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Fermiac: Physicists’ Attitude Toward Gomputingcsns

Conceived by Enrico Fermi in 1947
while the ENIAC was unavailable for a
long shutdown due to maintenance
and memory upgrade.

A 30 cm long hand-operated analog
computer to study the evolution in

time of the neutron popolation in a
nuclear device via the Monte Carlo

method.

Operated on a scale drawing of the
nucleare device under study.

Follow the history of each neutron,
once fixed the initial conditions.

F. Coccetti, The Fermiac or Fermi’s Trolley, 2016

Used until 1949. DOI: 10.1393/ncc/i2016-16296-7



http://dx.doi.org/10.1393/ncc/i2016-16296-7
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CNAF (“Centro Nazionale
Analisi Fotogrammi”) in
Bologna was founded in
1962, dedicated to what
was at the time the most
technologically
challenging analysis
method: bubble
chambers images.

This needs computers!

A brief history of computing @ INFN

IBM 7094 operator's console o
showing additional index register
displays in a distinctive extra box on
top. Note "Multiple Tag Mode" light in
the top center.

CSN5

IBM Sys_tem/360 Model 44

System/360 Model 44 front panel

Manufacturer International Business Machines
Corporation (IBM)

Product System/360
family

Release date August 16, 1965
Discontinued September 23, 1973
Memory 32-256 KB Core




(NN | brief history of computing @ INFN
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CILEA MI
(UNIVAC) \GW

CINECA
(CDC)

Computers became more and more popular among

physicists, and due to the distributed nature of INFN, CNUCE |
they were sitting in different structures, mostly handled (1BM)
independently.

From the need to allow an intercommunication, INFNet

project was started using dial-up connections. CNAF,

with its technology-related mission, became the central

node of the effort. CCl
In early 80s, a connection was built to CERN (via CERNet) (UNIVAC)
for direct access and later to FNAL.

At the end of the 80s, INFNet was topping 64 kbit/s

CSATA
(IBM)
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Remote access to computers was quickly becoming a need in other
scientific domains; GARR was pioneering 2 Mbps connections by 1988,
starting with a CERN-CNAF and later a connection to CINECA, Rome and
Milan. This is the infrastructure which handled LEP, TeVatron, SLC
computing.

That has with time become the backbone of the research networking in
Italy, which reached 34 Mbps by 1995. Still today, it is handled by
GARR.

By that time, we were in the planning for the “LHC” era and it was clear
how the Computing would have been a major effort for HEP and for
INFN. CNAF was again having a central role for INFN Computing.




CNFY o BAPE (1988-2004): INFN Supercomputers for LCOD csuis
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Design of the Floating-Point Unit Technical Elaboration of the FPU Left to Right: V. Marinari, P.S. Paolucci,
(G. Parisi) (G. Salina) G. Salina, N. Cabibbo
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<E 4 Generations of APE: 1 GFlops to 10 TFlops
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https://doi.org/10.1016/0010-4655(87)90172-X
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APEmille (1999) 128GF, SP, Complex
https://doi.org/10.1016/50920-5632(97)00485-4

APE100 (1992) 25GF, SP, REAL apeNEXT (2004) 800GF, DP, Complex
https://doi.org/10.1063/1.39557 https://doi.org/10.1016/50920-5632(01)01656-5



https://doi.org/10.1063/1.39557
https://doi.org/10.1016/0010-4655(87)90172-X
https://doi.org/10.1016/S0920-5632(97)00485-4
https://doi.org/10.1016/S0920-5632(01)01656-5

<E 4 Generations of APE (1988-2004)
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A brief history of computing @ INFN CSNS

Ten centers were selected to host WLCG Computing:

1 Tier-1 at CNAF (red in the picture)

9 Tier-2s at LNL, LNF, Turin, Milan, Pisa, Rome, Naples, Bari,
Catania (yellow in the picture)

Then came the GRID, the Cloud, ...

They are all still operational, even if their size has increased
0(1000x) since then and their interconnectivity (thanks to
GARR-X) reaches multiples of 100 Gpbs

4 National Laboratories P
LHC-Tierz 20 Divisions
Milano
1 11 Groups /'
Milanc-Bicocca Trento

1 Computer Science C-nlcr/.

rrrrrr 8 Udine 1Tier1 & 9 Tier2
Trieste 3 Other Insutullons/.

—
- U)lNF National Laboratory
Legnaro (PD)

. Firenze

GGl Galileo Galilel

Institute for Theoreticat

Physics - Arcetri [FI) A ; LNGS-6ran Sasso National
~ Ui Laboratory - Assergl (AQ)

osenza

Ertore Majocana Foundation
and Centre for Scientific
Culture - Erikce (TP)

4, LNS- Sud National

& Laboratory - Catania

WWW.GARRIT — e AV l .-
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The development of Scientific
Computing in INFN was driven
by the needs of its
theoretical/experimental
communities.

Still, being at the forefront of
computing in research seeded
many projects which have a
larger scope.

A History of Gollahorations ...

RLEE _,_|' - . L.
“nabling Crids ."_ G. cEl el
Ll SRS EGl-Engage  EGI-INSPIRE
/ ( \ \\ interTwirN
g EOSC-hUb \fﬂ/‘;;FUtUI’E Skills4EOSC
( 2 > d‘/) EOSC o
. pi
INDIGO - DataClovd  eXtreme Data CICd Hybrid DataCloud C‘.\ G
.. [ ) . ..
» HZLI 0Nl
— P ST,
eosC-Pillar (WDICE N0 oii e
THESCIENCECLOUD
Eur_aH_F_'t
4 \

* Xk
*
EUROEXA :
*

Raesom mesomasunion ke e K

NeSt  textarossa

RED SER

CSNS!

“preparing
the GRID”

“preparing
the Cloud”

“developing
HPC Tech”
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¢ INFNinthe Italian Research Center on HPC, Big Data and
Quantum Computing (ICSC) CSNG

* Maintenance CUCl () SUPERCOMPUTING CLOUD INFRASTRUCTURE 1 L | (@
upgrade of the Italian FUNDAMENTAL

HPC and Big Data FUTUREHPC gy RESEARCH
: & BIG DATA 2] & SPACE ECONOMY
infrastructure, as well

as on the 3 o VA
ASTROPHYSICS &@

« Development of
advanced methods and g(B)ZII\Enlg\fATIONS & CLIMATE
numerical applications
and software tools to 5 6
MULTISCALE MODELING

integrate computing,
ENVIRONMENT & ENGINEERING

simulation, collection,
and analysis of data of & NATURAL DISASTERS | APPLICATIONS

&y
interest for research, ‘
manufacturing, and T Srhewec m,,J

~

ISTRUZIONE E FORMAZIONE, IMPRENDITORIALITA,
TRASFERIMENTO DI CONOSCENZE, POLICY, OUTREACH

. iiiii HPC Centre ! IN-SILICO
society. il MATERIALS & MEDICINE
. L Future HPC Centre MOLECULAR SCIENCES & OMICS DATA
Cloud and distributed -
approaCheS. iiil Future Big Data Centre 1 0
* 25 Universities, :
12 Research Institutes, High-level teams of experts integrating DIGITAL SOCIETY QUANTUM

the Spokes working groups (mixed cross-sectional teams) & SMART CITIES

COMPUTING

14 Private companies.

13



CNev o 1eSe Spoke 8 - In-silico Medicine & Omics Data csnis

Istituto Nazionale di Fisica Nucleare

EPIC Cloud

(Enhanced Privacy Data First
and Compliance Data management
Cloud) is the

cloud service
developed and
managed by CNAF _
to fulfill the acquisition @

requirements of

projects and

experiments
dealing with

clinical,

biomedical and

genomic data.

