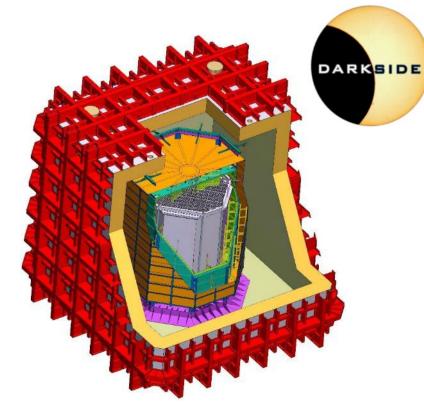
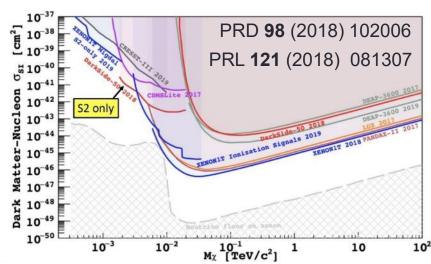
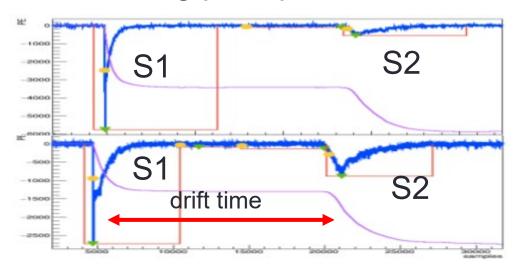


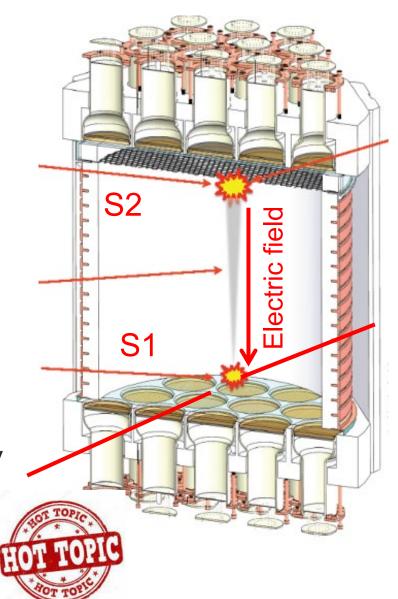
L. Pandola (LNS) on behalf of the ReD Working Group


Physics background


- Search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs)
 - WIMP is a favourite candidate, but there are many others
- Signature: low energy (< 100 keV) nuclear recoil produced by WIMP elastic scattering
 - Backgrounds: e⁻ recoils, neutron-induced recoils
- Global effort worldwide:
 - Rates in the range from 10⁻¹ to 10⁻⁶ events / (kg·day)
 - next generation experiments should eventually reach exposures in the range of ktonday
 - Need very low background level (and underground site)

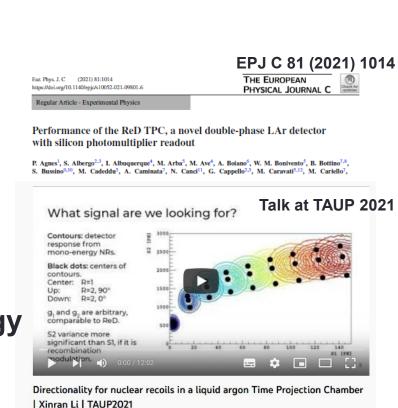
Physics background


- DarkSide at Gran Sasso
 Laboratory, WIMPs search using a dual-phase TPC with low-radioactivity LAr
 - Operated a 50 kg TPC (DarkSide-50)
 - Next step: 50 ton (20 ton fiducial) LAr
 TPC (DarkSide-20k)
 - Novel light readout with SiPM
 - Getting ready for data in 2026, exposure O(100) ton yr
 - Expected sensitivity 10⁻⁴⁷ cm² @ M_W =1
 TeV/c²
 - <u>Next-next step</u>: global worldwide effort (ARGO, 300 ton LAr)
- More sensitive to low-mass WIMP than Xe, due to the lighter target

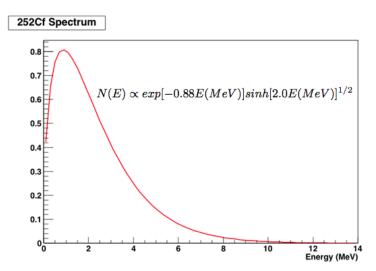


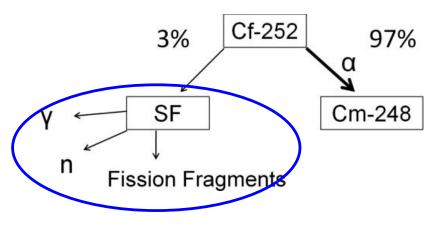
Dual-phase Ar TPC & low-mass WIMPs

The working principle...

