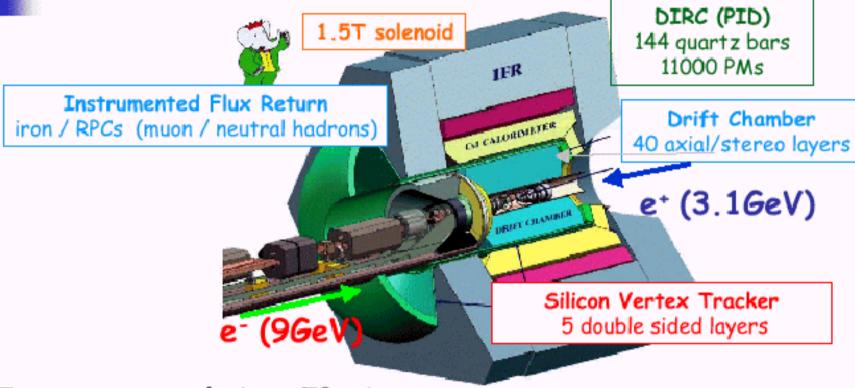
The SuperB experiment

Sezione Roma 1, 8/4/2011 Riccardo Faccini

SuperB Detector

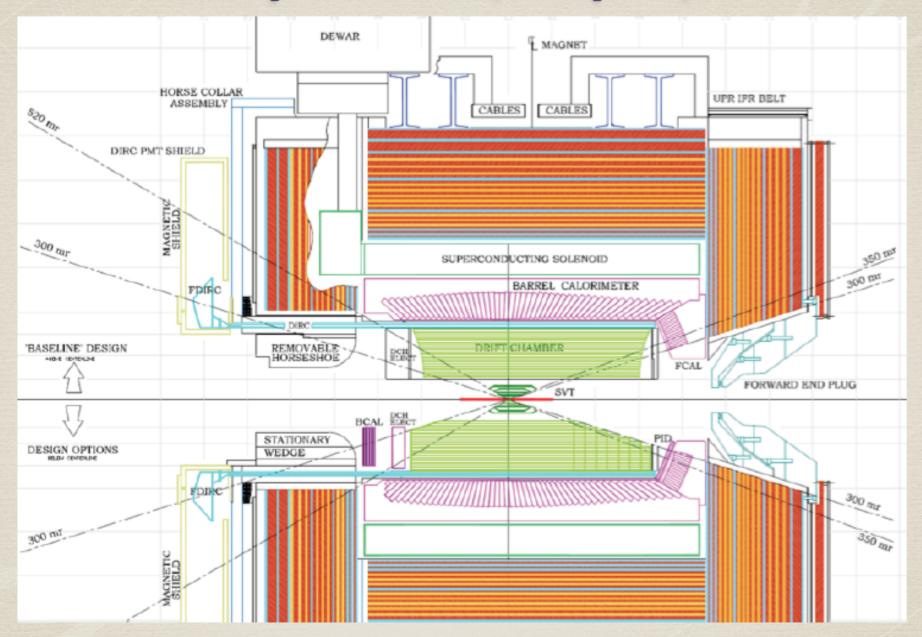
Mutuated from BaBar


- General Purpose
- * Asymmetric beams (8 vs 4 GeV), but basically central detector
- main goals:
 - exclusive reconstruction of the whole decay chain
 - good vertex reconstruction
 - hermeticity
 - Particle Identification (PID)
- * Recycle:
 - Quartz Bars for Barrel PID
 - EMC barrel
 - Superconducting coil and magnetic flux return

SuperB specific issues

- Larger Backgrounds
- Less EnergyAsymmetry
- interaction with machine design

BaBar detector 6580 CSI(TI) crystals


z resolution ~70 microns SVT:

 $\sigma(p_T)/p_T = 0.13\% \times p_T \oplus 0.45\%$ Tracking:

DIRC: $K-\pi$ separation > 3.4 σ for P<3.5GeV

 $\sigma_{\rm F}/{\rm E}$ = 1.33%·E^{-1/4} \oplus 2.1% EMC:

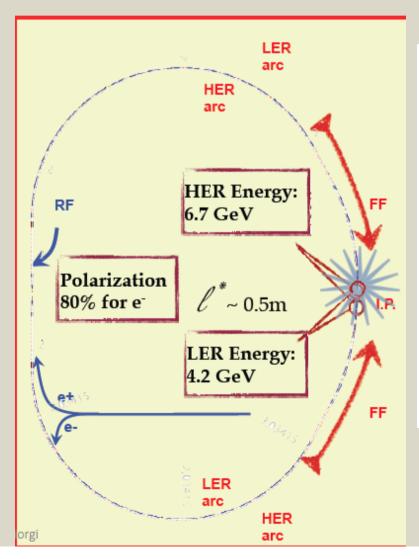
SuperB Detector (with options)

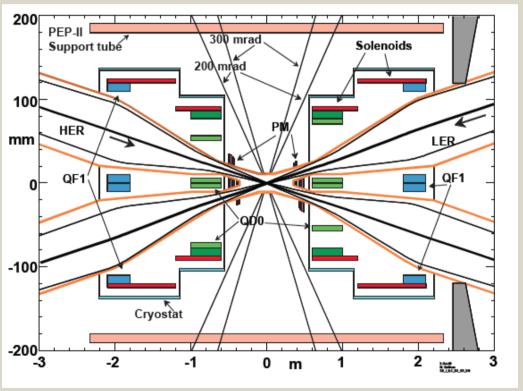
Detector Proto-Techboard

Detector Coordinators - B.Ratcliff, F. Forti

Technical Coordinator - W. Wisnieswki

- * SVT-G. Rizzo
- * DCH G. Finocchiaro, M.Roney
- * PID N.Arnaud, J.Va'vra
- * EMC F.Porter, C.Cecchi
- * IFR R.Calabrese
- * Magnet W.Wisniewski
- * Electronics, Trigger, DAQ D. Breton, U. Marconi