End-Stations
Medical Doctors : ! y : ! r
& H-:;--.-_.-I: ] .-.;-;-.-.-;,{ S
Patients g : did

Cloud Interfaces

Secure Cloud Infrastructure

Workflow
Cloud
engines

Data

edge to cloud staging

& " p D
National e @ |

Caveau

14



INFN High Performace Computing

] u
Istituto Nazionale di Fisica Nucleare [

— T —
& &*
€k »1=- EuroHPC
~ ok * -
— o W —

Module 1

Cluster

CN CN

Module 6 Module 2
Multi-tier Storage

CN ; CN

System

Module 3
Data Analytics
Module

Module 5
Quantum
Module

Module 4 AN AN AN
QN QN Neuromorphic
Module

NN = NN

 HPC (High Performance Computing) ; HPDA (High-
Performance Data Analytics); Al (Artificial
Intelligence )

* Supercomputer: aggregation of resources that are
organized to facilitate the mapping of applicative
workflows

 HPCis part of the continuum of computing

IIG Ic

Edge servers Central Storage

High performance Ethernet

BXI

HPC
) i Fabrics
% BXI §
BXI BXI BXI

BXI —p BXI < > BXI

CPU rack GPU rack
J
|

.

Ethernet management network ()

J L
] ] |
(
I
Fabric
management

Admins

High performance Ethernet as federation network
featuring state-of-the-art low latency RDMA
communication semantics;

BXI as the HPC fabric consisting of two discrete
components, a BXI NIC plus a BXI switch, and the BXI

fabric manager.
15



@a\l High Performance Gomputing

I | P
Isituto Nazionale i Fisica Nucleare Bxl Ec 0 svs EM | I N FN n En ellx

More end-points

* to tightly integrate the network interfaces
(NIs) to RISC-V and ARMvS8 cores and to
FPGA-based accelerators and GPUs

* To prepare a number of EPI-related IPs

* To create a highly heterogeneous programmable
platform connected with state-of-the-art
Interconnect technologies.

END-POINT: INFN APEnetX

Passive Option

Network Interface Card (APEnetX)

* PCle gend (GPU+CPU) + BXI link (Xilinx Alveo
FPGA)

Co-Design through applications (NEST)

Developing network IPs to optimize spiking neural
network communication

16



INFN P =
Istituto Nazianale di Fisica Nucleare A En etx 0“0 r“l ew

- . it B
m  Xilinx Alveo Board DMA engine MPI Application
Bare metal tests Direct device

oeiink MPLEIY (similar to verbs) driver |/O tests

u Matching requirement for the _
.

{4 lanes) @2220MHz

L

| ApElink TCL [l Xilinx Aurora Ky

communication generated by NEST | =0 s e
i 2 o ———— N Py Apciink TcL [l silin Aurora Rosst
Apelink NI device driver :
L Providing proprietary software driver [river Torary (LIBQDMA) T— !
o S L |
and low-level communication library - |i;-# = 'E' y
|

1 | PCle interface + routing and switching IP + bedded & ;
- NVIDIA GPUDirect RDMA NI: Custom hardware + gdma QDMA engine network interface trasmission control logic embedded transceivers
u Custom OpenMPI BTL

®  Bandwidth per channel 57.6 Gbps

APEnetX (PCle Gen3 X16) BW

- I_ n 1. 8000 B e cﬁstom o T T . APEnetX (PCle Gen3 X16) latency
ate Cy 9us 7000 —— MPIOSU BW benchmark —— 2hosis—synlﬁelic piné—pong lést
: o oo syniheic pivg-pons e

= Validated through HPC-benchmark ™ |

d\i 5000

z
u Large-scale simulation environment (NEST traces) £ z

= 2

T::J 3000 Qg’
®  Interoperability with the BXI interconnect R T

1000 +
u Proprietary priority management mechanism to | | | )
improve QoS of the data transmission system B R e s s

Message size (Byte) 1 2 4 8 16 32 64 128 256 512 1k

Message size (Byte)

1



INEN High Performance Gomputinga/High Performance Data Analytics
Isituto Naziorale u. Fisica Nucleare Ee¢a rnssa

5 %355 EuroHPC
S5 A i The TEXTAROSSA project aims, among other objectives, to
@ reduce both energy consumption and execution time of an
HPC aggllcatmn also through the seamless integration

of FPGA accelerators

2 High-Level Synthesis (HLS) has been considered as a mature
E enough and promising way to pursue this goal.

Using multi-FPGA accelerators to implement complex
algorithms, not fitting within a single FPGA, is a way to further
expand the possibility to exploit FPGA capabilities and to
broaden the class of addressable algorithms.

How? We developed a HW/SW framework (APEIRON)
extending the HLS workflow to multi-FPGA systems.

(((

18



(NN High Performance Computing/High Performance Data Analytics j
APEIRON CSN5

Goal: to offer hardware and software for development APEIRON is based on the Xilinx Vitis HLS
and execution of real-time dataflow applications on a framework and on the INFN Communication IP
system composed by directly interconnected FPGAs o  Direct network of processing tasks

systems o O Customized and application dependent I/O:
Q  To map the dataflow graph of the application on APElink 20/40 Gbps, UDP/IP 10/25 Gbps

the distributed FPGA system offering runtime

support ot T —

for its execution v
O  Allows users with little experience in hw design ek

tOOI, ..................... p # G * ¥

to develop their applications on such system: R L e ¥
O Kahn Process Networks Paradigm M . e T

’\ ++ kernels 2> H Q Intranode latency: 553ns (DDR), 213ns
D (BRAM)
Q Internode latency: 1065ns (DDR); 768ns
(BRAM) —

-send(msg, size, dest node, task id, ch_id) - :'"((:' ::;";:: , A m:':“l.:‘:t'. : |
-receive(ch_id) . Lixsan DOR > : o
Where : § e il 7 — 3 “““
dest_node are the n-Dim coordinates of the destination S | 2
node (FPGA) in a n-Dim torus network. oS '
task id 1is the local-to-node receiving task (kernel) , . ’ e \ : ' .
identifier (0-3). 4 : : m— , . . J —t———T . . . ] 19
ch_id is the local-to-task receiving fifo (channel) R 700 0 | " Sl e B S

identifier (0-127).