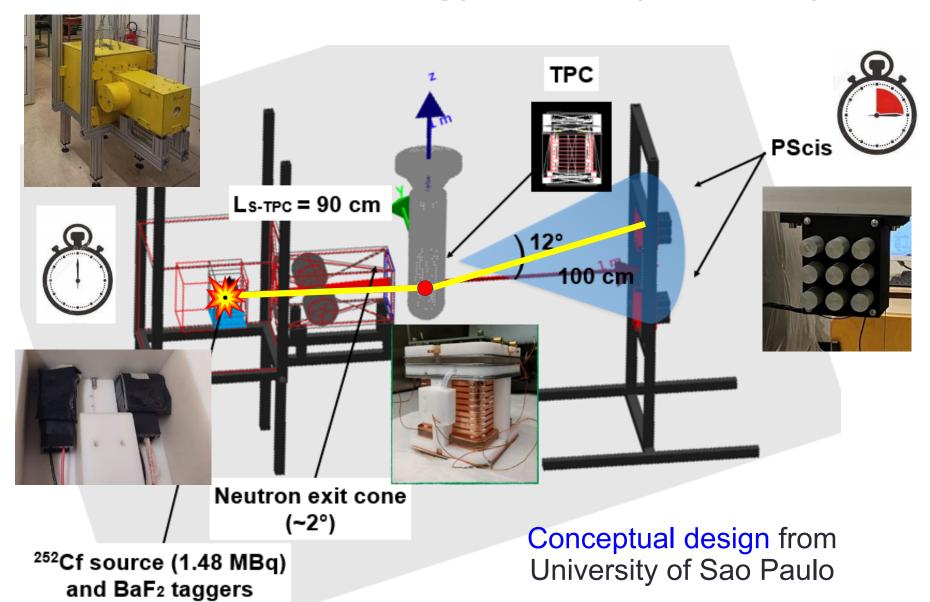

- Search for low-mass WIMPs by the detection of the S2 signal only (recoils <1 keV)
 - A few GeV, instead of "standard" 100 GeV
- Needs calibrations to characterize the detector response
 - Lowest point for Ar in literature at ~6 keV

REcoil Directionality


The ReD project

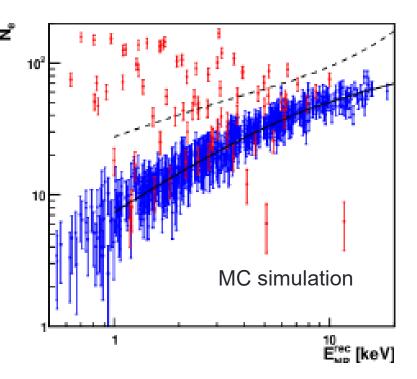

- ReD project, three-fold goal:
 - check if a dual phase LAr TPC has sensitivity to the direction of Ar recoil
 - characterize the response of the LAr TPC to very low-energy recoils (< few keV)
 - act as a test bench of the technical solutions for DarkSide-20k TPC
- Phase 1 (Naples) Characterization of the TPC
 - Stability over time scale of months
 - Check that performance OK for phase 2
- Phase 2 (LNS) Directionality run
 - TANDEM beam LNS (February 2020)
 - No indication for directionality
 - Paper under Collaboration review
- Phase 3 (INFN Catania) Low-energy run with ²⁵²Cf
 - Data taking → Nov 2022 Jun 2023

Phase 3 - The working principle


- Goal: produce Ar recoils in the TPC of known energy (a few keV!) by (n,n')
- Neutrons from a ²⁵²Cf fission source
 - Neutrons from ²⁵²Cf are O(2 MeV) → appropriate for E_{rec} ~ few keV

