
Dask data processing:
What, Why, When

Tommaso Tedeschi
tommaso.tedeschi@pg.infn.it

The problem

● The majority of small data science problems can be tackled with a
Numpy/Pandas/Custom code combination:

○ In particular, pandas is great for tabular datasets that fit in memory. A general rule of thumb for
pandas is: “Have 5 to 10 times as much RAM as the size of your dataset” [Wes McKinney
(2017) in “10 things I hate about pandas”]

● What if we have to tackle big data problems? This implies two things:
○ Datasets to analyze will be (much) larger that your memory
○ We would like to use all available computing power (on my machine or on many different

machines)
○ HERE IS WHEN DASK COMES TO THE RESCUE!

2

What is Dask

Dask is a parallel and distributed computing library that scales the existing
Python and PyData ecosystem.

Dask can scale up to your full laptop capacity and out to a cloud cluster.

Dask provides multi-core and distributed+parallel execution on
larger-than-memory datasets

3

Main virtues

● Familiar:
○ Provides parallelized NumPy array and Pandas DataFrame objects

● Flexible:
○ Provides a task scheduling interface for more custom workloads and integration with other projects.

● Native:
○ Enables distributed computing in pure Python with access to the PyData stack.

● Fast:
○ Operates with low overhead, low latency, and minimal serialization necessary for fast numerical

algorithms
● Scales up:

○ Runs resiliently on clusters with 1000s of cores
● Scales down:

○ Trivial to set up and run on a laptop in a single process
● Responsive:

○ Designed with interactive computing in mind, it provides rapid feedback and diagnostics to aid humans
4

Main concepts

Main concepts behind Dask:

● Parallelism: Uses all of the cores on your computer
● Larger-than-memory: Lets you work on datasets that are larger than your

available memory by breaking up your array into many small pieces,
operating on those pieces in an order that minimizes the memory footprint of
your computation, and effectively streaming data from disk.

● Laziness: Most Dask user interfaces are lazy, meaning that they do not
evaluate until you explicitly ask for a result

● Blocked Algorithms: Perform large computations by performing many
smaller computations.

5

Main components

Two main pillars:

● Dynamic task scheduling optimized for interactive computational workloads

● “Big Data” collections like parallel arrays, dataframes, and lists that extend
common interfaces like NumPy, Pandas, or Python iterators to
larger-than-memory or distributed environments. These parallel collections
run on top of dynamic task schedulers.

6

Main components

● High-level collections: Dask
provides high-level Array, Bag, and
DataFrame collections that mimic
NumPy, lists, and pandas but can
operate in parallel on datasets that
don’t fit into memory.

● Low-level collections: Dask also
provides low-level Delayed and
Futures collections that give you
finer control to build custom parallel
and distributed computations.

7

Dask Arrays

A Dask array is composed of many Numpy
arrays (or “duck arrays” that are sufficiently
NumPy-like in API), arranged into chunks within a
grid

● This lets us compute on arrays larger than
memory using all of our cores. We coordinate
these blocked algorithms using Dask graphs

Dask arrays support a large subset of the Numpy
API (Dask Array also implements a subset of the
scipy.stats package)

8https://docs.dask.org/en/latest/array.html

https://docs.dask.org/en/latest/array.html

Dask Dataframes

One Dask DataFrame is comprised of many in-memory
pandas DataFrames separated along the index

● these pandas objects may live on disk or on other machines.
● one operation on a Dask DataFrame triggers many pandas

operations on the constituent pandas DataFrames in a way
that is mindful of potential parallelism and memory
constraints

● It is used in situations where pandas is commonly needed,
usually when pandas fails due to data size or computation
speed:

○ Manipulating large datasets, even when those datasets don’t fit in
memory

○ Accelerating long computations by using many cores
○ Distributed computing on large datasets with standard pandas

operations like groupby, join, and time series computations

They support a large subset of the Pandas API
9https://docs.dask.org/en/latest/dataframe.html

https://docs.dask.org/en/latest/dataframe.html

Dask Bags

Dask Bags coordinate many Python lists or
Iterators, each of which forms a partition of a
larger collection

● Bag is the mathematical name for an
unordered collection allowing repeats

● Implements operations like map, filter,
groupby and aggregations on
collections of Python objects

● Dask bags are often used to parallelize
simple computations on unstructured or
semi-structured data like text data, log
files, JSON records, or user defined
Python objects.