Detector Geometry Working Group Chairs M.Rama, A.Stocchi


- * Online/DAQ S.Luitz
- * Offline SW -
 - * Simulation coordinator D.Brown
 - * Fast simulation M. Rama
 - * Full Simulation F. Bianchi
- * Rad monitor –
- * Lumi monitor –
- * Background simulation M.Boscolo, E.Paoloni
- * Machine Detector Interface -

Geometry Selection Task Force Chairs W. Wisniewski, H. Jawahery

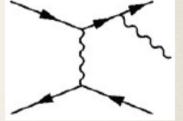
Accelerator

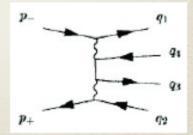
Already talked by P.Raimondi on Mar. 23rd

Site committee should report within one month

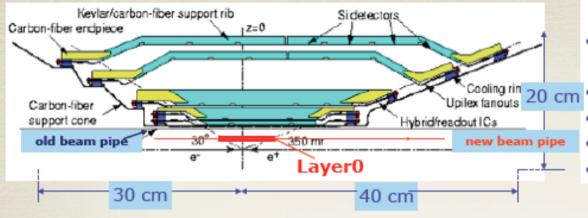
Today: walk though of the Tor Vergata site

Accelerator Parameters

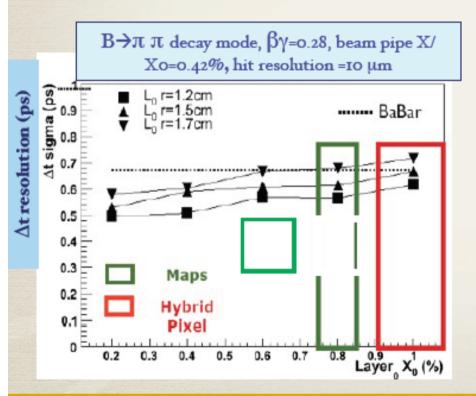

	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)
Luminosity ($10^{30} \text{ cm}^{-2} \text{s}^{-1}$)	12069 (design: 3000)	1.0×10^{6}	8×10^5
Injection energy (GeV)	2.5-12	$e^-/e^+:4.2/6.7$	$e^-/e^+:7/4$
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	e^- : 48 (H), 1.5 (V) e^+ : 24 (H), 1.5 (V)	e^- : 2.5 (H) , 0.006 (V) e^+ : 2.0 (H) , 0.005 (V)	5 (H), 3 (V)
β*, amplitude function at interaction point (m)	e ⁻ : 0.50 (H), 0.012 (V) e ⁺ : 0.50 (H), 0.012 (V)	e^- : 0.032 (H), 0.00021 (V) e^+ : 0.026 (H), 0.00025 (V)	e^- : 0.025 (H), 3×10^{-4} (V) e^+ : 0.032 (H), 2.7×10^{-4} (V)
Beam-beam tune shift per crossing (units 10 ⁻⁴)	e^- : 703 (H), 498 (V) e^+ : 510 (H), 727 (V)	20 (H), 950 (V)	e^- : 12 (H), 807 (V) e^+ : 28 (H), 893 (V)
RF frequency (MHz)	476	476	508.887
Particles per bunch (units 10 ¹⁰)	e^-/e^+ : 5.2/8.0	e^-/e^+ : 5.1/6.5	e^-/e^+ : 6.53/9.04
Bunches per ring per species	1732	978	2500
Average beam current per species (mA)	e^-/e^+ : 1960/3026	e^-/e^+ : 1900/2400	e^-/e^+ : 2600/3600


Machine backgrounds

E. Paoloni (Pisa) + representatives from detectors


- Two colliding beams
 - radiative Bhabha → dominant effect on lifetime
 - e+e- e+e- production → ~3% contribution to lifetime, important source for SVT layer-0
- Single beam
 - synchrotron radiation → strictly connected to IR design
 - Touschek → negligible in BaBar, important in SuperB
 - beam-gas
 - intra-beam scattering

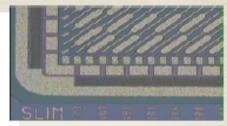
	Cross section	Evt/bunch _{xing}	Rate
Beam Strahlung	~ 340 mbarn (Eγ/Ebeam > 1%)	~680	0.3THz
beam straniung	~ 40 mbarn (Eγ/Ebeam ≥ 50%)	~80	35GHz
pair production	~7.3 mbarn	~15	7GHz
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~200/Million	100KHz
Y(4S)	O(10 ⁻⁶) mbarn	~2/Million	I KHz

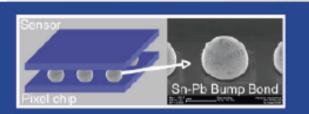


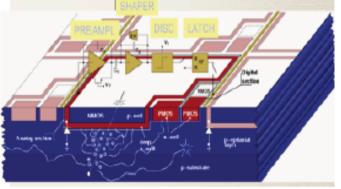
Silicon Vertex Tracker

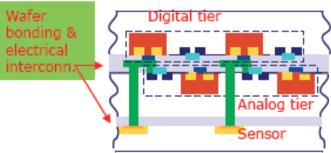
BaBar SVT

- 5 Layers of double-sided Si strip sensor
- Low-mass design. ($P_t < 2.7 \text{ GeV}$)
- Stand-alone tracking for slow particles.
- 97% reconstruction efficiency
- Resolution ~15µm at normal incidence