<R

Istituto Nazionale di Fisica Nucleare

* not yet a standard way to implement qubits, unlike for classical bits encoded in transistors
» physically, gubits can be any two-level systems: the spin of an electron, the polarization of a proton, ...

 current leading technology in the quantum computing commercial space: superconducting qubits

phase qubit flux qubit charge qubit - transmon cat-qubits
Superconducting loops I 35
A resistance-free current oscillates back —©7 .
~ Current and forth around a circuit loop. An injected . _
microwave signal excites the current into E; ] ‘ [
super-position states. [ o

Iy : current L : inductance U : tension

A o/ Y

Josephson junctions

Longevity (seconds) 0.00005
Logic success rate  99.4%

{oc) Dilivier Ezratty, 2083

Josephson junctions prepare,

handle the qubit degree of liberty coupie and correct the cat-qubits

[0} and |1} two energy levels two superconducting two levels of charge pairs of entangled microwave

~—Microwaves Number entangled 9

O.Ezratty, Eur. Phys. J. A 59, 94 (2023)

qubits in a potential well current directions of Cooper pairs photons in a cavity
quantum gates micro-waves magnetic field micro-waves micro-waves
: resonator and resonator and resonator and
qubits readout - " magnetometer (SQUID) ST ————— micro-waves
conlt;l:ﬁ: abandonned  DHWIUR ¢ igetti :I=55 Google ALICE & BOB

QIMANIRO €2 T Dleximo

----- "+ Alibaba {HATLANTIC

.......

amazon

4



<R

Istituto Nazionale di Fisica Nucleare

» multiple other technologies used to implement current guantum processing units

Trapped ions or neutral atoms arrays

Laser

Electron

use the energy levels of electrons in neutral
atoms or ions as qubits. In their natural state,
these electrons occupy the lowest possible
energy levels. Using lasers, we can “excite”
them to a higher energy level. We can assign
the qubit values based on their energy status

Linear / non-linear optical QC

Sillcon quantum dots

Microwaves

N

use particles of light to carry and process
information. Qubits realised by processing states
of different modes of light through both linear
(mirrors, beam splitters, phase splitters, ...) and
nonlinear element (quantum microprocessor
based on laser photonics at room temperature)

Topological qubits
These "artificial atoms” are made by

adding an electron to a small piece of pure
silicon, Microwaves control the electron’s
quantum state.

Company support
Intel, SQC, HAL, ...

Company support
lonQ, PASQUAL, AQT, Atom Computing, ...

@ Pros Vvery stable, longer decoherence time,
high gate fidelity, 2D and 3D, many gbits

slow operations, hard to program, many
and sophisticated laser technology
needed

© Cons

Company support
Xanadu, PsiQuantum, ...

® P can operate at room temperature, photons much less
"OS  sensitive to the environment, longer decoherence time

oC emerging technology, difficult to construct large numbers
ONS of gates and connect them in a reliable fashion to
perform complex calculation, photons cannot be stored

Diamond vacancles
Quasiparticles can be seen in the behavior

- A nitrogen atom and a vacancy add an

of electrons channeled through semi electron to adiamond lattice. Its quantum

concuclor structures. Thelr h@ded paths spin state, along with those of nearby

AL OGN NI Q.| carbon nuciei, can be controlled with light.
Yacancy—s

Company support Company support

Microsoft

Laser Quantum Diamond Technologies

a Hyperboloid (90 s

images/text adapted from: C. Bickle/G. Popkin

sites)

POLARIZ
ATION
QUBIT

PATH
QUEIT

TIME
QUEIT

15
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Quantum Computing

DEMETRA 2018-2020 CSNV
Radioactivity effects on SC qubits

SIMP 2019-2021 CSNV
Josephson junction and nano TES for quantum sensing

suPpErRGALAX | SUPERGALAX 2020-2024 H2020 FET
S| Array of superconducting qubits for quantum sensing

DART WARS 2020-2024 Call CSNV
Traveling Wave Parametric Amplifiers for quantum sensing and computing

QubIT 2021-2024 CSNV
ub-IT Superconducting qubits and JPA amplifiers for quantum sensing and computing

- f"‘”S a M S ~/» SQMS 2021-2024 DOE

SUPERCONDUCTING QuanTum Quantum Computing and Sensing
MATERIALS & SYSTEMS CENTER

ICSC and NQSTI 2023-2025 PNRR

}l I C S /- NQSTl Quantum Computing and Sensing

Centro Nazionale di Ricerca in HPC, ' iy
N R National Quantum Science
Big Data and Quantum Computing and Technology Institute




‘ i'Ricerca in HPC,

Computing

ZDEGLISTUDI
E = st |universima UNIVERSITA 5
ub-IT INFN ¢ E ;"I‘R‘L\\‘J‘Z’L' DEGLI STUDL
- z Z e : DI MILANO 2
e T T ] UNIVERSITA DI P1sA

UNIVERSITA
DEGLI STUDI

Ismuto Nazionale di Fisica Nucleare s“ n e rc 0 n d “ ctl n g n “ h Its I n 3 n c a“ltv :< @ TD‘ Gy Nsr g,'Jl ALMA MATER STUDIORUM

R o o,/

(Mum EHT» 5004V SonalA=intons SageatTe 00" 40w2023
Wo= 30 mm Mag= 42 150711

Fabrication within the Collaboration /

0.8

0.6

Py

0.4
0.2

Technology
Innovation
Institute

0.0

2 3
At [ps]

Appl. Sci. 2024, 14, 1478. /

K Qubit in 3D cavity from external collaborations
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t B Computing

Is”uwﬂazinnalediFiSicaNUCIes“nercond“cting Q“hits 0“ Planar chin

/IEEE Transactions on Applied Superconductivity ( Volume: 34, Issue: 3, May 2024)

N

\ Design and simulation of qubits on planar chip

\_

]|

—

"

Qubit fabrication from external collaborations

2DEGLISTUDI

z 2 UNIVERSITA

IN FN g £ DEGLI STUDI

. Z 1 ¢ [ FIRENZE
sz g o B | COCCA

D

UNIVERSITA DI PisA

UNIVERSITA
DEGLI STUDL
DI MILANO

e
UNIVERSITA o
DEGLI STUDI
DI FERRARA ALMA MATER STUDIORUM

-~

\_

\_

qubit #2
[ ]
optical microscope photos
=D (
a | |
FONDAZIONE
BRUNO KESSLER
Fabrication within the Collaboration
Ramsey measurement
s Data
— Fit
0]
T, =4.100 ps
-75 1 df=1.958 MHz
for = 5.653 GHz

S 8.0
E
o .
_8.5
3

T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
At [us]

Qubit characterization
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@ l!uan!um Computing ..
QUANTEP: Optical 0GC (2021-2024) jCSNS
INFN Sections and Laboratories involved: LNL, MI, PG (Camerino), Pl, PV

(Modena e Reggio Emilia), RM2, SA, TO

* Interest and support from: LNGS (LUNA-MV), LABEC (DEFEL), NEST, TYNDALL,
Institut Ruder Boskovi¢ (RBI), Micro Photon Devices (MPD), University of Leipzig,
Chalmers University of Technology, Physikalisch-Technische Bundesanstalt (PTB).

