The SuperB Physics Case

Luca Silvestrini INFN, Rome

- Introduction
- Indirect searches for NP
- SuperB physics goals
- Conclusions

INTRODUCTION

- Main physics goals for the next ten years:
 - Identify the mechanism of EW and flavour symmetry breaking
 - -Identify NP that stabilizes EW scale
 - -Identify Dark Matter (candidates)
 - -Write down the NP Lagrangian and determine its parameters

DIRECT SEARCHES

- The TeVatron and (mainly) LHC will cover direct searches of new particles up to the TeV scale
- In the next five years, we might have NP signals and info on a few combinations of new particle masses (depending on decay chains, mass spectrum, etc.)
- We might have indications of (WIMP) DM

DIRECT SEARCHES II

- Naturalness requires new degrees of freedom to stabilize the EW scale, mainly by canceling loop contributions of 3rd family
- Limits on new coloured particles and Higgs imply %-‰ fine-tuning in simplified models
- Expect hierarchical spectrums with only a few light particles or more fine-tuned spectrums close to (or above) the TeV

BEYOND DIRECT SEARCHES

- How to go from
 - (possible) direct detection of a few new particles
 - (possible) direct detection of DM (candidate)
 - (possible) direct detection of the Higgs or whatever else unitarizes WW scattering
- to the NP Lagrangian?
- Need to complete the spectrum and to determine couplings, just as in the SM

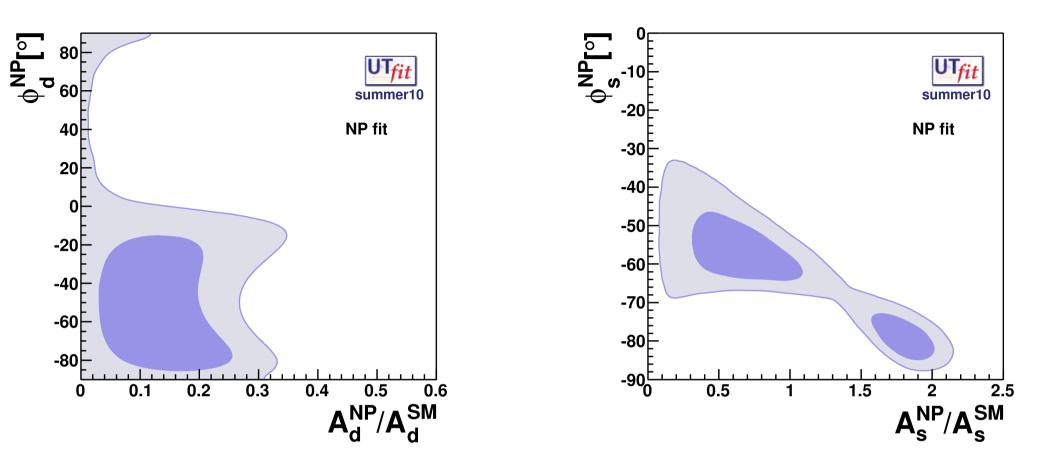
NP SEEN FROM BELOW

 At energies << M_w, physics is described by an effective Lagrangian:

Accidental symm. (no FCNC, no CPV) Violates accidental sym.

$$\mathcal{L}_{eff} = (\mathcal{L}_{QCD}^{n_f=5} + \mathcal{L}_{QED}^{n_f=5} + \mathcal{L}_{mass}^{n_f=5}) + (\mathcal{L}_{D=6}^{SM}(V_{CKM}, U_{PMNS})) + (\mathcal{L}_{D=6}^{NP}(M_{NP}, V_{NP}, U_{NP})) + \dots$$

Generated by any NP relevant to the hierarchy problem (even if MFV)


Generated by non-MFV NP

• For any FCNC or CPV process, one has in general

$$\mathcal{H}_{\text{eff}} = \frac{\alpha_W}{M_W^2} K_{\text{SM}} \left\{ \left(f\left(\frac{m_t^2}{m_W^2}\right) + \frac{m_W^2}{m_{\text{NP}}^2} f'\left(\frac{m_{t'}^2}{m_{\text{NP}}^2}\right) \right) Q_{\text{SM}} + \frac{m_W^2}{m_{\text{NP}}^2} f''\left(\frac{m_{t'}^2}{m_{\text{NP}}^2}\right) Q_{\text{NP}} \right\} + \frac{\alpha_s}{M_{\text{NP}}^2} K_{\text{NP}} f_{\text{NP}} Q_{\text{NP}} + \frac{\alpha_{\text{NP}}}{M_{\text{NP}}^2} K_{\text{NP}} f'_{\text{NP}} Q_{\text{NP}}$$

- To extract M_{NP} and/or K_{NP} need to:
 - -Measure the relevant process
 - -Extract H_{eff} from the measurement
 - Matrix elements: Lattice QCD, HQE
 - -Subtract the SM contribution
 - CKM in the presence of NP, top mass

- What are the requirements to probe NP within the LHC reach $(M_{NP} \le 1 \text{ TeV})$?
 - Consider the worst-case scenario: CMFV (no new flavour violation, no parametric enhancement)
 - Present sensitivity on CMFV from UTfit is around 300 GeV, with present exp & theory errors
- Need a factor of three in mass:
 - One order of magnitude in the Wilson coefficient
 - Theory uncertainties at the percent
 - Two orders of magnitude more statistics in experimental measurements
- Need a Super Flavour Factory

Of course, things might be much more interesting than CMFV... (see also MEG...)

SuperB/Flavour physics goals

- Being able to determine the flavour structure of whatever NP seen at the LHC
- Being able to derive info on the full spectrum of NP if LHC only sees part of it
- Being able to cover indirectly the region of NP masses just above the LHC reach, pushing the indirect bound on Λ as high as possible

How do we get there - I

- A few % error on CKM parameters in the generalized UTA;
- Determining NP contributions to Δ F=2 and Δ F=1 transitions in all sectors (K, B_d, B_s, D) at the few percent level;
- Improving Lepton Flavour Violation and Lepton Universality bounds by more than one order of magnitude

How do we get there - II

- CKM parameters in the presence of loopmediated NP: $V_{cb,ub}^{incl,excl}$, $\gamma(B \rightarrow DK)$
- NP contributions to ΔF=2 amplitudes:
 β(b→ccs), β_s(b→ccs), D⁰→KK,Kπ,Kππ, A_{sl}^{d,s},
 (ΔΓ/Γ)_{d,s}

How do we get there - III

- NP contributions to $\Delta F=1$ amplitudes:
 - b \rightarrow s: $\beta(B\rightarrow K_{s}\phi, K_{s}K_{s}K_{s}, ...), \beta_{s}(B_{s}\rightarrow \phi\phi), B_{s}\rightarrow K^{*0}K^{*0}$ (penguins), $B\rightarrow K^{(*)}\pi$ (penguins & ewp), $B\rightarrow K\nu\nu$ (ewp), $B\rightarrow X_{s}\gamma$ ($B\rightarrow K^{*}\gamma$) (BR&ACP) (photon peng), $B\rightarrow X_{s}II$ ($B\rightarrow K^{(*)}\mu\mu$) (BR&AFB) (photon & ewp), $\beta(B\rightarrow K_{s}\pi^{0}\gamma),$ $\beta_{s}(B_{s}\rightarrow \phi\gamma)$ (RH ops), $B_{s}\rightarrow \mu\mu$ (scalar peng)
 - b \rightarrow d: $\alpha(B\rightarrow\pi\pi,\rho\pi,\rho\rho)$ (ewp), $B\rightarrow X_d\gamma$ (BR&ACP) (photon peng), $B\rightarrow X_d$ II (BR&AFB) (photon & ewp), $S(B\rightarrow\rho^0\gamma)$ (RH ops)
 - s \rightarrow d: K_L $\rightarrow \pi^{0}\nu\nu$, K⁺ $\rightarrow \pi^{+}\nu\nu$ (ewp), K_L $\rightarrow \pi^{0}$ II (photon & ewp)

