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Matter in Astrophysical Phenomena

Core-collapse Proto-neutron Mergers of compact
supernovae stars binary stars

Baryon Density(n0) 10−8 − 10 10−8 − 10 10−8 − 10

Temperature(MeV) 0− 30 0− 50 0− 100

Entropy(kB) 0.5− 10 0− 10 0− 100

Proton Fraction 0.35− 0.45 0.01− 0.3 0.01− 0.6
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I Phase diagram corresponding to the APR EOS at a lepton fraction of 0.3.
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Supranuclear EOS

Phenomenological Approaches:

I Skyrme(-like): V̂NN =
∑

i<j V̂ij +
∑

i<j<k V̂ijk , zero-range.

Evaluated in the Hartree-Fock approximation ⇒ H = ~2

2m∗ τ + V (n) .

I Relativistic meson exchange in the mean-field approximation (= negligible
meson-field fluctuations, uniform and static system).

I Momentum-dependent interactions of the Yukawa type, borrowed from heavy-ion
physics.

Microscopic Approaches:

I High-precision interactions fitted to NN scattering data
I meson-exchange models

e.g. Nijmegen, Paris, Juelich-Bonn
I sums of local operators

e.g. Urbana, Argonne

I Interactions from chiral EFT

I RG-evolved potentials

Extension of the above to bulk matter by a variety of techniques: SCGF, BHF,
variational, etc.
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Laboratory Equilibrium Constraints

I Near the Nuclear Equilibrium Point (n = n0, α = 0),

E(n, α) ' E0(n) + S2(n)α2 +O(α4)

E0(n) ' E0 + 1
2
K0

(
n−n0
3n0

)2
+ . . .

S2(n) ' Sv + L
(

n−n0
3n0

)
+ . . .

I Saturation density, n0 = 0.16± 0.01 fm−3

High-energy electron scattering: r0 ∝ π/qR, n0 =
(

4
3
πr3

0

)−1

I Energy per particle, E0 = −16± 1 MeV
Fits to masses of atomic nuclei :

B(N,Z) = EoA− bsurf A
2/3 − Sv

(N−Z)2

A
− bCoulZ

2A−1/3

I Symmetry energy, Sv = 30− 35 MeV
(fits to masses of atomic nuclei)

I Slope of S2, L = 40− 70MeV
(variety of experiments)

I Compression modulus, K0 = 240± 30 MeV

Giant monopole resonances : EGMR =
(

KA
m<r2>

)1/2

KA = K0 + Ksurf A
−1/3 + Kτ

(N−Z)2

A2 + KCoul
Z2

A4/3
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Neutron Stars

I Matter in β-equilibrium supported against gravitational collapse by neutron
degeneracy.

I Structure determined by simultaneous solution of:
I Interior mass, m(r) = 4π

∫ r
0
ε(r ′)r ′2dr ′

I Hydrostatic equilibrium, dp
dr = − Gm(r)ε(r)

r2

[
1 + p(r)

ε(r)

] [
1 + 4πr3p(r)

m(r)

] [
1− 2Gm(r)

r

]−1

I EOS, p = p(ε)

I Constraints
I Largest observed mass, M ' 2 M�

(binaries)

I Largest observed frequency, Ω = 114 rad/s
(pulsars)

I Inferred radius range, 10 km ≤ R ≤ 14 km
(photospheric emission, thermal spectra)
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Binary Neutron Star Mergers

I Relativistic binaries not in equilibrium : Gravitational wave (GW) emission leads
to orbital decay.

I Early stage: only gravitational interactions, GW signal contains information for
the masses of the components.

I Coalescence stage: Tidal disruption of the lower-mass star, mass transfer onto
the more massive one. Mass transfer rate depends on C = MNS/RNS and
reflected in GW signal. Ejected matter is very neutron-rich and can lead to heavy
element formation via the r-process.

I Late stage: Black hole or hypermassive neutron star formation.

I EOS relevance
I Tidal disruption of NS during coalesence of

BH-NS binary depends on the stiffness of
the EOS. GW frequency sensitive to orbital
frequency at disruption.

I r-process production rates and abundances
depend on the composition of the ejecta and
thus the EOS.