* 15-17 FTE/year, ~ 800 kEuro budget

* Creation of a common Silicon Photonics platform for development and
characterization of

* quantum computing circuits;
* single photon sources;
* single photon detectors;

* polarization control circuits.

25
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Quantum Computing

QUANTEP: Optical OC (2021-2024)

Just an example: the CNOT quantum gate
1 qubit:  @0|0) +aq[1), |agl® + ey | =1
Some 1 qubit elementary gates
0 1 1 0 (1 0 1 /10
Xz(l 0) ZZ(O —1) R¢_(0 Ei“ﬁ) H_\/?(l ‘1)
Pauli-X (NOT) gate Pauli-Z gate Phase shift gate Hadamard gate

2 qubits: @00 + b|01) + ¢|10) + d[11)  |a|® + |b]* + || + |d|* =1
The prototype (universal) 2 qubits gate is the Controlled NOT (CNOT) gate

control bit * the control bit is left unchanged
1 0J0 O
0o 110 o * the output target bit is the XOR of the
CNOT = 0 olo 1 input control and target bits
0 0L O * but of course it does much more: it

target bit works on the wave function

a|00) + b|01) + ¢[10) + d|11) — a|00) + b|01) + ¢|11) + d|10)

26
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(NN Quantum Computing
QUANTEP: Optical QC (2021-2024)

. Isolated optical table, VIS+IR microscope, , Superconductive Electronics rack
nanowire single photon 3 ;

detector (2.2 K)

tunable laser, micropositioners

Entangled photon source,
filter, polarlzmg beam splltter

28



T4QC
@ a CSN5

stituto Naziorle i Fisica Wuclare Technologies for Quantum Com puting
Simone Cialdi

T4QC: Optical quantum computer based on Gaussian Boson Sampling implemented with high-frequency loop
technology.

The experimental setup consists of 4 parts: pump laser system, optical system for squeezed state generation, loop-based computing unit,
and detection.

<> KDP Typell

Laser system {! !! H ’ I_'HT‘
2m >nT
Trains of pulses

100MHz, ‘ I ’

1035nm, 200fs, 517.5nm )
100MHz R=99% /2 R=90% >

‘ T Single photon detector

Single-mode temporal squeezed state generator Loop-based computing unit

The Gaussian Boson Sampling (GBS) involves sending squeezed states into a network of beam splitters (BS) and measuring the photon
distribution at the output. The beam splitter network 'entangles' the qubits (squeezed pulses), making the problem hard (ideally, the
computational complexity grows exponentially with the number of qubits).

With the loop architecture, it's possible to increase the number of BS in the network simply by increasing the number of input pulses without
changing the system's structure. Furthermore, in the loop structure, there's only one BS, so all the BSs in the network are identical.



Gaussian Boson Sampling (GBS)
' CSNS

The Gaussian Boson Sampling (GBS) involves sending squeezed states into a network of beam splitters (BS) and measuring the photon
distribution at the output. The beam splitter network 'entangles' the qubits (squeezed pulses), making the problem hard (ideally, the
computational complexity grows exponentially with the number of qubits).

The squeezed state is a specific guantum

state in which the fluctuation of the

electric field is lower than that of the

vacuum for a particular phase.
15—

g Phe
gy ]
3 6F ]
E 3 1
g 0 N g |
g; v Input (squeezed Network of beam splitters Single photons
gl N states) detectors
0 T In

N Specific problems can be mapped onto the network of programmable BS (programmable in the sense that

P P reflectivity and phase of one of the outputs can be arbitrarily set). For instance, studies on the distribution
of rovibrational levels of molecules and graph problems have been implemented. In principle, a
programmable network of BS and PNR detectors allows for the realization of a universal computer.

. * %

BS
£ 5 Note: while the squeezed state is generated on-demand (I generate it for each pump laser pulse), 'single-
l ‘ photon' states do not always contain only 1 photon. The best sources (see Quandela) have a brightness of

60%. Therefore, using squeezed states avoids error correction procedures on the source.

p=90°




INEN GBS implemented with loop architecture
Istituto Nazionale d-i Fisica Nucleare c S N 5

With the loop architecture, it's possible to increase the number of BS in the network simply by increasing the number of input pulses without
changing the system's structure. Furthermore, in the loop structure, there's only one BS, so all the BSs in the network are identical.

Network of BS in space

BS Loop architecture

a: [ PRL 113, 120501 (2014)

- Equivalent to > nr
- 2 Big loop

—> o
- - Small loop
= - n-- 21
A A A

—

T on/off Ugs(t) on/off

Example of a network with 3 inputs and a depth of 3 steps (3-1 Big loops): the input switch selects 3 pulses, since the time of the Small loop
is exactly equal to the time between two pulses, the pulses enter the BS simultaneously. After a number of Small loops equal to the
number of selected pulses, the pulses are sent to the Big loop, which returns them to the entrance of the Small loop.

{ /Small loop

O =R 100% 1 2 — - Big loop
@ =R programmable }, Then_l repeat e
2 Y the Big loop n-1 ‘ .

times \ — b
—P



@ Artificial Intelligence

AL INFN: Al Technologies for INFN Research  csl

INFNiJoroduces #acquires or simulate) digital
0

data for most of its activities.