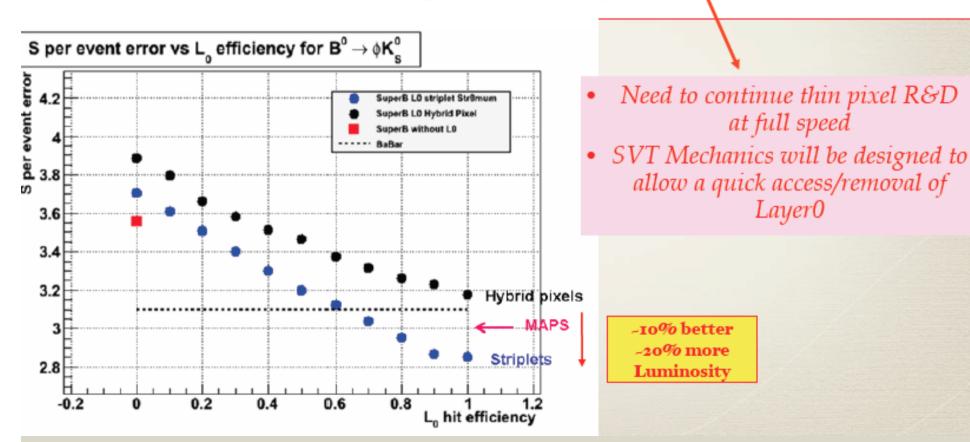



- SuperB SVT based on Babar SVT design for R>3cm. BUT:
- * Reduced beam energy asymmetry (7x4 GeV vs. 9x3.1 GeV) requires improved vertex resolution (- factor 2 needed)
 - → Layero very close to the IP (R-1.5 cm) with low material budget
 - →Layero area 100 cm2
- ★ Background levels depends steeply on radius
 - → Layero needs to have fine granularity and radiation tolerance
- Layer0 subject to large background and needs to be extremely thin:
 - $> 5MHz/cm^2$, > 3MRad/yr, $< 1 %X_0$

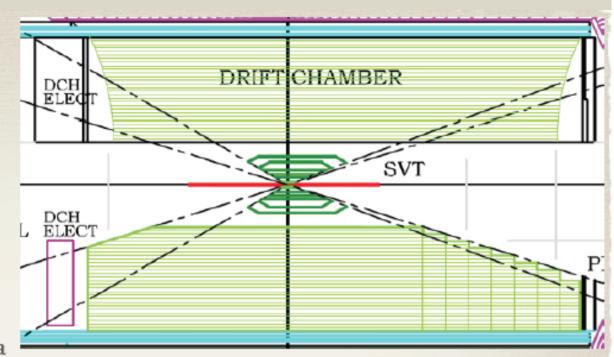

Bologna, Milano, Pavia, Pisa, Rome3, Torino, Trieste, Trento, LBNL, Queen Mary, RAL


SuperB SVT Layer 0 technology options

- *Striplets option: mature technology, not so robust against background occupancy.
 - *Marginal with back. track rate higher than ~ 5 MHz/cm²
 - *Moderate R&D needed on module interconnection/mechanics/FE chip (FSSR2 or new chip)
- *Hybrid Pixel option: viable, although marginal.
 - *Reduction of total material needed!
 - *Reduction in the front end pitch to 50x50 µm² with data push readout (developed for DNW MAPS)
 - → FE prototype chip (4k pixel, ST 130 nm) now under test.
- ***CMOS MAPS option:** new & challenging technology.
 - #Sensor & readout in 50 μm thick chip!
 - *Extensive R&D (SLIM5-Collaboration) on
 - *Deep N-well devices 50x50μm² with in-pixel sparsification.
 - *Fast readout architecture implemented
 - *CMOS MAPS (4k pixels) successfully tested with beams.
- *Thin pixels with Vertical Integration: reduction of material and improved performance.
 - *Two options are being pursued (VIPIX-Collaboration)
 - *DNW MAPS with 2 tiers
 - *Hybrid Pixel: FE chip with 2 tiers + high resistivity sensor



Plan

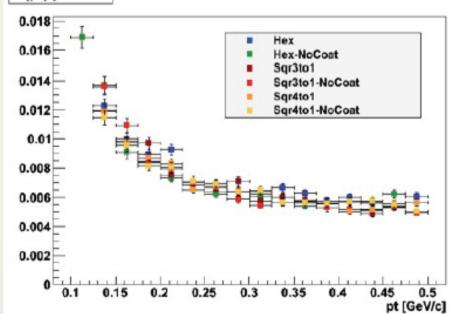

Layer 0 Strategy

- Striplets baseline option for TDR:
 - Better physics performance (lower material \sim 0.5% vs 1% hybrid pixel, MAPS or thin hybrid pixel in between but not yet mature!)
- Upgrade to pixel foreseen for a second generation of Layer0 (1-2 yrs after t0)

Drift CHamber

- * Ottimizazione del progetto di Babar
 - * ottimizzando il riempimento del volume di tracciatura

- * riducendo il materiale nel volume di tracciatura (diffusione multipla, dominante ai bassi impulsi di SuperB):
 - * nel gas aumentando la percentuale di He, o usando un idrocarburo più leggero
 - * riducendo la quantità di Al nei fili
- * Anche il materiale della struttura puo essere minimizzato
 - * struttura meccanica
 - * materiale dell'elettronica (incluso cooling)
- * R&D su cluster couting
 - * Miglioramento radicale per dE/dx, impulso