10https://docs.dask.org/en/stable/bag.html

https://docs.dask.org/en/stable/bag.html

Dask Delayed

The Dask delayed function decorates your Python
functions so that they operate lazily.

● Rather than executing your function immediately, it
will defer execution, placing the function and its
arguments into a task graph with dependencies

● Useful when your problem doesn’t fit into one of the
higher-level collections

Sometimes you want to create and destroy work during
execution, launch tasks from other tasks, etc. For this,
see the Futures interface.

11https://docs.dask.org/en/latest/delayed.html

https://docs.dask.org/en/latest/delayed.html

Dask Futures

Submit arbitrary functions for computation in a parallelized,
eager, and non-blocking way

● This interface is good for arbitrary task scheduling like
dask.delayed, but is immediate rather than lazy

○ more flexibility in situations where the computations may evolve over time.
● The intermediate results, represented by futures can be

passed to new tasks without having to pull data locally from
the cluster:

○ new operations can be setup to work on the output of previous jobs that
haven’t even begun yet.

12https://docs.dask.org/en/latest/futures.html

Only available
when working

with distributed
schedulers! (see

next slides

https://docs.dask.org/en/latest/futures.html

From functions to graphs

Dask collections and the fine-grained APIs generate
task graphs:

● Each node in the graph is a normal Python
function

● edges between nodes are normal Python
objects that are created by one task as outputs
and used as inputs in another task

● Internally, Dask encodes algorithms in a simple
format involving Python dicts, tuples, and
functions

● Dask needs to execute graphs on parallel
hardware:

○ This is the job of a task scheduler 13

Scheduling

14

Different task schedulers exist, and each will consume a task graph and compute the same
result, but with different performance characteristics. Two families:

● Single-machine scheduler: This scheduler provides basic features on a local process or
thread pool.

○ It was made first and is the default and is simple and cheap to use, although it can
only be used on a single machine and does not scale

● Distributed scheduler: This scheduler is more sophisticated, offers more features, but
also requires a bit more effort to set up.

○ locally or distributed across a cluster
○ more on this on Thursday

https://docs.dask.org/en/stable/scheduling.html

https://docs.dask.org/en/stable/scheduling.html

Single-machine schedulers

15

● Single-threaded synchronous scheduler
○ executes all computations in the local thread with no parallelism at all. This is particularly valuable for debugging

and profiling
○ dask.config.set(scheduler='synchronous')

● Threaded scheduler
○ executes computations with a local concurrent.futures.ThreadPoolExecutor.
○ It is lightweight and requires no setup.
○ It introduces very little task overhead (around 50us per task) and, because everything occurs in the same

process, it incurs no costs to transfer data between tasks.
○ dask.config.set(scheduler='threads')

● Multiprocessing scheduler
○ executes computations with a local concurrent.futures.ProcessPoolExecutor.
○ It is lightweight to use and requires no setup.
○ Every task and all of its dependencies are shipped to a local process, executed, and then their result is shipped

back to the main process.
○ dask.config.set(scheduler='processes')

Collections scheduler defaults

16

The dask collections each have a default scheduler:

● dask.delayed, dask.array and dask.dataframe use the threaded
scheduler by default

● dask.bag uses the multiprocessing scheduler by default.

For most cases, the default settings are good choices. However, sometimes you
may want to use a different scheduler. if your computation is dominated by
processing pure Python objects like strings, dicts, or lists, then you may want to try
one of the process-based schedulers

General best practices

● Start Small:
○ Parallelism brings extra complexity and overhead
○ Before adding a parallel computing system try some alternatives: better algorithms or file formats,

compiled code..
● Avoid Very Large Partitions:

○ Your chunks of data should be small enough so that many of them fit in a worker’s available
memory at once

○ Dask will likely manipulate as many chunks in parallel on one machine as you have cores on that
machine.

○ it’s common for Dask to have 2-3 times as many chunks available to work on so that it always has
something to work on.