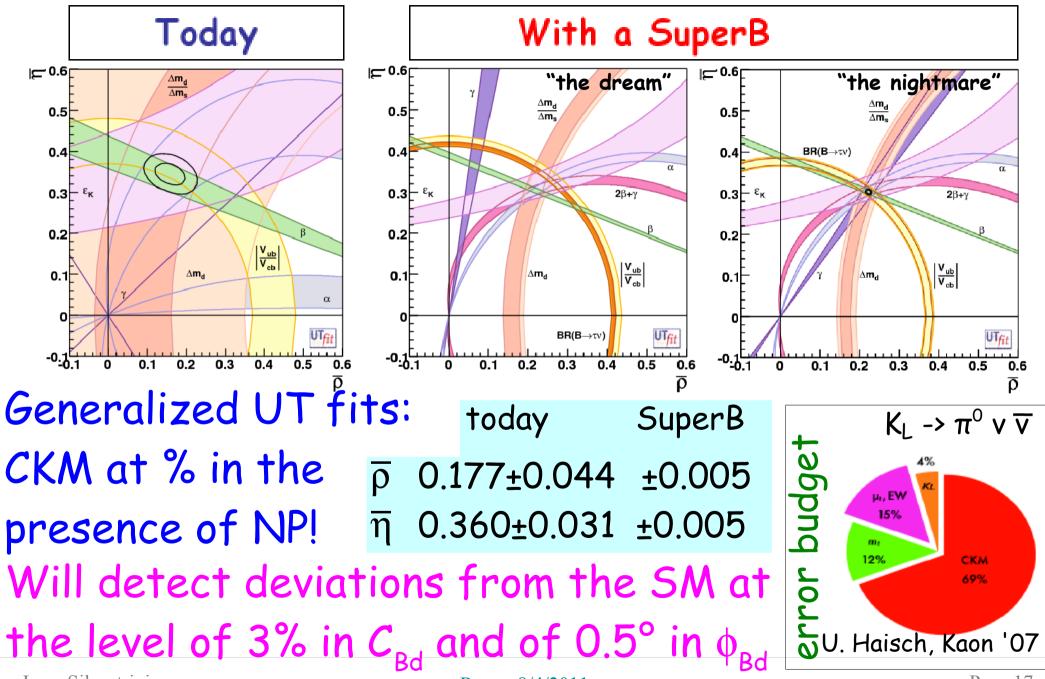
How do we get there - IV

- LFV: $\tau \rightarrow \mu\gamma$, $\tau \rightarrow e\gamma$, $\mu \rightarrow e\gamma$ (photon peng), $\tau \rightarrow \mu II$, $\tau \rightarrow eII$, $\mu \rightarrow eee$, $\mu \leftrightarrow e$ (photon, ewp & boxes), $\tau \rightarrow \mu\eta$, $\tau \rightarrow e\eta$ (photon, ewp, boxes & Higgs)
- Lepton Universality: $K \rightarrow ev/K \rightarrow \mu v$, $B \rightarrow \tau v/B \rightarrow \mu v$ (Higgs)
- Charged current scalar interactions: $B \rightarrow \tau v$ (Higgs)

SuperB flavour reach...

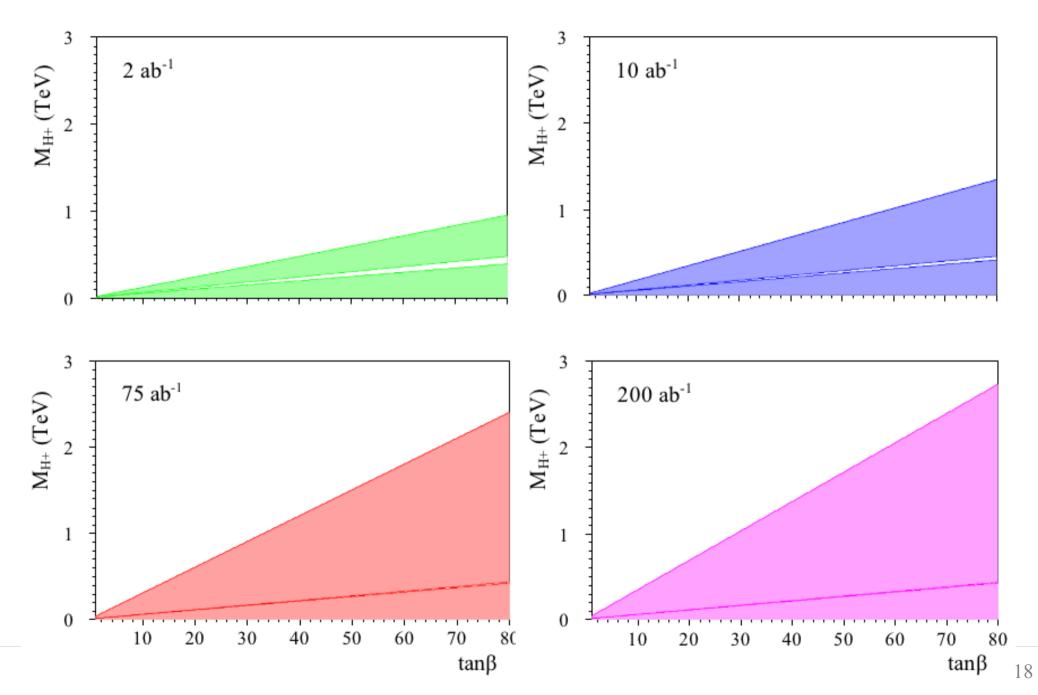
B physics @Y(45)

Observable B1	actories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})
$sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)
$cos(2\beta) (J/\psi K^{*0})$	0.30	0.05
$sin(2\beta)$ (Dh ⁰)	0.10	0.02
$cos(2\beta)$ (Dh ⁰)	0.20	0.04
$S(J/\psi \pi^0)$	0.10	0.02
$S(D^+D^-)$	0.20	0.03
$S(\phi K^0)$	0.13	0.02 (*)
$S(\eta' K^0)$	0.05	0.01 (*)
$S(K_{S}^{0}K_{S}^{0}K_{S}^{0})$	0.15	0.02 (*)
$S(K_{S}^{0}\pi^{0})$	0.15	0.02 (*)
$S(\omega K_{S}^{0})$	0.17	0.03 (*)
$S(f_0 \tilde{K}_{S}^{0})$	0.12	0.02 (*)
$\gamma (B \rightarrow DK, D \rightarrow CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°
γ ($B \rightarrow DK$, $D \rightarrow$ suppressed states		2.0°
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody states})$		1.5°
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°
$\alpha (B \rightarrow \pi \pi)$	$\sim 16^{\circ}$	3°
$\alpha (B \rightarrow \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}(*)$
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2°
α (combined)	$\sim 6^{\circ}$	1-2° (*)
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{S}\pi^{\mp})$	20°	50
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)
$ V_{ub} $ (exclusive)	8% (*)	3.0% (*)
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$BR(B \rightarrow \tau \nu)$	20%	4% (†)
$BR(B \rightarrow \mu\nu)$	visible	5%
$BR(B \rightarrow D\tau\nu)$	10%	2%
$BR(B \rightarrow \rho \gamma)$	15%	3% (†)
$BR(B \rightarrow \omega \gamma)$	30%	5%
$A_{CP}(B \rightarrow K^* \gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b \rightarrow s\gamma)$	0.012 (†)	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K^0_S \pi^0 \gamma)$	0.15	0.02 (*)
$S(\rho^0 \gamma)$	possible	0.10
$A_{CP}(B \rightarrow K^*\ell\ell)$	7%	1%
$A^{FB}(B \rightarrow K^*\ell\ell)s_0$	25%	9%
$A^{FB}(B \rightarrow X_s \ell \ell) s_0$	35%	5%
$BR(B \rightarrow K\nu\overline{\nu})$	visible	20%
$BR(B \rightarrow \pi \nu \bar{\nu})$	-	possible


