Update on CYGNO 30 GEANT4 simulation

S.Torelli - E.Baracchini

Detector geometry

·	Field cag	 3GEMs	Vessel	
			Тор	view

Sensors	5	Lens			
	¢ o	° .			
	° o	Late	ral view		
Detector sizes					
		Cathodes	50 cm x 80 cm x 1 <i>cm</i>		
		Rings inner	50 cm x 80 cm x 1 cm + 2 mm thickness		
/essel		Rings spacer	Such that 32 rings fit equidistantly in 50 cm lenght		
		GEMs	50cm x 80cm x 60 μm		
		GEMs spacing	2 mm thickness		
		Vessel	I cm with respect to the detector + I cm thickness		
		Lens	I cm Ø x 2 mm 57.7 cm from the GEMs		
		Sensors	10mm x 18mm x 1 mm 6 cm distance from Lens		

Radioactive decay simulation

 Physics list used: FTFP_BERT_HP: for "radiation protection and shielding application"

• For every detector element (GEMs, Cathodes, Rings, ecc...):

• For every contaminant (U238,U235,K40, ecc...):

- N iteration of:
 - I. Extraction of a random detector element (GEM_34, GEM_75)
 - 2. Extraction of a random point on the element volume
 - 3. Simulation of the whole decay chain of the element, taking into account also atomic excited states

Example of 10 U238 simulated on Cathodes

Spectra production and normalization

• Given the computational time of the chain simulations, for every detector elements:

- I.000.000 primary nuclides decays have been generated for U238, U235, Th232
- I0.000.000 primary nuclides decays have been generated for K40, Co60, Cs137

• For each particle entering the gas volume the information saved are:

- Particle name
- Total energy deposit in the single volume
- The number of the volume in which the energy is deposited
- The primary nucleus
- X,Y,Z of the vertex

 Final spectra produced taking into account we can reconstruct the total energy of the electron and the impact point

- Each histogram scaled by the quantity:
- N_{ev} is the number of events
- \bullet A is the activity of the element
- \bullet M is the total mass of the detector component

37 keV electron in the final spectrum

$$N = \frac{1}{N_{ev}} \cdot A\left[\frac{dec}{s \cdot kg}\right] \cdot M[kg] \cdot 3.15 \cdot 10^7 \left[\frac{s}{y}\right]$$

{"Cathodes",809.7}, {"GEMs",18.75}, {"Lens",0.4995},
{"Rings",1114.74}, {"Sensors",0.1392}, {"Vessel",1102.24}

• List of each component total mass in Kg

Total simulated decays in the full chain sim

Energy spectra

Single element contribution

Plot of energy spectra separated for the different nuclei involved

Zoom of the most interesting region

Single element contribution