Artificial Intelligence provides new Strong sinergy with =
techniques to process, interpret and INFN Cloud (NN |
CLOUD

visualize digital data.
Cloud-native solutions
Work-packages:

e Infrastructure Al_.INFN .\_,Jupyterhub @ ?

prOViSionin Qf shared resources aicial Intelligence technologies

° ?tevgz rndsthlepado tion of Al with tr;;”':N': researeh Soon adopted by the Italian
u i i wi ini :
e S cﬁigntifiqc use- cgs es g Center for Super Computing
harmonize access to shared resources
e Hardware acceleration v | B S | -
study hardware solution beyond GPUs, A Centro Nazionale di Ricerca in HPC,
Big Data and Quantum Computing

e.g. FPGAs and Quantum Processors

\_ J
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@  Artificial Intelligence ) j
Q“am“m Machine lﬂal'lllll!l: Diffusion Models csns

* Generative Al models, inspired by non-equilibrium thermodynamics, that use artificial neural networks
to gradually add and then remove noise from data, with the goal of generating or reconstructing high-
quality data samples

Data —— Corruzione dei dati tramite addizione di rumore ——s Noise

00O

000 §

A | S G Vo (7 ]
Data < Generation of new data via denoising

"

predicted by a NN

* today used in several tasks: image denoising, inpainting,
super-resolution, image generation (ex. text-conditional
image generators like DALL-E, Stable Diffusion, ...)



@ Artificial In!elligen_ce
QML: Quantum Diffusion Models .

* |leverage the ability of variational quantum circuits to efficiently represent the solution space of the problem and to identify complex
correlations in the data to implement a quantum denoiser

* can be used in a full quantum or in a hybrid mode, where the quantum circuit is trained in the latent space of a classical Auto-Encoder

* conditioning achieved by adding ancillary qubits to encode labels

Quantum Denoiser

implemented and tested
on real quantum hw

p;&ZTtit;c IBM_hanoi quantum chip
circuit ansatz ¢ | ° ®
- 0-:-0-0-0-0-0-0-0-0
P & i) 0-0 0-0-6-0-0-0-"-0
~r@Hs@Hrw} ; o °

]l J=== Simulated Hardware

itTasslof | fo Il

A. Cacioppo. L .Colantonio. S.Bordoni. S.Giaqu, arXiv:2311.15444 [quant-ph] I ][]EDE




* Design and train a Quantum-AutoEncoders able to identify highly displaced decays
using the ATLAS muon spectrometer information

Encoder Decoder .
O D Classical AE
. /
NORMAL event 8 > A /‘O
; » : Input O \ /O ’OReconstructed
image” representation Data () 4 ’O Data
//-\< -~

of a prompt decay in
multi-muons

ANCNe,

8/0 == A\e

Quantum-AE
ANOMALOUS event g Encoder Decoder
vy domes TR T
decay in multi-muons g U(H) 7 | U (9) — é‘%
g \ ) Quantum latent \—/ & 5
- Space
S.Bordoni et al_Particles 2023, 1, 1—15




(AN Artificial Intelligence j
Examples of scientific use-cases CSNS

Detector o
numerical Digital Cultural
modelling Heritage e o) ess
10.1016/j.nima.2022.167230 Simu|qﬁon o.f High_
Energy Physics
I experiments
arXiv:2309.13213
XDI\H\I/

Physics Informed Re-colored visible

Neural

Networks;

Neural Generative models, domain
Operators... adaptation, Normalizing Flows...


https://link.springer.com/chapter/10.1007/978-3-031-06427-2_57
https://arxiv.org/abs/2309.13213
https://doi.org/10.1016/j.nima.2022.167230

<R

Istituto Nazionale di Fisica Nucleare

10.1038/s41598-021-01929-5

Fluorescent

Microscope Image
Processing used
to count the
number of cells.

Convolutional
Neural Networks

Artificial Intelligence
Microscopy consl

Machine learning and GPUs are used
to automate processm]g of microscope
images for both detecror studies and
life sCiences.

Automation in image processing is an
ingredient for automated and
reproducible measurements and tesfts.

T T T 7 1.0 T l__l\\l T T T T T l.O
- - \ o =

- - | B
r . ™ [ : ] [
5 i - | ] -
-3 ‘ -t 05 0.5

oo d ook M o0k

=50 0 =50 0
MSE: 0.29% x [pm)] x [pm]

Differential geometry techniques used to correct for optical
aberrations and measure the spot size and profiles.
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https://www.nature.com/articles/s41598-021-01929-5

INFN - =
] |
Istituto Nazionale di Fisica Nucleare ™

Artificial Intelligence in Medicine: main analysis approaches
@

\J

In medical image analysis a large variety of approaches based on Al can be developed, according to
different goals, e.g. image segmentation, image classification, building predictive models based on images
and additional patient information.

g Radiomica . R R
+ .l X
Machine |
k Learning acquisizione immagine segmentazione cgléc;:icféaratteristiche
f classificazione segmentazione
A
Deep : B
Learning (flrfﬁllll &
\_ D




Artificial Intelligence

; open-access SW tool for COVID-19 lesion detection and

structured reporting [https://

record/76937]

[14] LESION_TYPE_INDEX BILATERAL INDEX BASAL_INDEX
A-D037 0.137 0.447 a7
LungQua nt A-0311 0,198 0,041 61
[Lizzi F et al Quantification of pulmonary involverment in COVID-19 0291.0 0224 0.193 #
pneumcnia by means of a cascade of two U-nets: training and SW output: A-0327 0.292 0351 60
assessment on multiple datasets using different annotation criteria. - segmented masks Veonsonzatn ! Viesion g: unilatersl E 0 basal
\ICARS 2022;17:229-37. doiorg/10.1007/511548-021-02501-2. - gualitative parameters to L bilaterl & 100: spical
describe the lesions
The valid of the LungQuant software output against the qualitative assessment of 14 . -
radiologis om 5 University Hospitals (Pisa, Pavia, Firenze, Palermo, Milano) has shown: s Structured Report

Milwteval

Q O

. - apoor agreement
i among the opinions
O of radplogists

o o

- agood correlation
between average / I
radiologists’ opinions o il " / N
and the equivalent :
software output san | A g

. %
metrics . ﬁ

[Chincarini A, Scapicchio C et al A multicenter Eualuatlon of the LungQuant software for lung
parenchyma characterization in COVID-1%9 pneumaonia, European Radiclogy Experimental,
https://doi.org/10.1186/541747-023-00334-z]

81 o a8 G i i 6.2 fd ok o i
LLrats LesiaaType, ,

e

L Radiologist -

Clinical
information
/ Imaging information
I- = |
08

Itis afully automated "

. . . EEE e
pipeline reconfigurable o : @ ‘
to detect and Deep Leaming-based

segmentation software Autarmnatic

computation of
qualitative inde:-:esl

Chest CT axam

characterize other
types of lesions

(e.g. lung tumors)

[Scapicchio C, et al. Integration of a Deep Learning-Based Module for the Quantification of Imaging Features
into the Filling-in Process of the Radiulugical Structured Report. Int. Jt. Conf. Biomed. Eng. Syst. Technol,,