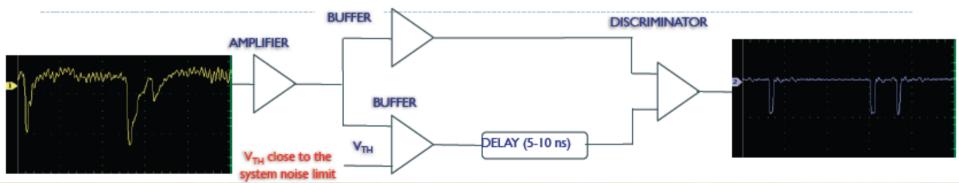


Ottimizzazione

- * Disposizione dei fili
 - * "Nominal" (BABAR):
 - * AUVAUVAUVA
 - * "Axial": AAAAAAAAA
 - * "Stereo SL" : AUVUVUVUVA
 - * "Stereo layers" Auvuv....uvuvA
- Layout e miscela
 - Hex (Babar) vs. square (KLOE)
 - Metano o isobutano
- Celle rettangolari permettono una del materiale nel volume di tracciamento.
 - miglioramento di 15-20% nella misura di impulso a bassi p.
- Miscela di gas più leggera riduce il materiale
 - trade-off delicato con la risoluzione spaziale e dE/dx, e con la stabilità di operazione della miscela
- I primi studi con mostrano che le celle quadrate sono OK.

- Misura di θ dominata da SVT: effetto piccolo della disposizione sul tracking
- Da studiare l'impatto della disposizione dei layer stereo sulla misura di θ a livello di trigger L1: RM3

σ(pt)/pt reso.

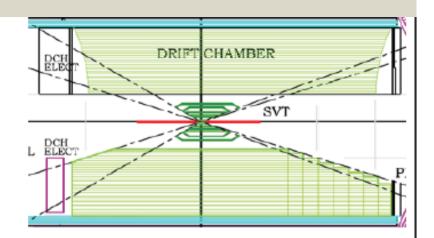


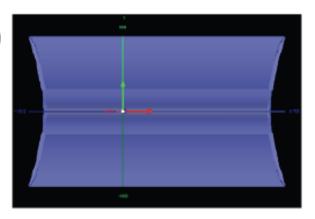
Miscela fissata (80%He-20%iC₄H₁₀) e diverse configurazioni di cella

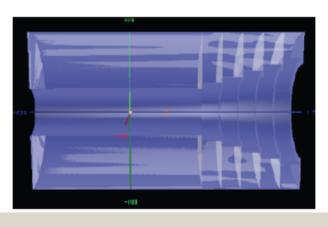
R&D on cluster counting

- Kaon-pion separation achieved by counting the number of released clusters
 - a more direct measurable rather than the integral energy
 - need time resolution to resolve clusters

Local derivative method

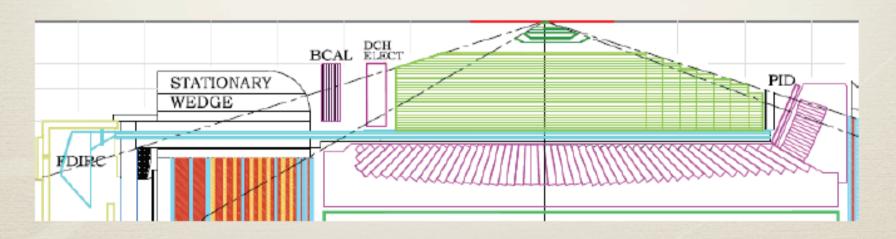

Struttura meccanica Geometria endplates


Struttura completamente in C.F. Opzioni per geometria dei piatti:

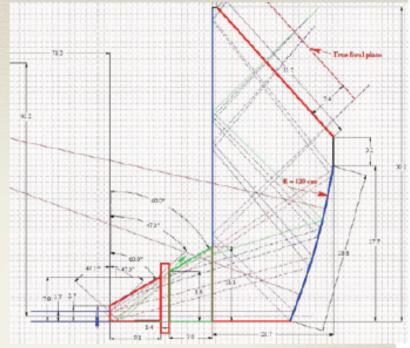

• sferici à la KLOE (oppure con concavità opposta) $0.02X_0$ da confrontare con $0.13X_0$ di BABAR

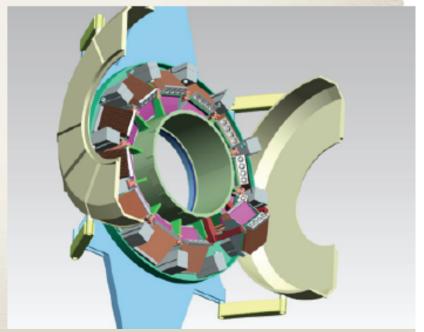
 conici, o a step per ridurre l'occupazione nella regione in avanti

Scelta da ottimizzare con gli studi sul background

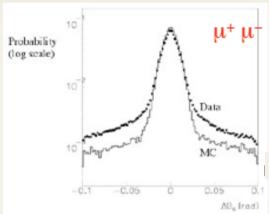


Particle IDentification


- * Barrel: Focusing DIRC
 - * Sistema basato sul DIRC di BaBar
 - * Riutilizzo barre di quarzo
 - * Disegno nuovo Stand Off Box
 - * Istituzioni coinvolte
 - * SLAC: progetto generale
 - * Cincinnati, Maryland: simulazioni
 - * Univ. Hawaii: elettronica
 - * LAL: elettronica
 - * Padova: meccanica SOB, meccanica test
 - * Bari: photon detector, test prototipo

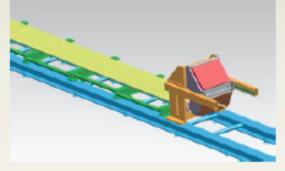

- * Forward: tre ipotesi in esame
 - * FARICH (Budker): focusing aerogel RICH
 - * DIRC-like TOF (SLAC, LAL): TOF con barre di quarzo
 - * Pixelated TOF (SLAC, Padova)

