

CYGNO simulation plans

Giulia D'Imperio

02/05/23 CYGNO simulation meeting

Plans & to do

Spreadsheet with plans for analysis and simulations

https://docs.google.com/spreadsheets/d/1VOn-Bg8yWwewINrvrwRRMhANpsuGGO86KuFhiPe5xMA/edit #gid=1362390939

WHAT	WHO	Already on it	
Calibration			
Use NaI data to evaluate the rates of primary decays (U, Th, K) to cross check with the rates used for the current simulation;		Giulia	
Cross check the attenuation factor evaluated with the simulation;		Giulia	
Images			Flaminia → analysis of
2D and 3D Event maps;			LIME MC images and
Evaluate detection efficiency vs E, x, y and z			comparison with data
Produce distributions of: E, length, angles			companson with data
dE/dx vs E (2D, z, 3D)			
PMT			Pietro/Fabrizio + Rafael
Add the electron arrival time info to the digitisation			integration of PMT
Produce PMT waveforms			cimulation in the
PMT Efficiency			Simulation in the
Trigger Efficiency			digitization code
		4 9	
Analysis - Simulation -		E E	Pedro → test on the cloud

External background in LIME

For LIME simulations we have **assumed a flux of 0.56 gammas/cm²/s** from environmental background.

Spectrum is taken from a NaI measurement by SABRE collaboration.

Summary o	f LIME	MC rates	(ER)
-----------	--------	-----------------	------

	External	Internal	Shield	Tot	
	Rate Hz	Rate Hz	Rate Hz	Rate Hz	
No shield	35.83	0.23	0.00	36.15	
4 cm Cu	0.84	0.23	0.02	1.09	
6 cm Cu	0.30	0.23	0.02	0.55	
10 cm Cu	0.06	0.23	0.02	0.31	
Full (water+Cu)	0.02	0.23	0.02	0.26	

- Ratio between rates with different shielding options depends also on the internal background
- To compare LIME rates w/wo shielding with data we need to know the external (and internal) background more precisely
- Previous measurements with Nal suggest difference of factor 2 in gamma background between LNGS Halls

Nal data (3" crystal)

- We have direct measurements with Nal in LIME experimental area
- Raw data without shield (blue), 4 cm Cu shield (green), and 10 cm Cu shield (yellow)

- Previous measurements by SABRE made with a Nal larger detector (4"x 4" x 16")
- Difficult to compare directly these spectra (and rates) with previous Nal or LIME MC because:
 - → different detectors
 - non-negligible internal background component, especially when we compare shielded spectra
- \rightarrow need a MC simulation of the Nal

Calibrated data

- Calibrate using 3 lines (609 keV, 1460 keV, 2615 keV)
- Measure energy resolution

χ² / ndf

1.913e+04 / 1

Simulation of Nal crystal

• 3"x3"cylindrical crystal with 0.5 mm Aluminum case

• Simulate decay of ⁴⁰K, ²³⁸U chain and ²³²Th chain (gamma emitters) from a spherical surface of 20 cm radius (isotropic angular distribution)

Simulation on Nal crystal

- Energy deposits in the Nal detector
- Apply experimental resolution to the simulated spectra

Fit data with simulated spectra

- Use dataset outside shielding (in LIME control room), ~6 days livetime
- Fit range from 350 keV to 2800 keV

Floating	Paramete	er	Final	/alue	+/-	Erro	r
		N_K40	7.	.0662e	e+06	+/-	5.97e+03
	N_Th232	_chain	4.	.2597e	e+06	+/-	6.49e+03
	N_U238_	chain	. 7.	.7580∈	e+06	+/-	7.21e+03

Correcting for efficiencies and branching ratios the correspondent fluxes are:

- ${}^{40}\text{K} \rightarrow 0.18 \text{ gammas/cm}^2/\text{s}$
- ²³⁸U → 0.64 gammas/cm2/s
- ²³²Th → 0.33 gammas/cm²/s
- Total 1.15 gammas/cm²/s

Summary

- Simulation of Nal detector for the "no shield" case seems reasonable and correspond to a gamma flux of 1.15 cm⁻² s⁻¹
 - \rightarrow factor ~2 w.r.t. the number used in LIME simulations
 - → could this explain some discrepancies between data and MC rates?
- Same exercise can be repeated for Nal spectra inside 4 cm and 10 cm Cu
 internal Nal background non negligible, we need a measurement of internal background
 - → this would be a validation for our external gamma MC
- If we trust the MC rates for LIME we can understand better also the experimental rate in LIME data