Matching algorithm

Al module



Artificial Intelligence

Evaluation of the robustness of radiomic features Multiparametric MRI scans (T1, T1-Gd, T2, FLAIR) of:

in multiparametric MRI and its impact on - 61 patients with Low-Grade Gliomas (LGG)
+ 97 patients with High-Grade Gliomas (HGG) Whole Tumor

predictive value of Al models

MinMax
Robust Discretization Training labels
Brainstem sattings (Glioma grade) |
! L - : {}
'\\ _ =, S, ™, Faature . MLClassifier . Performancs
] "naglng '\.“ Image Y Tumaor \ AN " \.
The analysis ) b % Extraction » (Random Evaluation (AUC
analysis S MR / Normakzation / Segmentation /" (PyRadiomics) ;,f Foresty  /  inS-okd GV) ff

pipeline
O < O

whole turmor T2 intensity features

All MR ROI 300 texture features
SEqUENcES

Image normalization and intensity discretization have an impact on the performance of ML

classifiers based on radiomic features.
Random forest (RF) classification

| Edema (ED)

Tumor Core (TC)

Intensity Featuras Texture Featuras ] e i
1o 10 - target: LGG vs HG.G discrimination Bnhencing part B Non-cnhancing
- features: MRI-reliable features defined according of the umeor part of the
o] ’ " ‘ [ ([ . | | to the most appropriate normalization and core (ET) tumor core
- - | o t : - A (NET)
- . | g HH |||, | discretization settings.
A ] Modality Raw feature Set MRI-reliable featura
% on) 30 Conclusions {3tz me oa M{'-‘T:I:Ilmlli}
. . . complessive [Norm_Brainstem]
g & - The complementary information of multi- modalita) e
{ = Dnaginal ! « oOn i » -
1T oot | [y S E“wm"_mt"c MR has to l?e HEED__LU,LQ account Ti 0.73 ¢ 0.05 0.68 + 0.04
Morm_PobustScater « Morm_RobustScaler - The image preprocessing step is relevant for
Wo#T_Brainstem +  Morm_Brainstem R . . T1-Gd 0.89 £ 0.05 0.93 2 0.05
osl— = - ~ram osl— - = ., radiomic and ML analysis
numbar of intensity discratization lovels number of intensity discratization levels T2 0.76 £ 0.08 0.75 = 0.06
Ubaldi L, Saponaro S, Giuliano A, Talamonti C, Retico A. Deriving qguantitative information from multiparametric MRI via T2 FLAIR 0.76 £ 0.08 0.76 = 0.06
Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high- | B 088008 @m

g, prade eliomas with machine learnine. Phvs Medica 2023:107:102538. httos://doi.ore/10.1016/i.eimp.2023.102538
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Artificial Intelligence

Brain imaging features

sMRI — The Freesurfer recon-all pipeline has been implemented to
extract 221 structural features for each subject
rs-fMRI — The CPAC processing pipeline for fMRI data has been
implemented:
= The Harvard-Oxford atlas has been used, thus generating 103
temporal series for each subject
= The functional connectivity matrix has been computed for each
subject implementing the Pearson correlation, thus obtaining
5253 functional features for each subject

Joint fusion approach:

The Feature Reduction and the Feature Classification Neural Networks
are trained using a single cost function, thus the most meaningful
features for the classification are extracted

The model was trained with 150 epochs within a 10-fold cross

validation scheme ﬁ“r'ﬁg,_
7%
- ape -
Explainability framework: ABIDE

SHpley Additive exPlanations (SHAP)

Informatics 2023. https://doi.org/10.1186/540708-023-00217-4.

Autism Brain Imaging Data Exchange

Saponaro 5, Lizzi F, Serra G, Mainas F, Oliva P, Giuliano A, Calderoni 5, Retico A. Deep Learning based loint Fusion
approach to exploit anatomical and functional brain information in Autism Spectrum Disorders, Brain Informatics, Brain

ol ®
221 RON-based _ h
[T Ly " 5
sach solject Time series Connectivity
correlation rmatrix

Feature extraction from structural and functional MRI data l
ization

l

sMRI fMRI
1 Multimodal l
e Joint Fusion
Neural Network DL model

-
(T

INFN  antificiali Intelligence in Medicine: next steps (next_AIM) - A. Retico, INFN

() |
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Istituto Nazionale di Fisica Nucleare

*Simulating the activity of significant portions of the human brain
* Scales ranging from the microscopic level of individual neurons/synapses to the macroscopic
level of measurements with tools such as fMRI (functional magnetic resonance imaging) and
EEG (electroencephalogram)
*The INFN has played and continues to play an important role in this development
» skills of physicists in modeling, calculation and electronics
*Development of technologies for the analysis & simulation of biological neural networks
*Study of the link between synaptic mechanisms and high-level cognitive processes
* Short-term synaptic plasticity & working memory
* Sleep-Awakeness interplay in learning
* Spike Timing Dependent Plasticity (STDP), structural synaptic plasticity & learning
*INFN participated to the Human Brain Project and to its follow-up project, e-Brains
* was the leader of a sub-project of the Human Brain Project, WaveSCALES
* carried out numerous computational projects in the HPC infrastructure of the Human Brain
Project, e.g. Computational Neuroscience Collaborative Brain Wave Analysis Pipeline
(Cobrawap).
*Development of the spiking neuronal network simulator NEST GPU (NEural Simulation Tool GPU)
* NEST is one of the two most used simulators to simulate the activity of biological neurons and
neuron networks, and is considered one of the pillars of the Human Brain Project and the e-
Brains project that followed it
* NEST GPU is developed in collaboration with the researchers of INM-6, Jiilich Research Center.
Germany
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INFN GComputational Neurescience

. ]
Istituto Nazionale di Fisica Nucleare large scale SNN slm“latlons [1 0' 21

V7l f %

We implemented spiking models that can be simulated on single GPUs &
or on MPI-GPU systems, and compared the results of the simulations glﬁ i
against the implementations of the respective models in the NEST /4 E
simulator. In particular we worked on ‘% v, %
+— S

<  Cortical microcircuit model (}lﬁ;‘) E f E
(single GPU, ~80k neurons, ~3x10° synapses) { 1% éz

Golosio et al., Front. Comput. Neurosci., 15:627620, 2021 (ﬁ:m T é;

Golosio et al., Appl. Sci., 13,9598, 2023 - — by

2018

Papulation sizes
% Multi-area model of the macaque cortex —
% (multi-GPU, ~4x10° neurons, /

~24x107 synapses)

3

L=

Tiddia et al., Front. Neuroinform., 16:883333, 2022

P
Schmidt et al., Brain Struct. Funct.,
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@ comnutationalueuroscience_
Large scale SNN simulations (2 of 2)
‘ Multi-area model

(cluster MPI-GPU
. _ w/NVIDIA V100)
Simulator performance on the described

network models (using NVIDIA GPUs, both

@@ Delivery
consumer and data center) mEE Communication
501 [ Collocation
[ Update
. . . R B Other
Cortical microcircuit
14 CPU-based code GPU-based codes

[ NEST/NEST GPU - Poisson generator

1.2 1 B NEST/NEST GPU - DC input
B GeNN 4.8.0
1.0 ]

JURECA-DC __ Kurth et al. 2022 A100 RTX 2080Ti RTX 4090
NEST 3.3 NEST 2.14.1 NEST GPU & GeNN ground state metastable state

Twall I'Tmodel
w
o

=]
@
N
o

Twan ! Tmodel
(=]
[=)]

10

o
=

(=]
g

NEST GPU NEST NEST GPU NEST

ol
o




GComputational Neurescience

short-term synaptic plasticity & Working Memory

INFN

Istituto Nazionale di Fisica Nucleare

CSNS!