● Avoid Very Large Graphs:
○ Every task comes with some overhead: this is somewhere between 200us and 1ms

17
https://docs.dask.org/en/stable/best-practices.html

https://docs.dask.org/en/stable/best-practices.html

Best practices - Arrays

● If your data fits comfortably in RAM and you are not performance bound,
then using NumPy might be the right choice

○ Dask adds another layer of complexity which may get in the way
○ If you are just looking for speedups rather than scalability then you may want to consider a

project like Numba
● Select good chunk size:

○ While optimal sizes and shapes are highly problem specific
○ it is rare to see chunk sizes below 100 MB in size.
○ If you are dealing with float64 data then this is around (4000, 4000) in size for a 2D array or

(100, 400, 400) for a 3D array.
● When reading data you should align your chunks with your storage format.

○ Most array storage formats store data in chunks themselves

18https://docs.dask.org/en/stable/array-best-practices.html

https://docs.dask.org/en/stable/array-best-practices.html

Best practices - Dataframes

● If you can, use Pandas:
○ For data that fits into RAM, pandas can often be faster and easier to use than Dask DataFrame
○ When you’ve reduced things to a more manageable level, persist and switch to Pandas

● Use the Index, Avoid Full-Data Shuffling as much as you can and persist
intelligently (when running distributed):

○ Dask DataFrame can be optionally sorted along a single index column
■ some operations against the index column can be very fast

○ Setting an index is an important but expensive operation: do it infrequently and persist afterwards
■ It is often ideal to load, filter, and shuffle data (to set to set an intelligent index) once and keep

this result in memory
● Repartition to Reduce Overhead:

○ Partitions should fit comfortably in memory (smaller than a gigabyte) but also not be too many
○ After filters, it is wise to regroup your many small partitions into a few larger ones

19https://docs.dask.org/en/stable/dataframe-best-practices.html

https://docs.dask.org/en/stable/dataframe-best-practices.html

Best practices - Delayed

● Call delayed on the function, not the result
○ compute on lots of computations at once

● Don’t mutate inputs:
○ If you need to use a mutable operation, then make a copy within your function first

● Avoid global state:
○ Using global state might work if you only use threads

● Don’t call dask.delayed on other Dask collections or within delayed functions:
○ When you place a Dask array/DataFrame into a delayed call, that function will receive the NumPy or

Pandas equivalent
○ this might crash your workers

● Break up computations into many pieces:
○ You achieve parallelism by having many delayed calls, not by using only a single one

● Avoid too many tasks:
○ Every delayed task has an overhead of a few hundred microseconds
○ break up your many tasks into batches or use one of the Dask collections to help you

20https://docs.dask.org/en/stable/delayed-best-practices.html

https://docs.dask.org/en/stable/delayed-best-practices.html

Dask ecosystem

In addition to the core Dask library and its
distributed scheduler, the Dask ecosystem
connects several additional initiatives,
including:

● Dask-ML (parallel scikit-learn-style
API)

● Dask-image
● Dask-cuDF
● Dask-sql
● Dask-snowflake
● Dask-mongo
● Dask-bigquery

21

Community libraries that have built-in
dask integrations like:
● Xarray
● XGBoost
● Prefect
● Airflow

Dask deployment libraries:
● Dask-kubernetes
● Dask-YARN
● Dask-gateway
● Dask-cloudprovider
● Dask-jobqueue

Dask-ML

Dask-ML provides scalable machine learning in Python
using Dask alongside popular machine learning libraries like
Scikit-Learn (+Joblib), XGBoost, LightGBM, PyTorch (via
Skorch) and Keras (via SciKeras) in particular for:

● Scaling Model Size:
○ Dask’s joblib backend to parallelize Scikit-Learn directly
○ hyper-parameter optimizers

● Scaling Data Size:
○ Dask’s high-level collections like combined with one of

Dask-ML’s estimators that are designed to work with Dask
collections

Dask-ML endeavors to provide a single unified interface
around the familiar NumPy, Pandas, and Scikit-Learn APIs

22https://ml.dask.org/

https://ml.dask.org/

When to choose Dask for distr comp?

● When you prefer Python or native code, or have large legacy code bases that
you do not want to entirely rewrite

● When you want a lighter-weight transition from local computing to cluster
computing

● When you want to interoperate with other technologies and don’t mind
installing multiple packages

23

Let’s see some examples

https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day2/Dask

24

https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day2/Dask