I Tidal deformability, Λ = 2
3 k2

(
R c2

G m

)5
.

I g-mode frequencies: N2 = g2
(

1
c2
e
− 1

c2
s

)
eν−λ

g = −∇[p/(ε + p)]
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Motivation: Hybrid Stars (?)

I The size of nucleons (uncertain as it may be) implies that deconfined quark
matter can exist in the cores of NSs.

I However, such a possibility lacks observational and theoretical support:

I Measurements of M, R, Λ cannot differentiate normal and hybrid stars.

I LQCD and PQCD not applicable to NS conditions.

I Possible solution: identify an observable with strong dependence on composition.

I Enter g-modes!
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g-modes

I Global, long-lived, nonradial fluid oscillations resulting from fluid-element
perturbations in a stratified environment.

I Slow chemical equilibration generates buoyancy forces to oppose dispacement.

I In stably-stratified systems the opposing force sets up oscillations with a
characteristic frequency (Brunt-Väisälä) which depends on both the equilibrium
and the adiabatic sound speeds.

I g-mode oscillations couple to tidal forces; they can be excited in a NS merger and
provide information on the interior composition.

I Detection remains a challenge; but within sensitivity of 3rd generation detectors.
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Cowling vs. linearized GR

I In linearized GR, the calculation of g-mode frequencies, damping times, and
amplitudes requires the solution of 4 coupled ODEs.

I The relativistic Cowling approximation neglects metric perturbations that must
accompany matter perturbations in a GR treatment reducing complexity:

dU

dr
=

g

c2
ad

U + eλ/2

[
l(l + 1)eν

ω2
−

r2

c2
ad

]
V

dV

dr
= eλ/2−ν ω

2 − N2

r2
U + g∆(c−2)V

where U = r2eλ/2 ξr , V = ω2r ξh, ∆(c−2) = c−2
eq − c−2

ad ,

N2 = g2∆(c−2)eν−λ, g = −∇P/(ε+ P),
and λ, ν are Schwarzchild metric functions.

I Accurate to a few % compared to GR.

I Cannot compute imaginary part of eigenfrequency (damping time).
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Equation of State

I Nucleons: Zhao - Lattimer

εB =
∑
h=n,p

1

π2

∫ kFh

0
k2
√

M2
B + k2 dk + nBV (u, x)

V = 4x(1− x)(a0u + b0u
γ)

+ (1− 2x)2(a1u + b1u
γ1 )

I Quarks: vMIT

L =
∑

q=u,d,s

[
ψ̄q
(
i /∂ −mq − B

)
ψi + Lint

]
Θ

Lint = −Gv

∑
q

ψ̄γµV
µψ +

(
m2

V /2
)
VµV

µ

εQ =
∑
q

εFG,q +
1

2

(
Gv

mV

)2

n2
Q + B

I Leptons: noninteracting, relativistic fermions

εL =
∑
l=e,µ

1

π2

∫ kFh

0
k2
√

m2
L + k2 dk

Legred et al.
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Hybrid Matter: 1st Order Transitions

I Maxwell (“strong”, “stiff”, . . .)

I Infinite interface tension

I No phase mixing

I Local charge neutrality

I ε = f (εH + εeH ) + (1− f )(εQ + εeQ )

I Gibbs (“weak”, “soft”, . . .)

I Zero surface tension

I Complete phase mixing

I Global charge neutrality

I ε = f εH + (1− f ) εQ + εeM

I Intermediate case

I Some phase mixing

I Charge neutrality is partially local
and partially global

I ε = f (εH + η εeH ) + (1− f )(εQ + η εeQ )
+ (1− η)εeM

H Q

Mixed

H Mixed Q
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Hybrid Matter: 1st Order Transitions (cont’d)

I Constraints

I Baryon number conservation
1 = f (yn + yp) + (1− f )(yu + yd + ys )/3

I Lepton number conservation
0 = ye − f ηyeH − (1− f )ηyeQ − (1− η)yeM

I Local charge neutrality
0 = (yp − yeH ) = (2yu − yd − ys )/3− yeQ

I Global charge neutrality
0 = fyp + (1− f )(2yu − yd − ys )/3− yeM

I Equilibrium (= minimization of ε wrt f , yi , η)

I Mechanical, PH + ηPeH = PQ + ηPeQ

I Quark weak, µd = µs

I Neutral strong, µn = µu + 2µd

I Charged strong, µp = 2µu + µd − η(µeH − µeQ )

I Beta µd = µu + ηµeQ + (1− η)µeM

-or- µp = µn − ηµeH − (1− η)µeM

I η optimization, εeM = f εeH + (1− f )εeQ
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Hybrid Matter: Crossovers

I In contrast to 1st-order transitions,
crossovers involve only a single phase of matter.
Thus, in the present framework, charge neutrality
is achieved globally, i.e., η = 0.