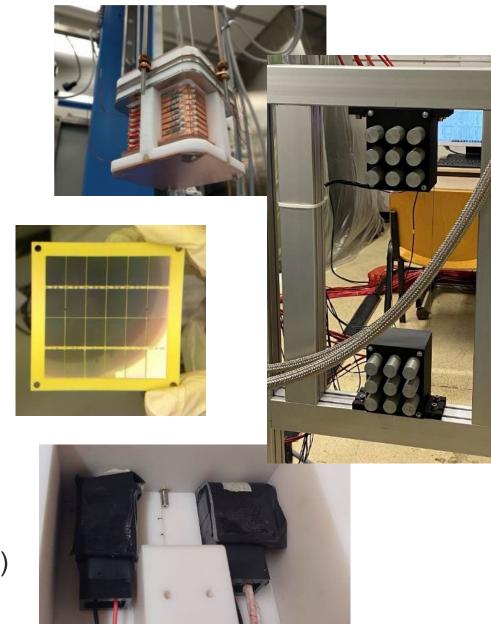
- Close detectors (BaF₂) to tag fission events
- Neutron spectrometer to detect neutrons scattered off-Ar
 - Neutron energy measured event-by-event by time of flight between BaF₂ and spectrometer

Phase 3 – Low-energy phase (INFN-Ct)



Phase 3 - The working principle

Recoil energy in the TPC determined by 2-body kinematics

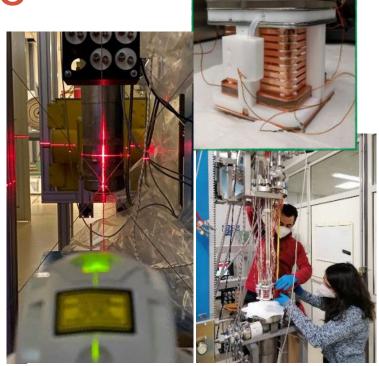

$$E_{NR}=2KE_{neutron}rac{m_nm_{Ar}}{\left(m_n+m_{Ar}
ight)^2}(1-cos heta_{scatt})$$
 Time of flight Fixed by geometry

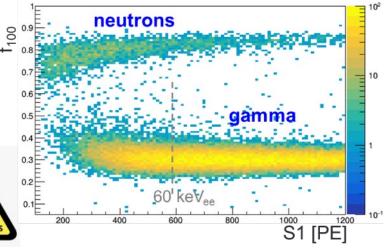
- Trigger logic based on the coincidence between BaF₂ and spectrometer
 - Low-S1 events from the TPC may fail to trigger
 - TPC DAQ in slave: S1 and S2 searched offline
- Sensitivity down to 2-5 keV_{nr}
 - θ_{scatt} ~ 12-17° to avoid direct neutrons from the source
 - Signal rate: 2-3 cph

The ingredients

- Our ReD TPC
 - Light readout: 5x5 cm² SiPM
- A neutron spectrometer
 - 18 1-in EJ-276 plastic scintillators
 - Readout by PMTs
 - Featuring n/γ discrimination
- Fission tagger
 - Two BaF₂ detectors
 - Readout by PMTs
- The ²⁵²Cf source
 - Activity: 0.86 MBq (1/1/2023)
 - About 26 kBq SF

The real thing at





Low-energy run - timeline

- Jan Nov 22: mounting of the system, integration, characterization of taggers and spectrometer
- Nov 22: Cooldown and commissioning
- Jan Mar 2023: Data taking with ²⁵²Cf (about two months)
 - DAQ rate: 2.5 Hz
 - Signal rate: 1.7 cph
 - Compatible with MC expectations
 - Weekly calibrations with laser/²⁴¹Am
- May 2023: Calibration with low-energy
 e⁻ (42 keV) from a diffuse ^{83m}Kr source
 - Study of the TPC XYZ response → corrections for inhomogeneities
- **Warm up**: Jun 23rd 2023