$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mode	Observable	B Factorie	$es (2 ab^{-1})$	Super B (75 ab ⁻¹)	
$\frac{x_{0}^{2}}{p^{0} \rightarrow K_{0}^{0}\pi^{+}\pi^{-}} \frac{y_{D}}{y_{D}} \frac{2-3 \times 10^{-4}}{2-3 \times 10^{-3}} \frac{3 \times 10^{-5}}{5 \times 10^{-4}} \frac{1}{p^{0}} \frac{1}{p^{0}} \frac{2}{p^{0}} \frac{1}{p^{-}} \frac{2}{p^{0}} \frac{1}{p^{-}} \frac{1}{p$	$D^0 \rightarrow K^+ K^-$	y_{CP}	2–3 ×	10^{-3}	5×10^{-4}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D^0 \rightarrow K^+ \pi^-$	y_D'	$2-3 \times$	10^{-3}	7×10^{-4}	
$\frac{x_D}{\text{Average}} \frac{2-3 \times 10^{-3}}{x_D} \frac{5 \times 10^{-4}}{3 \times 10^{-3}} \frac{\text{physics}}{3 \times 10^{-4}}$ $\frac{\text{physics}}{x_D} \frac{2-3 \times 10^{-3}}{5 \times 10^{-3}} \frac{5 \times 10^{-4}}{5 \times 10^{-4}} \frac{\text{physics}}{\text{Sensitivity}}$ $\frac{D^0 \rightarrow e^+e^-, D^0 \rightarrow \mu^+\mu^-}{1 \times 10^{-8}} \frac{1 \times 10^{-8}}{1 \times 10^{-8}}$ $\frac{D^0 \rightarrow \pi^0e^+e^-, D^0 \rightarrow \pi^0\mu^+\mu^-}{3 \times 10^{-8}} \frac{3 \times 10^{-8}}{1 \times 10^{-8}}$ $\frac{D^0 \rightarrow \pi^0e^+e^-, D^0 \rightarrow \pi^0\mu^+\mu^-}{1 \times 10^{-8}} \frac{3 \times 10^{-8}}{1 \times 10^{-8}}$ $\frac{D^0 \rightarrow e^+\mu^-}{1 \times 10^{-8}} \frac{1 \times 10^{-8}}{1 \times 10^{-8}}$ $\frac{B(\tau \rightarrow e \gamma)}{2 \times 10^{-9}} \frac{2 \times 10^{-9}}{2 \times 10^{-10}}$ $\frac{B(\tau \rightarrow e \alpha)}{B(\tau \rightarrow e \alpha)} \frac{2 \times 10^{-10}}{4 \times 10^{-10}}$ $\frac{B(\tau \rightarrow e \alpha)}{B(\tau \rightarrow e \alpha)} \frac{6 \times 10^{-10}}{6 \times 10^{-10}}$ $\frac{B(\tau \rightarrow e \alpha)}{E(\tau \rightarrow e \alpha)} \frac{6 \times 10^{-10}}{6 \times 10^{-10}}$ $\frac{D^+ \rightarrow \pi^-e^+e^+, D^+ \rightarrow K^-e^+e^+}{1 \times 10^{-8}} \frac{1 \times 10^{-8}}{2^+ 3 \times 10^{-8}}$ $\frac{D^+ \rightarrow \pi^-e^+\mu^\mp, D^+ \rightarrow K^-e^+\mu^\mp}{1 \times 10^{-8}} \frac{D^+ \rightarrow \pi^-e^+\mu^\mp, D^+ \rightarrow K^-e^+\mu^\mp}{1 \times 10^{-8}}$ $\frac{D^- \cos e^+\mu^\mp}{2 \times 10^{-10}} \frac{D^+ \rightarrow \pi^-e^+\mu^\mp, D^+ \rightarrow K^-e^+\mu^\mp}{1 \times 10^{-8}} \frac{D^- \rightarrow \pi^-e^+\mu^\mp}{1 \rightarrow 1 \rightarrow 10^{-8}} \frac{D^- \rightarrow \pi^-e^+\mu^\mp}{1 \rightarrow 1 \rightarrow 10^{-8}} \frac{D^- \rightarrow \pi^-e^+\mu^\mp}{1 \rightarrow 10^{-8}} D^- \rightarrow \pi$		x'^{2}_{D}	$1-2 \times$	10^{-4}	3×10^{-5}	
Average y_D $1-2 \times 10^{-3}$ 3×10^{-4} physics x_D $2-3 \times 10^{-3}$ 5×10^{-4} sensitivity $p_0 \to e^+e^-, D^0 \to \mu^+\mu^ 1 \times 10^{-8}$ $D^0 \to e^+e^-, D^0 \to \pi^0\mu^+\mu^ 3 \times 10^{-8}$ $D^0 \to \eta e^+e^-, D^0 \to \eta \mu^+\mu^ 3 \times 10^{-8}$ $D^0 \to \eta e^+e^-, D^0 \to \eta \mu^+\mu^ 3 \times 10^{-8}$ $D^0 \to K_s^0 e^+e^-, D^0 \to \eta^\mu\mu^+\mu^ 3 \times 10^{-8}$ $D^0 \to K_s^0 e^+e^-, D^0 \to \pi^+\mu^+\mu^ 1 \times 10^{-8}$ $D^0 \to e^\pm\mu^\mp$ 1×10^{-8} $B(\tau \to e\gamma)$ 2×10^{-10} $B(\tau \to ee)$ 2×10^{-10} $B(\tau \to eq)$ 6×10^{-10} $B(\tau \to \ell K_s^0)$ 2×10^{-10} $B(\tau \to \ell K_s^0)$ 2×10^{-10} $B(\tau \to \ell K_s^0)$ 2×10^{-10} TFC physics (CPV,) TFC physics (CPV,) TFC physics $(CPV,)TFC$ physics $(CPV,)$	$D^0 \rightarrow K_s^0 \pi^+ \pi^-$	y_D	$23 \times$	10^{-3}	5×10^{-4}	Charm
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_D	$23 \times$	10^{-3}	5×10^{-4}	
$ \begin{array}{c} \begin{array}{c} D^{0} \rightarrow e^{+}e^{-}, D^{0} \rightarrow \mu^{+}\mu^{-} & 1 \times 10^{-8} \\ D^{0} \rightarrow \pi^{0}e^{+}e^{-}, D^{0} \rightarrow \pi^{0}\mu^{+}\mu^{-} & 2 \times 10^{-8} \\ D^{0} \rightarrow \pi^{0}e^{+}e^{-}, D^{0} \rightarrow \eta^{\mu}\mu^{-} & 3 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0}s^{+}e^{-}, D^{0} \rightarrow \kappa^{0}_{s}\mu^{+}\mu^{-} & 3 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0}s^{+}e^{-}, D^{0} \rightarrow \kappa^{0}_{s}\mu^{+}\mu^{-} & 1 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0}s^{+}e^{+}e^{-}, D^{+} \rightarrow \pi^{+}\mu^{+}\mu^{-} & 1 \times 10^{-8} \\ B(\tau \rightarrow e\gamma) & 2 \times 10^{-9} \\ \mathcal{B}(\tau \rightarrow ee) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \rightarrow ee) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \rightarrow eq) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \rightarrow eq) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \rightarrow \ell K^{0}_{s}) & 2 \times 10^{-10} \\ \mathcal{F} T F C physics(CPV, \ldots) \end{array} $	Average	y_D	$1-2 \times$	10^{-3}	3×10^{-4}	physics
$\begin{array}{c} \begin{array}{c} D^{0} \rightarrow \pi^{0} e^{+} e^{-}, D^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-} & 2 \times 10^{-8} \\ D^{0} \rightarrow \eta e^{+} e^{-}, D^{0} \rightarrow \eta \mu^{+} \mu^{-} & 3 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0} e^{+} e^{-}, D^{0} \rightarrow \kappa^{0} \mu^{+} \mu^{-} & 3 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0} e^{+} e^{-}, D^{0} \rightarrow \kappa^{0} \mu^{+} \mu^{-} & 1 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0} e^{+} e^{+}, D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-} & 1 \times 10^{-8} \\ D^{0} \rightarrow e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{0} \rightarrow \pi^{0} e^{+} \mu^{\mp} & 2 \times 10^{-8} \\ B(\tau \rightarrow eq) & 2 \times 10^{-10} \\ B(\tau \rightarrow eq) & 6 \times 10^{-10} \\ B(\tau \rightarrow \ell K^{0}_{s}) & 2 \times 10^{-10} \\ \mathcal{K}^{-} \mathbf{FC} \text{ physics (CPV,)} \end{array} \qquad \begin{array}{c} D^{0} \rightarrow \pi^{0} e^{+} \mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \rightarrow \pi^{0} e^{+} \mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \rightarrow \pi^{0} e^{+} \mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \rightarrow \pi^{0} e^{+} \mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0} e^{+} \mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0} e^{+} \mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \rightarrow \kappa^{0} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{0} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{\mp}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{+}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{+}, D^{+} \rightarrow K^{-} e^{+} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{+}, D^{+} \rightarrow K^{-} e^{+} \mu^{+} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} e^{+} \mu^{+}, D^{+} \rightarrow K^{-} e^{+} \mu^{+} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} \mu^{+}, D^{+} \rightarrow K^{-} e^{+} \mu^{+} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} \mu^{+}, D^{+} \rightarrow K^{-} \mu^{+} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} \mu^{+}, D^{+} \rightarrow K^{-} \mu^{+} \mu^{+} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-} \mu^{+} & 1 \times 10^{-8} \\ D^{$		x_D	$2-3 \times$	10^{-3}	5×10^{-4}	Sensitivity
