

Liog(yis pi) = —yilog(p;) — (1—y;) log(1 - p;)
- Equivalently, denoting the binary response as y; € {—1,+1} and s; € R the linear
score, the log loss can also be defined as
Liog(yi» si) = log(1+ exp(-y;si))
* Pros:

+ continuous and differentiable everywhere;

- convex (has only one global minimum);

- obtained assuming a Bernoulli distribution for the response variable;
- loss function used in logistic regression;

- easily extended to multi-class classification problems.

Cons:

+ symmetric.

38



HINGE LOSS

« For the binary response y; € {—1, + 1}, the hinge loss is defined as
Lhinge (Vi» ) = max(0,1 - y;s;)

- Hinge loss is employed by support vector machines (SVM) to obtain a classifier
with “maximal margin”:

- when y; and s; have the same sign (a correct prediction) and s; > 1 the loss
is 0;
- when y; and s; have opposite signs, the loss increases linearly with s;, and

similarly if s; < 1, even if it has the same sign (a correct prediction, but not
by enough margin).

EXPONENTIAL LOSS

+ For the binary response y; € {1, + 1}, the exponential loss is defined as
Lexp(Vi»si) = exp(~y;s;)
- A more aggressive loss function which grows exponentially for negative values

and is thus very sensitive to wrong predictions.

- Exponential loss is employed by AdaBoost classifier.

39
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Loss function:
— Zero-One
—— Cross—entropy
— Hinge

—— Exponential
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MODEL VALIDATION

- Often models require the tuning of hyper-parameters (k in KNN, number of
components in GMM, smoothing parameter, lasso and/or ridge parameters,
number of hidden layers and number of nodes in ANNs, etc.).

- Sometimes we have no test data available for estimating MSE, classification
error, etc.

- In all these cases, a separated validation dataset Dy, = {(x,‘,yi)}}’:1 should be
used.

However, instead of setting aside a validation set, it is preferable to use
resampling methods.

+ No free lunch theorem: no method/algorithm/model dominates all others over
all possible datasets.

- Realistically, we should decide for any given set of data which method produces
the best results.

- This is the most challenging part of statistical/machine learning in practice.

4



RESAMPLING

- Resampling methods are a fundamental tool in modern statistics.

+ They involve repeatedly drawing samples from a training set and refitting a
model of interest on each sample to obtain additional information about the
fitted model.

+ They can be computationally expensive, because the same statistical model
must be fitted multiple times using different subsets of the training data.

- Goals
-+ Model assessment (evaluating model’s performance)

- Model selection (selecting the level of flexibility of a model,
i.e. hyperparameters tuning)

-+ Model inference (provide a measure of accuracy of a parameter estimate or
of a given statistical/machine learning method)

42



Several possible performance metrics can be adopted.

For regression problems, the error is usually measured by the root mean square

error:
RMSE = VMSE = /% Z(yf ~fx))?

or directly using the MSE.

For classification problems, the error can be measured by the classification
error:

1 _
CE:-§1 ——
n2 Vi #Yi)

Many other measures are available: sensitivity/specificity, ROC-AUC,
precision/recal, F-score, log-loss or cross-entropy, Brier score, etc.

If a validation set is not available, an estimate of the true error must be
obtained by resampling methods.

43



CROSS-VALIDATION

- Cross-validation is a widely used resampling approach for estimating the
performance of a statistical/machine learning model/algorithm.

V-fold cross-validation

The set of training observations is randomly splitted into V parts or folds. The model
is trained using all but the vth fold, then the remaining vth fold is used as validation
set. This is done in turn for each fold v =1, ..., V, and then the results are combined.

10-fold cross-validation scheme

| Training set |

[ estimation folds W validation fold

Iteration 1 - Train | Train ‘ Train ‘ Train I Train | Train | Train | Train | Train |

Iteration 2 Train ‘ Train ‘ Train I Train | Train | Train | Train I Train |

Iteration 3 | Train | Train - Train ‘ Train | Train | Train | Train | Train | Train |

Iteration 10 | Train | Train | Train ‘ Train ‘ Train | Train | Train | Train | Train -

- When V = n, the procedure is called leave-one-out cross-validation (LOOCV),
because we leave out one data point at a time.

4b



BOOTSTRAP

- The bootstrap is a flexible and powerful statistical tool that can be used to
quantify the uncertainty associated with a given estimator (e.g. standard errors
or confidence intervals for regression coefficients) or the predictions provided
by a statistical/machine learning method.