 Now: Decommissioning and data analysis

amma

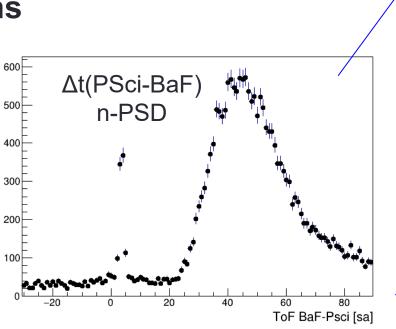
10

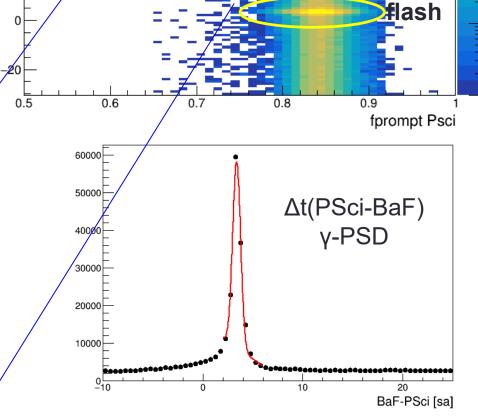
neutrons

roF BaF-Psci [sa

Reconstructing neutrons

Δt(PSci-BaF) vs. PSD in PSci


 Event rate dominated by y-rays and accidentals


 Selection of candidate neutrons by time of flight and PSD

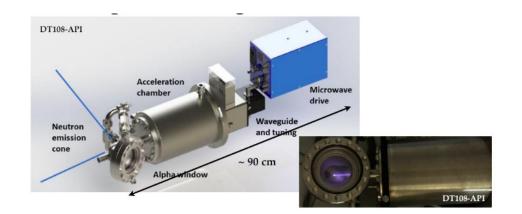
Event-by-event E_n

ToF resolution ~ 0.7-0.8

ns

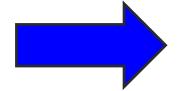
Data analysis and next steps

- Data analysis in progress
 - Confirmed the sensitivity down to 2 keV_{nr} (terra incognita)
 - Some preliminary results at the TAUP2023 Conference



- Many man-weeks. This physics is appealing
- ReD as a part of the TDR of DarkSide is completed
 - Collaboration focused on the construction of the DarkSide-20k detector
- Still the calibration of Dark Matter detectors for very low-energy nuclear recoils is a hot topic!
- Two follow-ups in Catania to further improve and push sensitivity:
 - ReD+: New improved calibration with ²⁵²Cf
 - Funded as a two-year PRIN project, INFN, UniCt, UniNa (183k€)
 - Expected to start in October 2023
 - Measurement using 2.4 MeV neutrons from a DD gun
 - Pros: mono-energetic neutrons, much higher flux
 - Joint project with University of Sao Paulo (DDgun funded as a FAPESP grant)

Perspectives for 2024 & 2025


- ReD+ and DD gun measurements both require an improved
 TPC and the refurbishment of the cryogenic system
 - TPC to be redesigned and built, SiPM readout (UniNA & INFN)
 - Funding available under the PRIN
- Comparable timelines for the two measurements
 - ReD+: Oct 2023-Oct 2025 (PRIN)
 - DD gun: late 2024 early 2025
 - DD gun being purchased and commissioned in Brasil, then shipped to LNS
 - Need of a "radioprotected" experimental area at LNS
- Push sensitivity down to 0.4 keV_{nr}

- Commercial DD gun (Adelphi)
- Neutron flux: 10⁷ n/s
- Tagging via associated ³He
- Signal rate x30 (few cpm)
- Different systematics

Attività e richieste 2024 – gruppo LNS.DTZ

- Il progetto ReD sotto la sigla DarkSide è in conclusione
- Attività di ReD/DarkSide nel 2024:
 - Finalizzazione analisi dati, preparazione pubblicazione
 - Completamento del decommissioning
 - Non sono previste spese
- Attività legate al PRIN ReD+ e al progetto DDgun
 - Finanziamenti extra-CSN2
- Contributo all'attività sperimentale di Proto-0 a Napoli, test SiPM e sviluppo software (offline, Monte Carlo, analisi) per DarkSide-20k
 - Da definire in dettaglio nell'ambito della Collaborazione
- Possibili turni a NOA (già nel 2023: 3 settimane)
- Richieste finanziarie ridottissime
 - Missioni per meeting ed attività a Napoli
 - Da integrare per eventuale turnistica

Richieste 2024 (DTZ) – gruppo LNS

M. Gulino	Associato (UniKore)	40%
L. Pandola	Ricercatore II	60% [o 30%?]
S. Sanfilippo	Tecnologo III	0% (*)
TOTALE		1.0 (2.0 nel 2023)

Preliminary

- (*) Contatto PNRR, ma vorremmo lasciare traccia dell'attività
- → anche ai fini authorship nella Collaborazione

Missioni	 Contatti con altri gruppi e meeting di Collaborazione 	5 k€
TOTALE		5 k€