$\begin{array}{c} \mathcal{T} \ \textbf{physics} \\ \mathcal{F} \ \textbf{physics} \ \textbf{physics} \\ \mathcal{F} \ \textbf{physics} \ \textbf{physics} \\ \mathcal{F} \ phys$				$D^0 \rightarrow \epsilon$	$e^+e^-, D^0 \rightarrow \mu^+\mu^-$	1×10^{-8}
$\begin{array}{c} \begin{array}{c} \mathcal{D}^{0} \to K_{s}^{0}e^{+}e^{-}, \ \mathcal{D}^{0} \to K_{s}^{0}\mu^{+}\mu^{-} & 3 \times 10^{-8} \\ \mathcal{D}^{+} \to \pi^{+}e^{+}e^{-}, \ \mathcal{D}^{+} \to \pi^{+}\mu^{+}\mu^{-} & 1 \times 10^{-8} \\ \mathcal{D}^{+} \to \pi^{+}e^{+}e^{-}, \ \mathcal{D}^{+} \to \pi^{+}\mu^{+}\mu^{-} & 1 \times 10^{-8} \\ \mathcal{D}^{0} \to e^{\pm}\mu^{\mp} & 1 \times 10^{-8} \\ \mathcal{D}^{0} \to \pi^{0}e^{\pm}\mu^{\mp} & 2 \times 10^{-8} \\ \mathcal{D}^{0} \to \pi^{0}e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \pi^{0}e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \eta e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \eta e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \eta e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \mathcal{O}^{0} \oplus $				$D^0 \rightarrow \tau$	$\pi^0 e^+ e^-, D^0 \rightarrow \pi^0 \mu^+ \mu$	$i^{-} = 2 \times 10^{-8}$
$\begin{array}{c} \begin{array}{c} \mathcal{D}^{0} \to K_{s}^{0}e^{+}e^{-}, \ \mathcal{D}^{0} \to K_{s}^{0}\mu^{+}\mu^{-} & 3 \times 10^{-8} \\ \mathcal{D}^{+} \to \pi^{+}e^{+}e^{-}, \ \mathcal{D}^{+} \to \pi^{+}\mu^{+}\mu^{-} & 1 \times 10^{-8} \\ \mathcal{D}^{+} \to \pi^{+}e^{+}e^{-}, \ \mathcal{D}^{+} \to \pi^{+}\mu^{+}\mu^{-} & 1 \times 10^{-8} \\ \mathcal{D}^{0} \to e^{\pm}\mu^{\mp} & 1 \times 10^{-8} \\ \mathcal{D}^{0} \to \pi^{0}e^{\pm}\mu^{\mp} & 2 \times 10^{-8} \\ \mathcal{D}^{0} \to \pi^{0}e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \pi^{0}e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \eta e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \eta e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \eta e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \mathcal{D}^{0} \to \mathcal{O}^{0} \oplus $				$D^0 \rightarrow r$	$\eta e^+ e^-, D^0 \to \eta \mu^+ \mu^-$	3×10^{-8}
$\begin{array}{c} \tau \text{ physics} \\ B(\tau \to \mu \gamma) & 2 \times 10^{-5} \\ B(\tau \to e \gamma) & 2 \times 10^{-9} \\ B(\tau \to \mu \mu \mu) & 2 \times 10^{-10} \\ B(\tau \to e e e) & 2 \times 10^{-10} \\ B(\tau \to e q) & 6 \times 10^{-10} \\ B(\tau \to e \eta) & 6 \times 10^{-10} \\ B(\tau \to e \eta) & 6 \times 10^{-10} \\ TFC \text{ physics (CPV,)} \end{array} \qquad \begin{array}{c} D^+ \to \pi^+ e^+ e^-, D^+ \to \pi^- e^+ e^+ & 1 \times 10^{-8} \\ D^0 \to \pi^0 e^\pm \mu^{\mp} & 3 \times 10^{-8} \\ D^0 \to \pi^0 e^\pm \mu^{\mp} & 3 \times 10^{-8} \\ D^0 \to \pi^0 e^\pm \mu^{\mp} & 3 \times 10^{-8} \\ D^0 \to \pi^- e^+ e^+, D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\ D^+ \to \pi^- e^\pm \mu^{\mp}, D^+ \to K^- e^\pm \mu^{\mp} & 1 \times 10^{-8} \\ D^+ \to \pi^- e^\pm \mu^{\mp}, D^+ \to K^- e^\pm \mu^{\mp} & 1 \times 10^{-8} \\ \end{array}$				$D^0 \rightarrow D^0$	$K^0_s e^+ e^-, D^0 \rightarrow K^0_s \mu^+$	$\mu^{-} = 3 \times 10^{-8}$
$ \begin{array}{c} \mathcal{B}(\tau \to \mu \gamma) & 2 \times 10^{-3} \\ \mathcal{B}(\tau \to e \gamma) & 2 \times 10^{-9} \\ \mathcal{B}(\tau \to \mu \mu \mu) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to e e e) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to e e e) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to e q) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \mathcal{F} \mathbf{F} \mathbf{C} \ physics \ (CPV, \dots) \end{array} \right) \\ \begin{array}{c} \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm e^+, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm e^\pm & 1 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{L}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{L}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{L}^- e^\pm \mu^\mp, \ \mathcal{D}^- \to \mathcal{L}^- \mu^\pm, \ \mathcal{D}^- \to $						
$ \begin{array}{c} \mathcal{B}(\tau \to \mu \gamma) & 2 \times 10^{-3} \\ \mathcal{B}(\tau \to e \gamma) & 2 \times 10^{-9} \\ \mathcal{B}(\tau \to \mu \mu \mu) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to e e e) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to e e e) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to e q) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \mathcal{F} \mathbf{F} \mathbf{C} \ physics \ (CPV, \dots) \end{array} \right) \\ \begin{array}{c} \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^0 \to \mathcal{R}_s^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm e^+, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm e^\pm & 1 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{K}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{L}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{L}^- e^\pm \mu^\mp & 1 \times 10^{-8} \\ \mathcal{D}^- \to \pi^- e^\pm \mu^\mp, \ \mathcal{D}^+ \to \mathcal{L}^- e^\pm \mu^\mp, \ \mathcal{D}^- \to \mathcal{L}^- \mu^\pm, \ \mathcal{D}^- \to $	T nhươ	ice			· ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• •			$D^0 \rightarrow \epsilon$	$e^{\pm}\mu^{\mp}$	1×10^{-8}
$B(\tau \to e \gamma) = 2 \times 10^{-5}$ $B(\tau \to \mu \mu \mu) = 2 \times 10^{-10}$ $B(\tau \to eee) = 2 \times 10^{-10}$ $B(\tau \to e\eta) = 4 \times 10^{-10}$ $B(\tau \to e\eta) = 6 \times 10^{-10}$ $B(\tau \to \ell K_s^0) = 2 \times 10^{-10}$ $D^0 \to \pi^0 e^{\pm} \mu^{\mp} = 3 \times 10^{-8}$ $D^0 \to K_s^0 e^{\pm} \mu^{\mp} = 3 \times 10^{-8}$ $D^+ \to \pi^- e^+ e^+, D^+ \to K^- e^+ e^+ = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp} = 1 \times 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to \pi^- e^{\pm} \mu^{\mp} = 1 \to 10^{-8}$ $D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to \pi^- e$						