Bootstrap takes random samples with replacement of the same size as the
original data set.

Since sampling is made with replacement, some observations may be selected
more than once and each observation has a 63.2% chance of showing up at least
once.

The probability for an observation of not being selected in any of n draws
from n samples with replacement is (1—1/n)".

Then limp_00(1-1/n)" = e~1 ~ 0.368, and the probability of being selected
at least once is1— e~ ~ 0.632.

The observations not selected (approximately 1/3 of the sample) are usually
referred to as the out-of-bag observations.

45



BOOTSTRAP ALGORITHM FOR A CLASSIFICATION TASK

1. Create a bootstrap sample by random sampling with replacement;
2. Fit a classifier using the bootstrap sample as training set;
3. Predict out-of-bag observations to get bootstrap classification error;

4. Repeated steps 1-3 multiple times (usually 30 — 100) and then combine the
results.

BIAS-VARIANCE TRADE-OFF FOR BOOTSTRAP

- The bootstrap estimates of error rate have less variability than V-fold CV, but
larger bias (similar to 2-fold CV).
If the training set size is small, this bias may be problematic, but will decrease
as the training set sample size becomes larger.

+ The “632" bootstrap method tries to reduce the bias by creating a performance
estimate that is a combination of the simple bootstrap estimate and the
estimate from predicting the training set:

(0.632 x bootstrap error rate) + (0.368 X training error rate)

46



ONE STANDARD ERROR RULE

- Instead of selecting the model with the “best” tuning parameter value, other
schemes for selecting a single model can be used.

- A popular choice is the so-called “one standard error rule”:
“all else equal (up to one standard error), go for the simpler (more regular-
ized/parsimonious) model”
- In practice:
- the model with the best performance value is identified;

- an estimate of the standard error of performance is computed by a
resampling method;

- the final model is the simplest model whose estimated performance is
within one standard error from the best model performance.

47



TISTICAL/ MACHINE LEARNING PIPELINE

Data
collection SL/ML model/algoritm

Data Estimate/train Hyperparameter

]

Evaluate Deploy model
model/algorithm in production

> Training set
,,,,,,,, > Validation set
Test set
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NEURAL NETWORKS

- Artificial Neural Networks (ANNs) are a broad class of biologically inspired
nonlinear algorithms for solving both regression and classification problems.

- A brief history of ANNs:

+ 1940s: McCulloch-Pitts (1943) introduced the neuron as a simplified model
of a biological neuron. This laid the theoretical foundation for ANNs.

+ 1950s: Rosenblatt (1957) developed the perceptron, a type of artificial
neuron capable of binary classification.

+ 1960s - 1970s: limits of single-layer perceptrons were identified for solving
complex problems that were not linearly separable (1st Al Winter).

- 1980s: back-propagation algorithm was developed independently by
multiple researchers (Werbos, Hinton, ...) which allowed for efficient
training of multi-layer ANNs.

- 1990s: limited progress and high expectations lead to 2nd Al Winter with
decreasing funding.

- 2010s - Present: advances in computing power, availability of large
datasets, and introduction of deep learning techniques, led to a resurgence

of interest and breakthroughs in neural networks.
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A pictorial description of biological brain activity

. Neuroelectric signals are received by the cell’s dendrites through a biochemical process.

. If a sufficient number of (cumulative) input signals enter the neuron through the dendrites,

the cell body generates a response signal and transmits it down the axon to the synaptic
terminals.

. The specific number of input signals required for a response signal is dependent on the

individual neuron.

. When the generated signal reaches the synaptic terminals it flow out and interact with

dendrites of neighboring neurons.
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ARTIFICIAL NEURAL NETWORKS

Several variants of ANNs exist, but all can be defined in terms of the following
characteristics:

- An activation function, which transforms a neuron’s combined input signals into
a single output signal to be broadcasted further in the network.

+ A network topology (or architecture), which describes the number of neurons in
the model, the number of layers and their connections.