Working Memory (WM) is the cognitive mechanism
responsible for temporarily maintaining and
processing information in short-term memory and
controlling the flow of information between this and
long-term memory.

Spiking model of Working Memory entirely

-:} N :. " '} ' ' '_t ® . B
maintained by a short-term plasticity mechanism 0 htE e ‘ IH“ I i
- . . - A e o :
initially proposed in I S ‘

Mongillo et al., Science, 319, 2008

The model can store various items in memory thanks a0 707 v72]
- SR AN
to the presence of facilitated synapses, present to a po i T

large extent in the prefrontal cortex.

400

2501 e

Mainlenance rehearsal

WOHKING
Attentlon MEMORY Encodlng MEMORY

" petieval

Some information is
lost over time

LONG-TERM

Unrehearsed
information is lost

100 ot 205 g

|
%.[??I---f

Tiddia et al., Front. Integr. Neurosci., 16:972055, 2022 R [ L H“ i
50| 3 % WL
D('; - 25'0.0 7500 10000 12500 1500 17500 IZODC

Time [ms]
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@H\I o Computational Neuroscience '
Spiking neural networks [(SNN} el

Model of learning mediated by structural
plasticity

N/
A

* e

*e

During learning, structural plasticity
modifies the connectivity P, —P,

In the test phase we evaluate the signal in
input to each neuron of P,

Theoretical model capable of predicting
the value of the input signal to selective
or non-selective neurons with respect to
a given input pattern

The connectivity is
modified by structural
plasticity mechanisms

Lognormal distribution of firing rate

pv)

:
A

Test

46
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@,':T\, Thaco: multi-areal plastic cognitive model for thalamo-
cortical spiking network simulations

A AWAKE NREM NREM REM AWAKE
500 : —
. . o @ |4
1 Capable of incremental learning s o b
d Able to enter different brain states (wakefulness, REM S
dreaming and NREM deep-sleep) e
B
128.0
32.0
. . . . . N 804
= Showing the beneficial cognitive and energetic T Lol “ | | it
. ‘ \ il X,““ v‘ | ‘ ‘I
effects of the interplay among sleep and 0-5 -1 | fI \IMH
. . . 0.125 . - T — T T - 10_.3
memories, learned by combining contextual and ¢ 0 [0 o 1o 1200 1300
S
perceptual information A 7—32
=  Combining prior knowledge with novel evidence A 82
. . oo . .o . o — nrem Y.
using brain-state specific apical-amplification, £ ey 0.2
apical-drive and apical isolation mechanismes. 101 100 100 102 107  10° o0

. . . frequency (Hz) v (H2)
= Reducing energy consumption and time to _ — _ _
Golosio et al (2021)Thalamo-cortical spiking model of incremental learning

response usi nNg Spl Ki ng mechanisms combining perception, context and NREM-sleep PLoS Computational Biology

n Sp| ki ng Plastic Models & exp|oration of Hardware Capone et al. (2019) Sleep-like slow oscillations improve visual classification
through synaptic homeostasis and memory association in a thalamo-cortical

IPs on FPGA and neuromorphic model Scientific Reports



,NFNTIIWM(I Thaco next generation, including multi-compartment
neuron models CSN5

Istituto Nazionale di Fisica Nucleare

Implementation in NEST of multi-compartment
customizable neuron models supporting apical-
amplification, apical-isolation, apical-drive
dynamics

Adoption of the L2L (Learning 2 Learn) framework
to search best fitting multi-compartment neurons
using evolutionary algorithms applied to single
neuron tasks

= ~ 500K core-h on HPC systems
Insertion of the multi-compartment neuron in Thaco

Optimization of Thaco parameters using the L2L
approach applied to the whole network model in
different brain states

= ~ 1500K core-h on HPC systems

Beneficial effects on:
» incremental learning of large training sets
» implementation of learning and sleep cycles that are

expected to efficiently reorganize the synaptic
representation

>
o
9!

g 2
1 1 1
-—
| el

variation (%)
accuracy (%)
@
w

firing rate
synaptic actvity
+ power consumption 84 1

normalized synaptic
weights W/W ., (%)

w
(=]
1

8
—mm
4 —a
—a
——

1
1

T T T T T T T T T T T T T T
pre  post post post post pre post post post post pre post post post post
sleep NREM1 REM1 NREM2 sleep sleep NREM1 REM1 NREM2 sleep sleep NREM1REM1 NREM2 sleep

awake pre-sleep awake post-sleep

10°

10x

frequency (Hz)
lntensnty

10‘

10~?

10s

Under development, in strong
cooperation with L2L and NEST teams nest::

nest-simulator.org
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GComputational Neurescience

Gollahorative Brain Wave Analysis Pipeline (Cobraw

NS

Developed in HBP/EBRAINS; Gutzen, De Bonis et al (2023): https://doi.org/10.1016/j.crmeth.2023.100681

Intercepting the demand for resource scalability & usability

Software delivery

Collab & KG interaction

%

Deploy & run on HPC

.\ (=  EBRANS N\ - )

P d-“’- % Collaboratory N FENIXRI
docker | | Gl = wprer .,

kG't"'"b CONDA ) | =  UNIC&RE 3 * CINECA @

Meta-approach for workflows

source code
(+ custom)

.

+@<:

config files
(user-provided)

ad hoc parser

': snakemc:ke\

a — e

CWL fiIes)

Currently funded within EBRAINS-Italy (PNRR)
Maintained in GitHub with FZ Julich:
NeuralEnsemble/cobrawap

Main improvements: optimization, novel features,
parallel computing and acceleration

Cobrawap as a service

Target tasks

Model calibration & validation
Large-scale data analysis
Metrics for clinical applications

Buildout of methods &
algorithms

49


https://github.com/NeuralEnsemble/cobrawap
https://doi.org/10.1016/j.crmeth.2023.100681

INF GComputational Neurescience

¢ . Lollahorative Brain Wave Analysis Pipeline (Cobrawapixs
From 2024 RESEARCH in the BRAINSTAIN CSN5 PROJECT

a field of view b 6™
anterior é\gﬂa\

-, Initially developed on mice data from LENS, IDIBAPS
CQMM\)\WM (more invasive techniques, simpler analysis)
doi: 10.1038/s42003-023-04580-0

2s

deconvolution

Now moving to human data (simulations & EEG)
- TVB simulator; collaboration with UniMi
doi;: 10.5281/zen0d0.10361054

spks/s
—
0 50 100 150

THEVIRTUALBRAIN.