FDIRC


- * Blocco di quarzo e specchio cilindrico
- * MAPMT come photon detector
- * Test di un prototipo FDIRC nel 2011 con i cosmici a SLAC
- * Partecipazione italiana per il TDR e per il test con i cosmici:
 - * Padova:
 - * Progettazione e costruzione della meccanica
 - * Bari:
 - * Test dei MAPMT
 - * Studio dell'elettronica di readout

Barrel PID

- FBLOCK [SLAC]
 - Raw block has been produced by Corning and is ready to be shipped.
 - Had to make a new quote request for the FBLOCK machining operation because a buyer made a silly mistake in the first round. The search has 10 companies involved.
- FDIRC prototype studies in CRT [SLAC]
 - FDIRC prototype is now being used to study Cherenkov ring resolution & its tails.
 - BaBar DIRC:

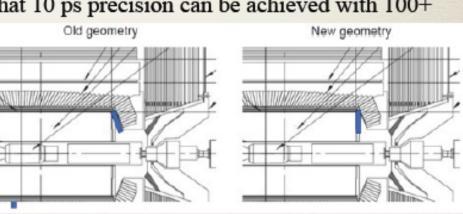


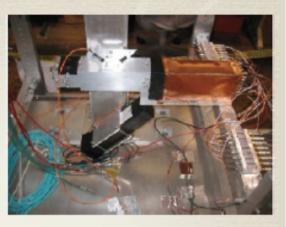
- Bar boxes removed from BaBar [SLAC + LAL + Saclay]
 - And safely stored. Bars look good to visual inspection.
 - Some PMT studies performed.

Barrel PID

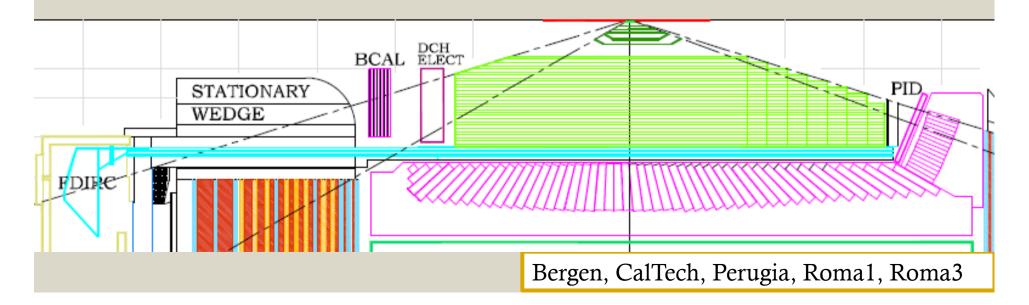
- Mechanics [Padova + SLAC]
 - Ongoing work on the mechanical design for the CRT test.

- MaPMTs [Maryland + SLAC]
 - Modified SLAC PC board for MaPMT amplifiers ready.
- Electronics [LAL-Orsay + LPNHE-Paris]
 - Front-end chip architecture still being discussed
 - → Need to match the background requirements and the TDC readout
 - SCAT (100 ps TDC) architecture completely defined (behavioral simulations done)
 - → Layout of the chip from part almost done; readout design ongoing
- Background [SLAC]
 - Simple rate estimates updated after a recent visit to Belle-II collaboration meeting.

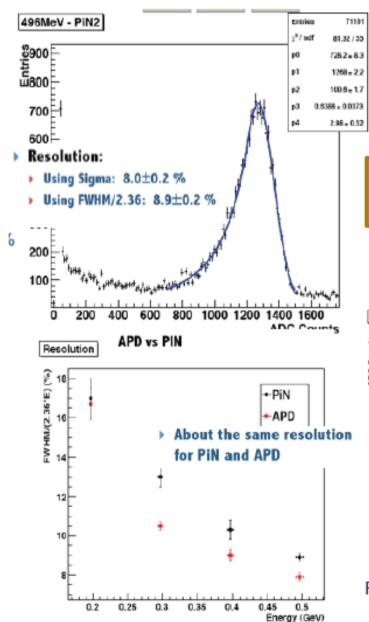

Forward PID

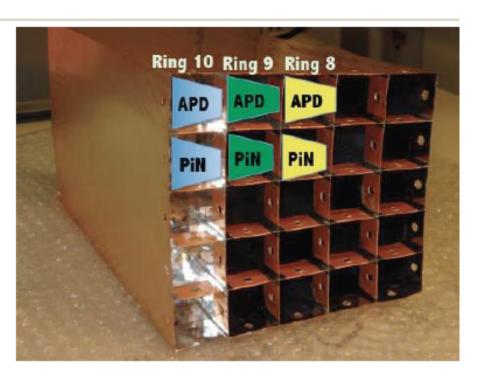

- FARICH [Novosibirsk]
 - Test beam in progress
- DIRC-like TOF [LAL-Orsay + SLAC]
 - Large data sample collected in CRT telescope.
 - Analysis in progress

- Caltech provided a full size LYSO crystal. SLAC prepared a detector setup.
- The prototype with 4x4 G-APD array readout is now being tested in CRT.
- More simple version with single 3mm x 3mm G-APD will be tested in January.
- Data taking in progress.
- Electronics [LAL-Orsay]
 - Ongoing work on ASICS and system sides
 - Design of a 16 channel board
 - → One step further towards a demonstration that 10 ps precision can be achieved with 100+