$ \begin{array}{c} \mathcal{B}(\tau \rightarrow \mu \mu \mu) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \rightarrow eee) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \rightarrow \mu \eta) & 4 \times 10^{-10} \\ \mathcal{B}(\tau \rightarrow e\eta) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \rightarrow \ell K_s^0) & 2 \times 10^{-10} \\ \mathcal{T} \end{tabular} \begin{array}{c} \mathcal{F} \end{tabular} \mathbf{P} \end{tabular} \end{tabular} \mathbf{P} \end{tabular} \mathbf{P} \end{tabular} \mathbf{P} \end{tabular} \end{tabular} \end{tabular} ta$	$\mathcal{B}(\tau \rightarrow e \gamma)$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(\tau \rightarrow \mu \mu)$	μ) 2 × 10 ⁻	.10			
$ \begin{array}{c} \mathcal{B}(\tau \to \mu\eta) & 4 \times 10^{-10} \\ \mathcal{B}(\tau \to e\eta) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \mathcal{T} \ FC \ physics \ (CPV, \dots) \end{array} $ $ \begin{array}{c} \mathcal{D}^+ \to \pi^- e^+ e^+, \ D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^+ \mu^+, \ D^+ \to K^- e^+ \mu^+ & 1 \times 10^{-8} \\ \mathcal{D}^+ \to \pi^- e^\pm \mu^{\mp}, \ D^+ \to K^- e^\pm \mu^{\mp} & 1 \times 10^{-8} \\ \end{array} $ $ \begin{array}{c} \mathcal{B} \ physics \ \mathcal{O} \ \mathcalO \ \mathcalO} \ \mathcalO \ \mathcalO \ \mathcalO \ \mathcalO \ \mathcalO \$	$\mathcal{B}(\tau \rightarrow eee)$	$) 2 \times 10^{-1}$	10			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10		s p	
$\frac{\mathcal{B}(\tau \to \ell K_{s}^{0}) = 2 \times 10^{-10}}{\tau \text{ FC physics (CPV,)}}$ $\frac{\mathcal{B}(\tau \to \ell K_{s}^{0}) = 2 \times 10^{-10}}{\tau \text{ FC physics (CPV,)}}$ $\frac{\mathcal{B}(\tau \to \pi^{-}\mu^{+}\mu^{+}, D^{+} \to K^{-}e^{\pm}\mu^{\mp}) = 1 \times 10^{-8}}{\mathcal{B}(\tau \to \pi^{-}e^{\pm}\mu^{\mp}) = 1 \times 10^{-8}}$ $\frac{\mathcal{B}(\tau \to \pi^{-}e^{\pm}\mu^{\mp}, D^{+} \to K^{-}e^{\pm}\mu^{\mp}) = 1 \times 10^{-8}}{\Delta \Gamma}$ $\frac{\mathcal{B}(\tau \to \pi^{-}e^{\pm}\mu^{\mp}) = 1 \times 10^{-8}}{\Delta \Gamma}$ $\frac{\mathcal{B}(\tau \to \pi^{-}$				$D^+ \rightarrow 0$	$\pi^- e^+ e^+ D^+ \rightarrow K^- e^+$	$+_{e}+$ 1 × 10 ⁻⁸
$\frac{D(I \rightarrow tK_s) - 2 \times 10}{\tau \text{ FC physics (CPV,)}} \xrightarrow{D^+ \rightarrow \pi^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^+ \rightarrow \pi^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^+ \rightarrow \pi^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} \xrightarrow{D^- \sigma^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp, D^+ \rightarrow K^- e^\pm \mu^\mp - 1 \times 10^{-8}} D^- \sigma^- \mu^\mp, D^- \sigma^- \mu^\pm, D^- \sigma^- \mu^\pm, D^- \sigma^- \mu^\mp, D^- \sigma^- \mu^\pm, D^- \sigma^- \mu^\mp, D^- \sigma^- \mu^\pm, D^- \sigma^- \mu^\mp, D^- \sigma^- \mu^\pm, D^- \sigma^-, D^- \sigma^-, D^- \sigma^-, D^- \sigma^-, D^-$,	
$\begin{array}{c} \textbf{TFC physics (CPV,)} \\ \hline \textbf{B physics } \textbf{\Theta Y(5S)} \\ \hline \textbf{Observable} & \textbf{Effor with Tab}^{-1} \\ \hline \boldsymbol{\Delta} \boldsymbol{\Gamma} & 0.16 \text{ ps}^{-1} \\ \boldsymbol{\Gamma} & 0.07 \text{ ps}^{-1} \\ \beta_s \text{ from angular analysis} & 20^{\circ} \\ A_{\text{SL}}^{\ast} & 0.006 \\ A_{\text{CH}} & 0.004 \\ \mathcal{B}(B_s \rightarrow \mu^+ \mu^-) & - \\ V_{td}/V_{ts} & 0.08 \\ \mathcal{B}(B_s \rightarrow \gamma \gamma) & 38\% \\ \beta_s \text{ from } J/\psi \phi & 10^{\circ} \end{array}$	$B(\tau \rightarrow \ell K_s^c)$	(2×10^{-1}) 2 × 10 ⁻¹	.10			· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c c} \hline & & & \\ \hline \Delta \Gamma & & 0.16 \ \mathrm{ps^{-1}} \\ \hline \Gamma & & 0.07 \ \mathrm{ps^{-1}} \\ \hline \beta_s \ \mathrm{from \ angular \ analysis} & 20^{\circ} \\ \hline A_{\mathrm{SL}}^s & & 0.006 \\ \hline A_{\mathrm{CH}} & & 0.004 \\ \hline \mathcal{B}(B_s \rightarrow \mu^+ \mu^-) & - \\ \hline V_{td}/V_{ts} & & 0.08 \\ \hline \mathcal{B}(B_s \rightarrow \gamma \gamma) & & 38\% \\ \hline \beta_s \ \mathrm{from \ } J/\psi \phi & & 10^{\circ} \\ \end{array}$	· τ FC phys	ics (CPV,)		$\pi \in \mu$, $D \to K \in$	μ 1×10
$\begin{array}{c c} \hline & & & \\ \hline \Delta \Gamma & & 0.16 \ \mathrm{ps^{-1}} \\ \hline \Gamma & & 0.07 \ \mathrm{ps^{-1}} \\ \hline \beta_s \ \mathrm{from \ angular \ analysis} & 20^{\circ} \\ \hline A_{\mathrm{SL}}^s & & 0.006 \\ \hline A_{\mathrm{CH}} & & 0.004 \\ \hline \mathcal{B}(B_s \rightarrow \mu^+ \mu^-) & - \\ \hline V_{td}/V_{ts} & & 0.08 \\ \hline \mathcal{B}(B_s \rightarrow \gamma \gamma) & & 38\% \\ \hline \beta_s \ \mathrm{from \ } J/\psi \phi & & 10^{\circ} \\ \end{array}$		-		P	3 nhvsics (@γ(55)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					Observable	Entor with 1 ab
$\beta_s \text{ from angular analysis} 20^{\circ}$ $A_{SL}^s \qquad 0.006$ $A_{CH} \qquad 0.004$ $\mathcal{B}(B_s \rightarrow \mu^+ \mu^-) \qquad -$ $ V_{td}/V_{ts} \qquad 0.08$ $\mathcal{B}(B_s \rightarrow \gamma \gamma) \qquad 38\%$ $\beta_s \text{ from } J/\psi \phi \qquad 10^{\circ}$				-	ΔΓ	0.16 ps^{-1}
$\begin{array}{ccc} A_{\rm SL}^s & 0.006 \\ A_{\rm CH} & 0.004 \\ \mathcal{B}(B_s \rightarrow \mu^+ \mu^-) & - \\ V_{td}/V_{ts} & 0.08 \\ \mathcal{B}(B_s \rightarrow \gamma \gamma) & 38\% \\ \beta_s \ {\rm from} \ J/\psi \phi & 10^\circ \end{array}$					Г	0.07 ps^{-1}
$\begin{array}{ccc} A_{\rm CH} & 0.004 \\ \mathcal{B}(B_s \rightarrow \mu^+ \mu^-) & - \\ V_{td}/V_{ts} & 0.08 \\ \mathcal{B}(B_s \rightarrow \gamma \gamma) & 38\% \\ \beta_s \ {\rm from} \ J/\psi \phi & 10^\circ \end{array}$					β_s from angular analy	sis 20°
$ \begin{array}{ccc} \mathcal{B}(B_s \rightarrow \mu^+ \mu^-) & - & \\ V_{td}/V_{ts} & 0.08 \\ \mathcal{B}(B_s \rightarrow \gamma \gamma) & 38\% \\ \beta_s \ \mathrm{from} \ J/\psi \phi & 10^\circ \end{array} $					$A^s_{\rm SL}$	0.006
$ \begin{array}{ccc} V_{td}/V_{ts} & 0.08 \\ \mathcal{B}(B_s \rightarrow \gamma \gamma) & 38\% \\ \beta_s \ \mathrm{from} \ J/\psi \phi & 10^{\circ} \end{array} $					$A_{\rm CH}$	0.004
$ \begin{array}{cc} \mathcal{B}(B_s \to \gamma \gamma) & & 38\% \\ \beta_s \mbox{ from } J/\psi \phi & & 10^{\circ} \end{array} $						-
$\beta_s \text{ from } J/\psi \phi$ 10°						
					β_s from $J/\psi\phi$	10°