- The training algorithm that specifies how connection weights are set in order to
inhibit or excite neurons in proportion to the input signal.
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ANN MODEL

The specification of a simple ANN model is the following:

p
ye—f(x)=f a+Zijl-
j=1

where
y is the output signal (response variable)
x;j are the input signals (features or predictors)
w; are the weights associated to input signals (coefficients)
a is the “bias” (intercept)
f() is the activation function

Input
Features x;
X1 Activation
Functi

“ ! Adder un’c\t\on

w2

T y — Qutput
W'! e ly

X3 T
: / Threshold T
Xp Wp
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ACTIVATION FUNCTIONS

THRESHOLD/UNIT STEP ACTIVATION FUNCTION

- Asimple activation function that outputs a binary result based on whether the
input is above or below a specified threshold:

0 ifx<o
f(X)={ .
1 ifx>0

- Also called “unit step activation function”, it is rarely used in practice because
the discontinuity at the threshold point makes the activation function
non-differentiable. This impedes gradient availability for training using the

back-propagation algorithm.
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SIGMOID ACTIVATION FUNCTION

- An activation function that maps any real-valued number to the range (0,1), and

itis defined as
1

T+e™X

fx) =

+ In ANN the sigmoid function is commonly used in the hidden layers.

- Itis particularly useful in situations where the output of a neuron needs to be
constrained in (0,1), e.g. as the output layer in tasks involving binary
classification.

- The sigmoid function has limitations, especially in the context of deep learning
due to so-called “vanishing gradient problem” which can lead to slower training
and convergence. 54



HYPERBOLIC TANGENT (TANH) ACTIVATION FUNCTION

- An activation function maps any real-valued number to the range (—1,1), and it

is defined as
X —e X
o0 =

eX+e X

05

f(x)

-0.5

- The hyperbolic tangent function is often used as an activation function in the
hidden layers of a ANN.

- Itis particularly useful in zero-centered data scenarios.

- As for the sigmoid function, it suffers from the vanishing gradient problem.
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IDENTITY ACTIVATION FUNCTION

Often used in regression contexts to link

F(x) = x the last hidden layer with the output layer.

RECTIFIED LINEAR UNIT (RELU)

This is a popular activation function for

= 0
f(0 = max(0,x) deep neural networks.

SOFTPLUS

It is a smooth approximation to the ReLU

= log(1+€*
fe) 8 ) activation function.

10

Identity
n‘_x’ == RelLU

softplus



NETWORK TOPOLOGY

The input and output nodes are arranged in groups of nodes known as layers.

SINGLE-LAYER ANN

The input nodes process the incoming data exactly as it is received, so the network
has only one set of connection weights.

Prediction

Input Nodes
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MuLTIPLE-LAYER ANN

- Often additional hidden layers are included to process the signals from the
input nodes prior to reaching the output node.

Prediction

Hidden
Nodes

Input Nodes

-+ An ANNs with multiple hidden layers is called a Deep Neural Network (DNN) and
the training of such network is referred to as deep learning.

Multiple Output Nodes Multiple Hidden Layers
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DIRECTION OF INFORMATION TRAVEL

FEEDFORWARD ANNS

+ Networks in which the input signal is fed continuously in one direction from
connection to connection until it reaches the output layer.

- Feedforward ANNs have been extensively applied to real-world problems.

- The feedforward neural network (FFNN) or multilayer perceptron (MLP) is the de
facto standard ANN topology.

H p
y—f() =fo|lao+ Z Whfh | ah + Z WjnXj
h=1 j=1

where

+ His the number of hidden units

* fo is the activation function for the output layer

- fp are the activation functions for the hidden layers
* wp and wjy, are the layers’ weights

« ag and ay are the layers’ bias coefficients
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RECURRENT (OR FEEDBACK) ANNS

- Networks in which the signals travel in both directions using loops.
- This property allows extremely complex patterns to be learned.

- In spite of their potential, recurrent networks are still largely theoretical and are
rarely used in practice.

Prediction

Hidden
Nodes

Input Nodes
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NUMBER OF NODES IN EACH LAYER

- The complexity of an ANN depends on the number of nodes in each layer.

 The number of input nodes is predetermined by the number of features (or
predictors) in the input data.

- The number of output nodes is predetermined by the number of outcomes to be
modelled (single response or multiple response variables) or the number of
classes (if the response is qualitative).

The number of hidden nodes is selected by the user before training the model.

In general, more complex network topologies with a greater number of network
connections allow the learning of more complex problems. But there exists the
risk of overfitting (i.e. it may generalize poorly to future data).

- Large neural networks can be computationally expensive and slow to train.

- Best practice: use the fewest nodes that result in adequate performance in a
validation dataset.
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TRAINING OF ANNS

- Training of ANNs and DNNs by adjusting connection weights is very
computationally intensive.