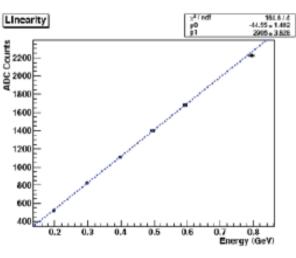

channels

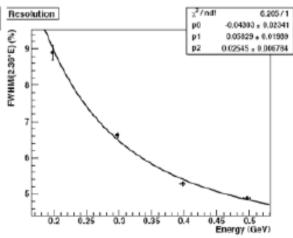
EMC


- ❖ Barrel: CsI(Tl) crystals read by Pin Diodes
 - reusing BaBar
 - optimization of readout needed
- Forward: baseline option LYSO with APDs
 - fast and with high LY
 - expensive, discussing alternatives
- Backward: lead+scintillator (groove geometry)
 - cost-benefit discussion ongoing


Ongoing activities

- Design of electronics / trigger --> See talk from Valerio
- 25 crystals LYSO prototype
 - Test Beams for electronics and crystals → See talk from Davide
- Mechanical design


Test alla BTF 21-25 Giugno



6 crystals only

Linearity and resolution

F.Forti - Stato del Progetto

EMC: Test Beam at CERN October 11th - 31st

SETUP

20 APD + 5 PD

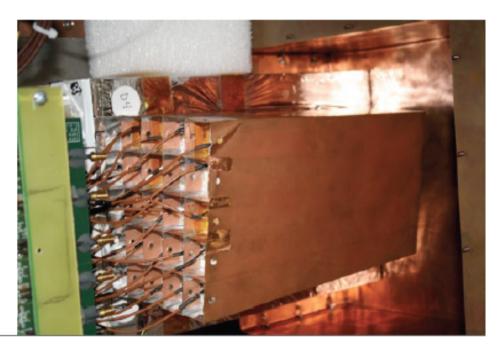
	Ring 6	Ring 7	Ring 8	Ring 9	Ring 10
Shaper 6 PiN	Sipat 13	Sipat 7-4	Sipat 12	SG X	sg x
Shaper 1 APD	Sipat 14	Sipet 7-3	SG 005-3	SG X	SG X
Shaper 2 APD	Sipat 17	Sipat 18	Spat 11	SG X	SG X
Shaper 3 APD	Sipat 15	Sipat 19	SG 005-4	SG X	SG X
Shaper 4 APD	Sipat 16	Sipat 7-5	Sipat L9	SG X	SG X

Temperature 1
Temperature 2
Temperature 3
Temperature 4
Temperature 5

The second	
	The state of the s
	c l
	•

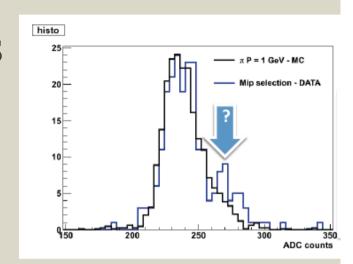
	Ring 6	Ring 7	Ring 8	Ring 9	Ring 10
Shaper 0 PiN	Ch5	Ch4	Ch3	Ch2	Ch1
Shaper 1 APD	Ch10	Ch9	Ch8	Ch7	Ch6
Shaper 2 APD	Ch15	Ch14	Ch13	Ch12	Ch11
Shaper 3 APD	Ch20	Ch19	Ch18	Ch17	Ch16
Shaper 4 APD	Ch25	Ch24	Ch23	Ch22	Ch21

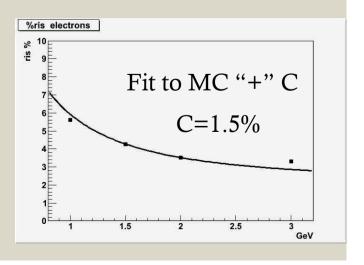
Data collected at energies of:


1GeV: ~ 95000 - 64% e-

1.5GeV: ~ 20000 - 60% e-

2GeV: ~ 40000 - 48% e-


3GeV: ∼9500 - 30% e-


4GeV: ~ 650 - 25% e-

Test Beam results

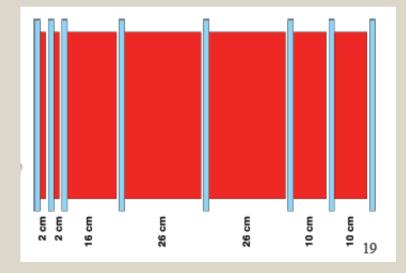
- Good data-MC agreement on MIPS
- HV and temperature stability under control
- ❖ Electronic noise ~7mV → need to increase shaping time
- ❖ Resolution missing a ~2% effect (beam resolution?)
 - → Need to redo test at BTF with same setup as CERN

EMC: future activities

- Non-satisfactory LYSO performances at TB: due to beam quality? New test at BTF in May
- Decision on crystal choice (FWD)
- ❖ Decision on readout device (APD?) and electronics
- Trigger primitives
- Optimize the Barrel electronics to match new environment

IFR

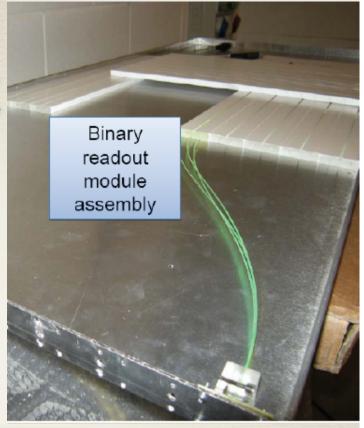
- Instrument the flux return of the magnet to identify muons
- Reuse iron and magnetic coil from BaBar, but:

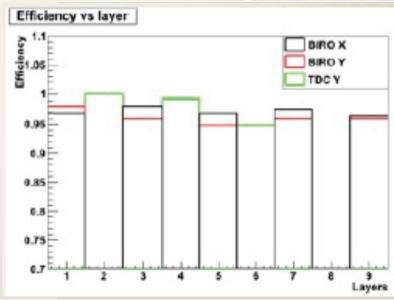

* reoptimize the number and position of active layers

after BaBar's experience

- * 8 layers instead of 21
- Extruded scintillators instead

of RPC/LST


costs/efficiency balance

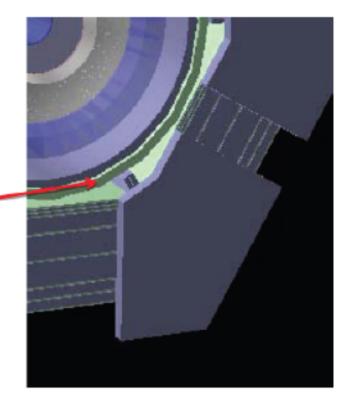


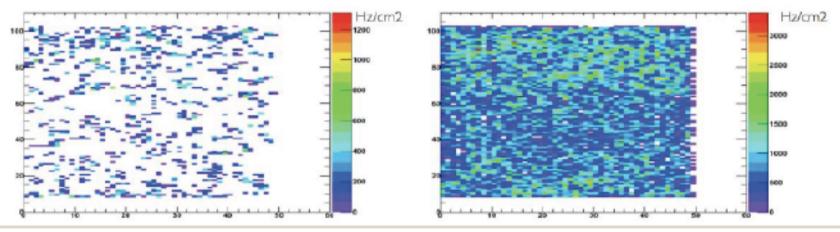
Ferrara, Padova

IFR Beam Test

- All needed SiPM received and characterized
- Prototype completed, tested with cosmic and shipped to FNAL
- Prototype tested (1-7 Dec 2010) at Fermilab Meson Area
- Energy vary from 0.5 to 5 GeV.
- 9 layer configuration tested with different readout schemes
- (5 BiRO layers and 4 TDC layers)

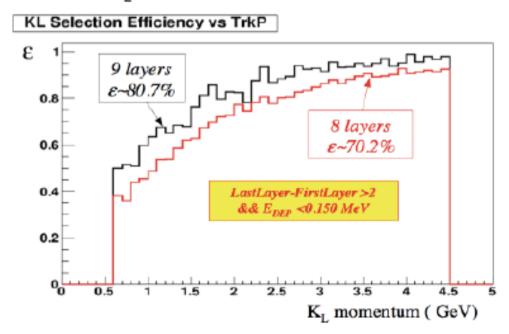
Background studies


Neutron background is the main concern for SiPM damage.

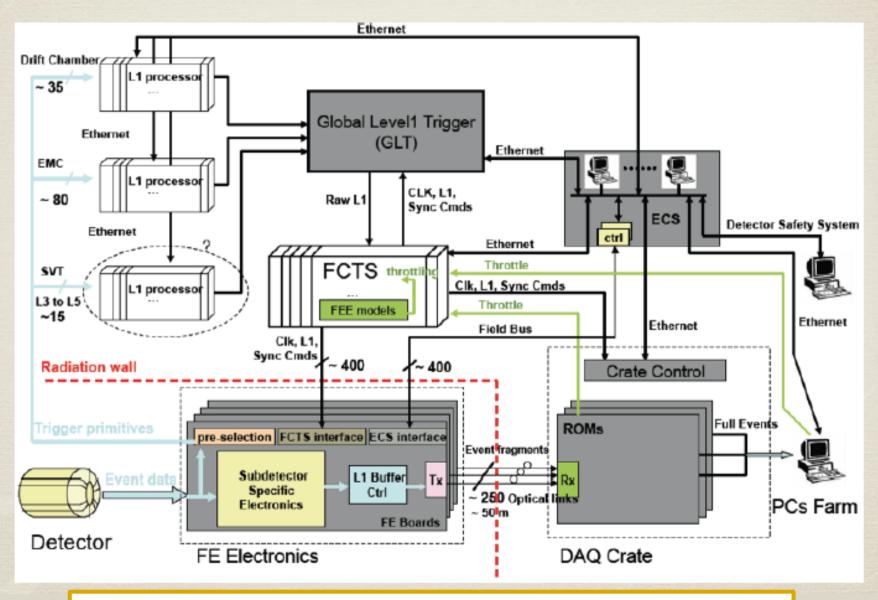

The present rate is too high for SiPM life.

A polyethylene shield has been inserted between the solenoid magnet and the barrel to study possible reduction.

Preliminary results show a reduction of one order of magnitude with 10cm of shielding.


Promising, but need more study and more reduction

First look at K_L identification


- -Simulated 110k of single K_L using baseline configuration and 10k using a 9 layers configurations;
- -Momentum: range from 0.6 GeV/c to 4.5 GeV/c
- -Distinguish K₁ interacting in the EMC from K₁
- interacting in the IFR volume -Use the energy deposited in
- the EMC to distinguish these K₁ categories

Performed a Very Loose K_L selector to compare configuration with 8 and 9 active layers \rightarrow Configuration with 9 layer gives better K_L efficiency

 -Need to simulate background samples to have meaningful results, but it's a good start

Electronics, Trigger, DAQ/Online

SLAC, Caltech, Napoli, Bologna, LAL, Padova, Roma 1

Architettura

- * Sistema sincrono, con latenza costante.
- * Trasferimento dati dal Frontend al Readout solo in caso di trigger.
 - * Frequenza di trigger attesa dell'ordine di 150 kHz.
 - * Event size 100 kB, 500 kB per l'evento RAW.
- * Trigger di attività del rivelatore, basato su segnali del calorimetro e Drift Chamber.
 - * Latenza fissata a 6 μs.
 - * Richiesta di tempo morto inferiore all'1% (<70 ns).