Koma, 8/4/2011

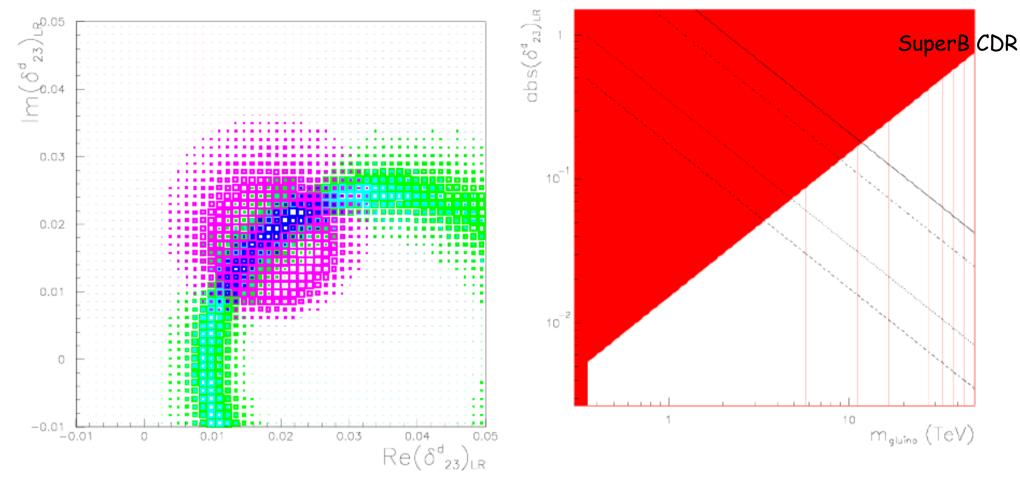
...and required theoretical efforts


no theory improvements needed	β(J/ψ K), γ(DK), α, lepton FV & UV, CPV in B->Xγ, D and τ decays, zero of FB asymmetry B->X _s I ⁺ I ⁻	SM already known with the required accuracy
improved lattice QCD	meson mixing , B->D(*)lv,B->π(ρ)lv, B->K*γ, B->ργ, B->lv, B₅->μμ	target error: ~1-2% Feasible (see SuperB CDR)
improved OPE+HQE	B->X _{u,c} Iv	target error: ~2-3% Feasible getting exp. rid of annihilation & shape function (see arXiv:0810.1312)
improved QCDF or SCET or flavour symmetries or data driven methods	S's from TD A _{CP} in b -> s transitions	target error: ~2-3% need either breakthrough in computing power corrections or data-driven approaches (Dalitz analyses particularly favourable)

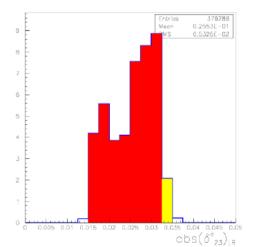
The basic step: CKM matrix at the %

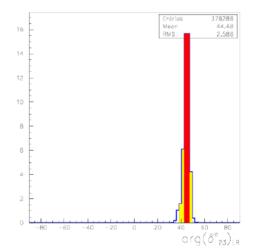
Luca Silvestrini

Constraints on 2HDMII from $B \rightarrow lv$



$$m_{d}^{2} = \begin{pmatrix} (m_{11}^{2})_{LL} & (\Delta_{12}^{d})_{LL} & (\Delta_{13}^{d})_{LL} & (\Delta_{11}^{d})_{LR} & (\Delta_{12}^{d})_{LR} & (\Delta_{13}^{d})_{LR} \\ (\Delta_{12}^{d})_{LL} & (m_{22}^{2})_{LL} & (\Delta_{23}^{d})_{LL} & (\Delta_{21}^{d})_{LR} & (\Delta_{22}^{d})_{LR} & (\Delta_{23}^{d})_{LR} \\ (\Delta_{13}^{d})_{LL}^{*} & (\Delta_{23}^{d})_{LL} & (m_{33}^{2})_{LL} & (\Delta_{31}^{d})_{LR} & (\Delta_{32}^{d})_{LR} & (\Delta_{33}^{d})_{LR} \\ (\Delta_{11}^{d})_{LR}^{*} & (\Delta_{21}^{d})_{LR}^{*} & (\Delta_{31}^{d})_{LR} & (M_{12}^{d})_{RR} & (\Delta_{33}^{d})_{LR} \\ (\Delta_{12}^{d})_{LR}^{*} & (\Delta_{22}^{d})_{LR}^{*} & (\Delta_{32}^{d})_{LR}^{*} & (\Delta_{12}^{d})_{RR} & (\Delta_{13}^{d})_{RR} \\ (\Delta_{12}^{d})_{LR}^{*} & (\Delta_{22}^{d})_{LR}^{*} & (\Delta_{33}^{d})_{LR}^{*} & (\Delta_{12}^{d})_{RR} & (M_{23}^{d})_{RR} \\ (\Delta_{13}^{d})_{LR}^{*} & (\Delta_{23}^{d})_{LR}^{*} & (\Delta_{33}^{d})_{LR}^{*} & (\Delta_{13}^{d})_{RR}^{*} & (\Delta_{23}^{d})_{RR} \\ (\Delta_{13}^{d})_{LR}^{*} & (\Delta_{23}^{d})_{LR}^{*} & (\Delta_{33}^{d})_{LR}^{*} & (\Delta_{13}^{d})_{RR}^{*} & (\Delta_{23}^{d})_{RR} \\ \end{pmatrix}$$
Some of the) Diagonal sfermion masses will be measured