I No mechanical equilibrium condition;
instead choose f = f (nB), s.t. it approaches
asymptotically 0 and 1 at high and low
densities, respectively.

I LQCD-inspired model (Kapusta-Welle):

PB = (1− S)PH + S PQ

S = exp

[
−
(
µ0

µ

)4
]

µ0 ∼ 2 GeV

f=1-e-160 (nB/n0)
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Sound Speeds

I c2
eq(nB) = dP

dε
=

dPβ
dnB

(
dεβ
dnB

)−1

mechanical equilibrium restored instantaneously.

I c2
ad(nB, x) =

(
∂P
∂ε

)
x

= ∂P
∂nB

∣∣∣
x

(
∂ε
∂nB

∣∣∣
x

)−1

c2
ad,β(nB) = c2

ad[nB, xβ(nB)]

slow restoration of chemical equilibrium
because τβ � τoscillation.

I The difference ∆(c−2) = c−2
eq − c−2

ad
drives the restoring force for g-mode
oscillations. For example, in npe matter

c2
ad = c2

eq +

[
nB

(
∂µ̃
∂nB

)
x

]2

µn
(
∂µ̃
∂x

)
nB

µ̃ = µe + µp − µn
β−eq.−→ 0
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g-mode signals

I g-modes in Gibbs hybrid matter have a
larger frequency range compared to the
pure-nucleon and crossover cases
corresponding to the behavior of ∆(c−2)
in the mixed phase.

I Dramatic changes in νg require new
particle species not merely a smooth
change in composition.

I The Cowling approx. is qualitatively
similar to GR but underestimates νg by
up to 10%; does better for low-mass stars.

I Energy per unit radial distance in
oscillatory motion: The Gibbs energy scale
is one order of magnitude larger than ZL
and KW once quark matter appears
(∼ 1051 ergs/km vs. ∼ 1050 ergs/km).
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Universal relation: Ωg vs. Y c

I Universal relations depend weakly
on the EOS and can be used to break
degeneracies and otherwise constrain
difficult-to-access observables.

I Given the sensitivity of g-modes to
departures from chemical equilibrium,
it is likely that N and νg depend
strongly on composition

I Ωg = GMωg/c3 = 1.228(Y c − 0.05)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Yc

lep + Yc
qak

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G
M

g/c
3

fit formula

ZL40
ZL55
ZL70

Gibbs40
Gibbs55
Gibbs70

KW40
KW55
KW70

C. Constantinou g-mode Oscillations in Neutron Stars



Discontinuity g-modes

I Generated by the flatness of P(nB)
in a Maxwell mixed phase that leads to
a density jump in the core of a hybrid star.

I Characterized by discontinuous g-mode
frequencies.

I A special case of a compositional g-mode
in the limit η → 1.
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Summary

I Calculation of g-mode properties for 1st-order phase transitions and for crossovers
(both with the Cowling approximation as well as linearized GR).

I Construction of a thermodynamically-consistent framework for the treatment of
1st-order phase transitions intermediate to Maxwell and Gibbs.

I g-modes can detect nonnucleonic matter in the cores of NS; assuming quark
matter (by some other means), g-modes can distinguish between a first-order
phase transition and a crossover.

I Universal relation between Ωg and Y c .

I Discontinuity g-modes as a special case of compositional g-modes in the Maxwell
limit.

I (Near) Future:
I Extend 1st-order transition scheme and KW to finite T .

I Applications to protoneutron stars (cooling, superfluidity)

I Construct EOS that uses the same underlying description for quarks and hadrons;
explore hybrid matter microscopically.

I Other signals?
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