High-res imaging data require smart approaches for optimal processing
Hierarchical Optimal Sampling (HOS):

- Heterogeneous downsampling, improved signal-to-noise ratio

- Smaller data size, faster processing



https://doi.org/10.1038/s42003-023-04580-0
https://zenodo.org/doi/10.5281/zenodo.10361054

@,’? Computational Neuroscience & Neuromorphic Computing Iﬂﬁﬁi
— . DRAINSTAIN: BRAIN Studies and Technologies for Artificial Intelligence and Neurosci

WP1 WP2
o Analysis pipelines Brain models
I data processing, data analysis &
: Simulations
|

Task 1
Algorithms & Methods | Task 2

o Understanding the Brain &

Data Analysis

Task 3
| Clinical Applications

WP3
Design of Brain-inspired
Computing Architectures for Al

Hardware/Software co-design
of Computing Architectures

From brain models to architecture Architectures prototyping

s

Task 1 Task 2
Validation and Perf. Estimation




(N Simulation Toolkit )
Geantd (GEometry ANd Traking)

« MC Simulation Toolkit

» Developed by an International
Collaboration

& GeEAnT4

A SIMULATION TOOLKIT

[Geant4, a simulation Geant4 developments
+ Established in 1998 e
* INFN confribution from the beginning (to the kernel, 506 250-303 Seience 53, 270-278]
the development of EM physics, the advanced
exam ples ) Publications related to the most used MC tools on PubMed
+ Approximately 100 members, from Europe, § 00m .
US and Japan - FLUKA —
MCNP ——
« Open source o 150 [EGSnrc
. Written in C++ language 2
« Takes advantage from the S 100
Object Oriented software technology a
: 5 AN A R
» The most used MC tool for research in g J AFNAS Y
medical applications £ fﬁf”} )
zZ 0 | e s I | | |

e Nitp://geant4.org 1992 1998 2004 2010 2016 2022
Year



http://geant4.org/

@ Geantu anll Geant4 ; Invariant mass for the Higgs boson

Istituto Nazionale di Fisica Nucleare

discovery in the decays golden

output! AU S falloum
« Almost all parficle and nuclear 5N W ATLAS
hysics experiments have a I o z
onte Carlo simulation i ]
developed with Geant4 e oa s ’ } .
« Butit’'s also used for : , ]
« medical applications

« Radiobiology
« Radio-protection
« Shielding

« Single event upset and
radiation damages to
electronics

« Simulations for nuclear
spallation sources

atomistic view of a dinucleosome irradiated
by a single 100 keV proton

Image from M. A. Bernal et al Physica Medica, vol. 31, no. 8,
pp. 861-874, Dec. 2015.
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Istituto Nazional s cleare

Geant4-DNA

A Geant4 extension to
perform radiation-matter
simulations in the scale
1um-10nm (cell to DNA)

All elementary inferactions
are simulated on an
event-by-event basis (no
average approach

Description of target
molecular properties

Allows physico-chemical
simulations

http://geant4-dna.org

Irradiation of a pBR322 plasmid,
including radiolysis

movie courtesy of V. Stepan (NPI-ASCR/LP2iB-
CENBG/CNRS/IN2P3/ESA)

Geant4 EM standard physics

20 MeV C12 on water

movie from Y. Perrot Xl International Geant4 school


http://geant4-dna.org/

<E INFN contribution to Geant4 development

Istituto Nazionale di Fisica Nucleare

Coherent interactions in Crysta|s 10.1088/1742-6596/898/4/042041 45

» Photons: coherent scattering and reflection/refraction A A %

- Charged: channeling, volume reflection and coherent vl I o S
bremsstrahlung ar

Electromagnetic models to simulate cosmic rays ionisation e ey

of the atm osphere 10.1016/j.ejmp.2023.102661 .

« Using Geant4-DNA approach

« e- on O2 and N2 (ionisation, scattering, and excitation)

Nuclear reaction models 10.1016/j.6jmp.2019.10.026

* Interface of models developed by INFN theoreticians to
simulate nuclear reaction below 100 MeV/u

» Testing Deep Learning to emulate the most cpu intense part of ’rhese models

Extended/advanced examples

 Internal dosimetry, compact crystal calorimeter, hybrid positron source, crystal
deflector, medical linac




INFN

Istituto Naziol cleare

Computational studies for
Particle Beam Radiation
Biophysical Modeling



<™ \hy we need models in radiation biology CSN

* To make predictions on different radiation effects
on cells/tissue

* To Implement in Treatment Planning

» To understand and explain phenomena on
physics bases (computational microscopy)

.

“This is not a cow” “This is a cow”
--- René Magritte --- Anonymous physicist

Courtesy from A.Attili



<R

Istituto Nazionale di Fisica Nucleare

Multiscale modelling of the Ultrahigh dose rate%i

i

L Weber, Scifoni, Durante 2021

a FLASH pulse
[ Time to deliver 10 Gy CONV |
1071010 10™ 10”10 10" 10" 107 10* 107 10° 10% 10" 107 107 10" 10" 10" 1077 10" 10" 10° Monte Carlo
O AN | NN U | N N N A [N AN NN D AN Y O o NN A
107 Time from radiation start (s) f o
_______________________ : /
= i Time to deliver 10 Gy FLASH | X > - — :Gu:::_ Structu re based
= Physical Homogeneous Chemistry response
g 0 Stage Stage
= 100 = —
b Chemical Stage Biological
._—g lO.] Primary (Heterogeneous) Further chemical reactions = ey Stage -
g fonization, (no memory of initial trock) Bspgchemml
«n excitation, age
‘E IO‘Z transport of Diffusion and reaction of |
g dary i generated rodical species
% ; electrons the-Cehemlca
& 10 " Dissaciation of -
10° lm'#"'” | 0 § & a4 7 ) e f r o dpoi
10710 10" 10" 10" 10" 10"10™ 10° 10% 107 10° 10° 10* 107 107 10" 10” 10" 10° 100 10" 10°

Understanding of the Biological response

observed, e.g. in FLASH radiotherapy requires
deep analysis of the full spatiotemporal cascade ...
of events following the primary radiation events
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INFN WIP: Joining Molecular Dynamics
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Strong Collaboration with Clinical staff @ TPTC Tommasino et al.PMB 2023

NTCP for hypothyrhoidism (Cella et al 2012) NTGP for heart valve dysfunction (Cella et al 2013)
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