* Elementi principali

- * Link ottici:
 - * Per la trasmissione del clock e dei comandi.
 - * link con tempo di connessione deterministico.
 - * Per la trasmissione dati.
- * Schede di read out (ROM).
- * Sistema di trigger.
- * Sistema di controllo e configurazione

Dettagli nel talk di Valerio

*

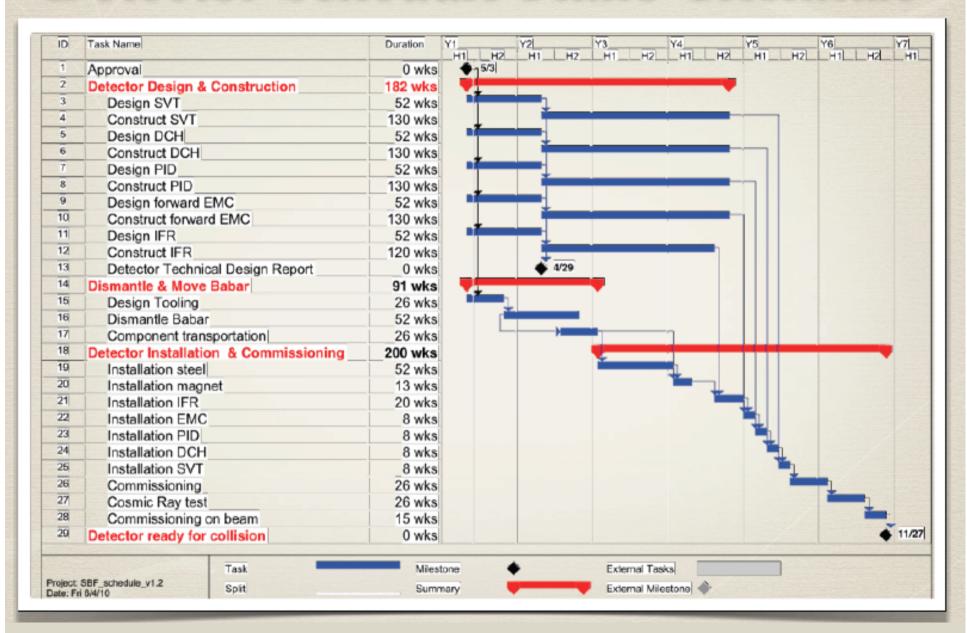
Computing

- * Calcolo distribuito su GRID
- * Calcolo parallelo per Lattice QCD
- * Network dati locale e geografico alta velocità
- * Sviluppo di tecnologie software per lo sfruttamento di architetture CPU a elevato numero di core computazionali
- * Sistemi di accesso ai dati ad elevatissime prestazioni basati sull'impiego di cache a stato solido
- * Impiego di tecnologie di virtualizzazione per l'uso condiviso di risorse di calcolo distribuite (cloud computing)
- * Tecnologie di progetto di centri di calcolo a bassissimo impatto ambientale

Padova, Ferrara, Torino, Bologna, Rome2, Pisa, Perugia, LNF, LBNL, Napoli, SLAC

Opzioni sul rivelatore

6 Layer SVT	LO Striplets @ 1.6cm if background is acceptable as default. MAPS Option. Retain 5 Layer outer detector.	Geometry
SVT – DCH transition radius	~> than 20 cm determined by beam element cryostats to allow easy installation	Selection Task Force
Backward EMC	Inexpensive Veto device bringing 8-10% sensitivity improvements for B→τ v. Low momentum PID via TOF? Technical Issues?	Decision mid 2011 Bill Wisniewsky
Forward PID	Physics gains about 5% in B→K(*)vv. Somewhat larger gains for higher multiplicities Open technical options/interactions with EMC	Hassan Jawahery
Absorber in IFR	Optimized layout. Plan to reuse yoke. Still need to resolve engineering questions.	


R&D and Engineeering Summary

Sys	R&D	Engineering
SVT	Layer o thin pixels	Silicon strip layers
	Low mass mechanical support	Readout architecture
DCH	High speed waveform digitizing	CF mechanical structure
	Cluster counting	Gas speed, cell size
Barrel PID	Photon detection for quartz bars	Standoff box replacement
Forw PID	Time of flight option	Mechanical integration.
	Focusing RICH option	Electronics
EMC	LYSO characterization	Readout electronics
	Light detection, Other crystals	Forward EMC mechanical support
	Prototype Module Test	
IFR	SiPM performance	Location of photo-detectors
	Prototype Module Test	Absorber thickness definition
ETD	High speed data link	Trigger strategy
	Radiation hard devices	Bhabha rejection

Documenti

- * The Discovery Potential of a Super B Factory Slac-R-709
- * Physics at Super B Factory: hep-ex/0406071
- * SuperB report: hep-ex/0512235
- * SuperB Conceptual Design Report arxiv.org/abs/0709.0451
- * New Physics at the Super Flavor Factory arxiv.org/abs/0810.1312
- * Detector Progress Report: arxiv.org/abs/1007.4241
- * Physics Progress Report: arxiv.org/abs/1008.1541
- * Accelerator Progress Report: arxiv.org/abs/1009.6178
- * See http://web.infn.it/superb/

Detector Schedule Piano Triennale

Outlook

- * R&D before construction still ongoing
 - expanding collaboration: lots of opportunities for involvement
- * May 28 June 2: Foundation Collaboration Meeting:
 - site decision should have been taken
- ❖ Technical Design Report to be written (at 90%) by end of the year
 - hottest point in annex
- Physics book within 2013
- ❖ 2012: first construction year