(Some of the) Diagonal sfermion masses will be measured @ LHC; off-diagonal terms to be determined from flavour (relevant parameters: $(\delta^{d}_{ij})_{AB} = (\Delta^{d}_{ij})_{AB}/(m_{ii})_{AA}(m_{jj})_{BB})$


Luca Silvestrini

Roma, 8/4/2011

Reconstructing $(\delta^{d}_{23})_{LR}$ =0.028 e^{i\pi/4} for m_{SUSY}=1TeV

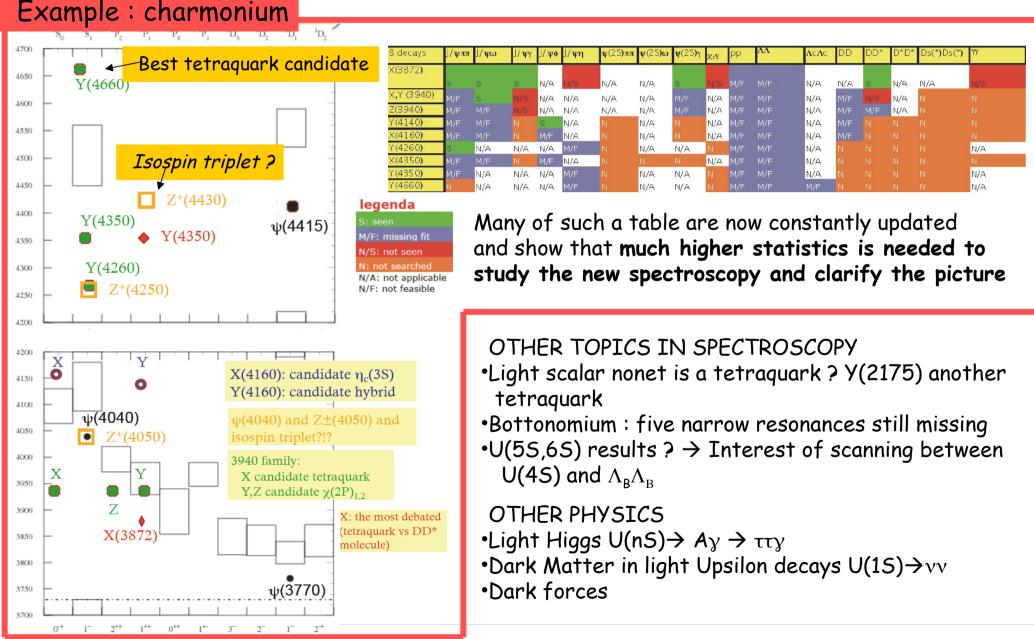
Luca Silvestrini

Page 20

Lepton Flavour Violation

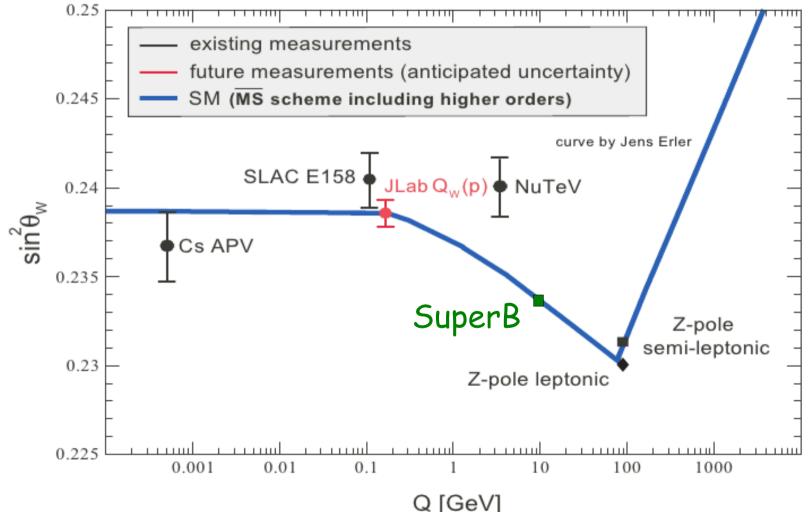
- For slepton masses in the LHC range LFV becomes extremely interesting!
- In SUSY-GUTs:
 - can identify the neutrino Yukawa flavour structure (CKM or PMNS) by studying μ & τ ;
 - \bullet interesting correlations with b—s transitions
- Interesting correlations also in MFV case:

 $B(\tau \rightarrow \mu \gamma):B(\tau \rightarrow e \gamma):B(\mu \rightarrow e \gamma) \sim \lambda^{-6}:\lambda^{-4}:1 \sim 10^{4}:500:1 - LFV \text{ from CKM}$


 $B(\tau \rightarrow \mu \gamma): B(\tau \rightarrow e \gamma): B(\mu \rightarrow e \gamma) \sim [500-10]:1:1 \quad \textbf{LFV from PMNS}$ Luca Silvestrini Roma, 8/4/2011 Isidori, 4th SuperB workshop Page 21

Spectroscopy + other physics

R. Faccini et al.


Building a new spectroscopy - strong interplay experiment-theory

Light mesons, charmonomium, bottonomium

Luca Silvestrini

Polarization allows to measure LR asymmetries, giving an interesting contribution to EWP:

CONCLUSIONS

- SuperB will allow us to study flavour properties of NP at the TeV scale:
 - Ensure determination of flavour structure of whatever NP seen at the LHC
 - Ensure sensitivity to moderately fine-tuned NP above the LHC reach

with full complementarity with other experiments (LHC(b), MEG, NA62, ...)