- Back-propagation is the most common algorithm used for training.

+ Back-propagation employs gradient descent to minimize the loss function with
respect to the weights by recursively applying the chain rule of calculus from the
output layer back to the input layer.

Input nodes. Hidden nodes Output nodes

Error back propagation

Input
puf Y Qutput

62



BACK-PROPAGATION ALGORITHM

1. Weights are initialized at random.

2. The algorithm iterates through many cycles (epochs) consisting of a forward and
a backward phase:

- In the forward phase the neurons are activated in sequence from the input
layer to the output layer, applying each neuron’s weights and activation
function along the way. Upon reaching the final layer, an output signal is
produced.

In the backward phase the network’s output signal resulting from the
forward phase is compared to the true target value in the training data. The
difference between the network’s output signal and the true value results
in an error that is propagated backwards in the network to modify the
connection weights between neurons and reduce future errors.

3. The process is iterated until a stopping criterion is satisfied.
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GRADIENT DESCENT (GD)

- GD is a generic iterative algorithm that aims at minimizing a loss function.

- GD measures the local gradient of the loss function for a given set of parameters
and takes steps in the direction of the descending gradient.

+ Given a loss function £ (w), start with an arbitrarily chosen solution wg and
move it a new solution in the direction of the negative gradient V £ (w).
At iteration t update the weights using
1
Wiy — Wy — 1 X HV L(w)

where 7 is the learning rate controlling how large the updating step should be:

- if too small, then the algorithm might converge very slowly;

- if too large, then the algorithm can have issues with convergence or make

the algorithm divergent.

100 big too small

" Learning step

Loss function
Loss function
Loss function

 Initial value + Minimium
) 0
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STOCHASTIC GRADIENT DESCENT (SGD)

- For non convex loss functions there may be several local minima, plateaus, etc.,
that makes finding the global minimum difficult.

- SGD algorithms are a modification of GD where the gradient is calculated using
just a random small part of the observations instead of all of them.

- Batch SGD computes the gradient of the loss function for a subset of
observations (minibatches) and update the solution using
1
Wiy — Wt —n X —V i(w
t41 CX g ;BL( )
- Online SGD is a special case of batch SGD in which each minibatch has only
one observation.

+ Ordinary GD is a special case of SGD in which there is only one batch
containing all observations.

+ The introduction of randomness can help to jump out of local minima and
plateaus to get sufficiently near the global minimum.

- Often, SGD leads to a reduction in computation time.
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PENALIZATION

- Complex ANNs tend to overfit, thus to avoid overfitting problems more elaborate
versions of this objective function can be obtained by including a penalty term.
For example

L(w;A) = L(w) + A X Penalty(w)
where
< A > 0is a tuning hyperparameter (decay) which controls the level of
penalization;
- Penalty(w) is a penalty function which discourage large weights
(regularization effect).

- Note that both the £(w) and the Penalty(w) functions make sense if the
variables are measured on the same scale. Thus, as a preliminary step all the
features need to be rescaled (e.g. by standardization).
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PROS AND CONS

Advantages:

- Flexibility: ANNs allow for good approximation of practically any regression
function. A neural network with at least one hidden layer of sufficient neurons is
a universal function approximator.

- Compactness of representation: the estimated regression function is identified
by a limited number of components.

- Can be adapted to classification or numeric prediction problems.

- Makes few assumptions about the data’s underlying distribution and
relationships.
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Drawbacks:

Computationally intensive and slow to train, particularly if the network topology
is complex.

Arbitrariness: there are no strong criteria with which to choose the number of
hidden nodes.

Instability of estimates: the nature of objective function implies that its
properties are difficult to identify, especially the existence of a single minimum
point. Instead, there is empirical evidence of the frequent presence of local
minima, and different results may be obtained if the optimization algorithm is
started from different points.

Overfitting: very prone to overfitting training data.

Inference: there are no standard errors associated with the coefficients or other
inferential procedures.

Interpretation: results in a complex black box model that is difficult, if not
impossible, to interpret
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CONCLUSIONS

+ Machine Learning and Statistical Learning play a vital role in the broader field of
Artificial Intelligence.

- They enable machines to learn from data, make predictions, and solve complex
tasks without being explicitly programmed for a specific task.

+ ML/SL techniques have widespread applications across various domains,
revolutionizing industries and improving decision-making processes.
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