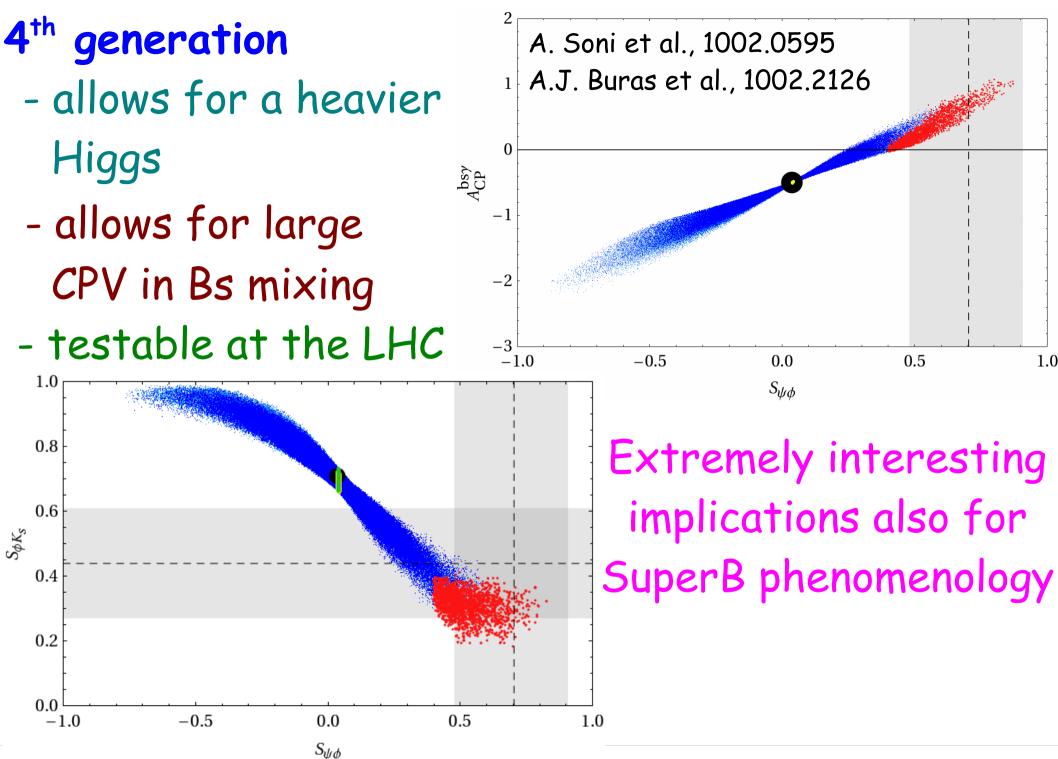
CONCLUSIONS II

- In addition to flavour studies, SuperB offers a unique opportunity for:
 - QCD spectroscopy
 - EW precision physics
 - Dark Matter searches
 - direct light Higgs boson searches
 - dark forces

BACKUP SLIDES

Theory keeps up...

- lattice QCD can reach the O(1%) precision goal in time
 some progress for inclusive
- techniques for SL B decays
- non-leptonic B decays are more problematic

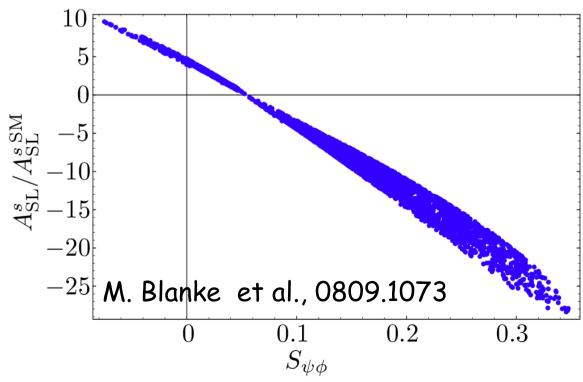

Measurement	Hadronic	Status	6 TFlops	Status	60 TFlops	1-10 PFlops
Measurement	Parameter	End 2006	(Year 2009)	End 2009	(Year 2011)	(Year 2015)
$K \rightarrow \pi l \nu$	$f_{+}^{K\pi}(0)$	0.9%	0.7%	0.5%	0.4%	< 0.1%
ε_K	\hat{B}_K	11%	5%	5 %	3%	1 %
$B \to l\nu$	f_B	14%	3.5 - 4.5 %	5 %	2.5 - 4.0 %	$1.0 \text{-} 1.5 \ \%$
Δm_d	$f_{Bs}\sqrt{B_{Bs}}$	13%	4-5 %	5 %	3-4%	1 1.5 %
$\Delta m_d / \Delta m_s$	ξ	5%	3%	2%	1.5- $2%$	0.5 - 0.8 %
$B \to D/D^* l \nu$	$\mathcal{F}^{B \to D/D^*}$	4%	2%	2%	1.2%	0.5%
$B \to \pi/\rho l \nu$	$f_{+}^{B\pi}, \ldots$	11%	5.5 - 6.5 %	11%	4-5%	2-3%
$B \to K^*/\rho\left(\gamma, l^+l^-\right)$	$T_1^{B \to K^*/\rho}$	13%		13%		3-4%

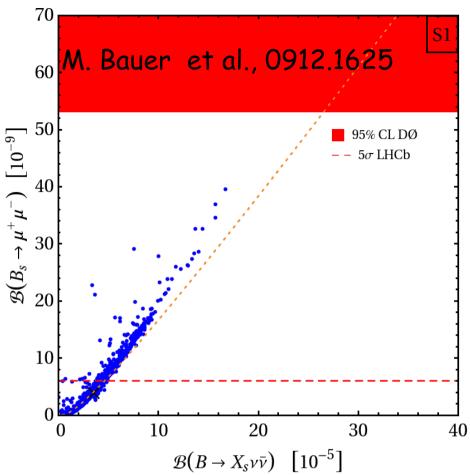
V. Lubicz,
4th SuperB
Workshop
and
SuperB
white
paper

	AC	RVV2	AKM	δLL	FBMSSM
$D^0 - \bar{D}^0$	***	*	*	*	*
$S_{\psi\phi}$	***	***	***	*	*
$S_{\phi K_S}$	***	**	*	***	***
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***

W. Altmannshofer et al., 0909.1333

AC / RVV2,AKM: abelian / non-abelian flavour models δLL: CKM-like new LH currents + 2↔3 NP CPV phase FBMSSM: universal SSB terms + CPV phases

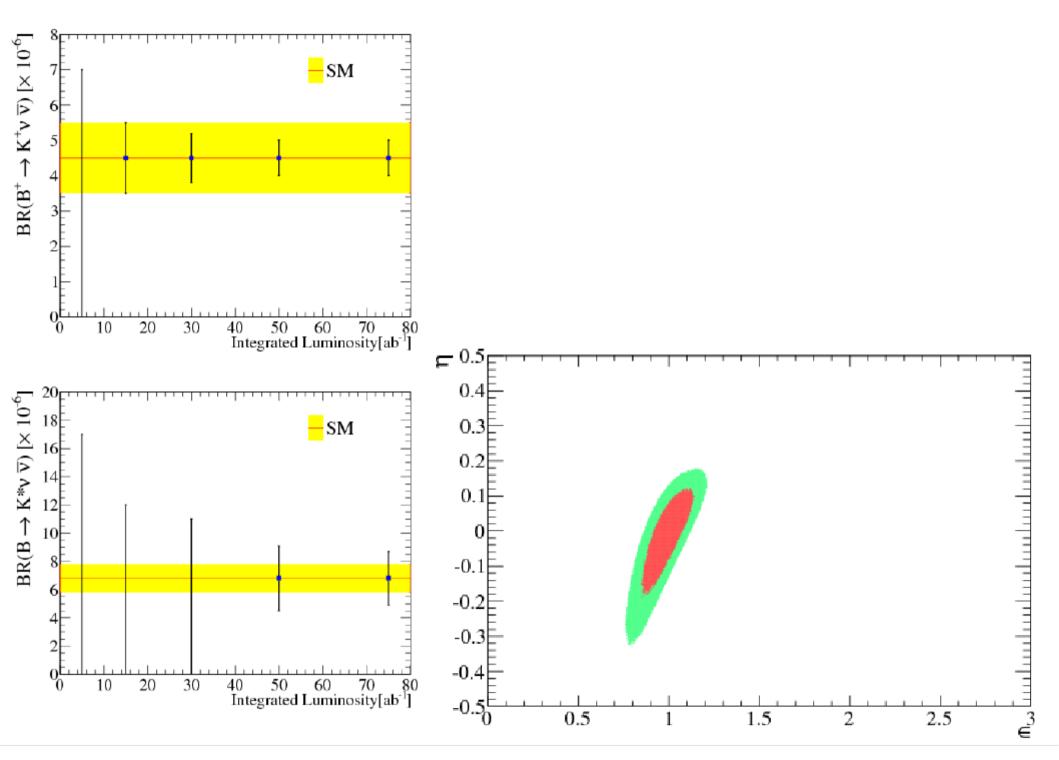



Luca Silvestrini

Roma, 8/4/2011

R-S models

- flavour in extra-dim. is severely constrained by ε_κ
- large B/Bs effect are still possible

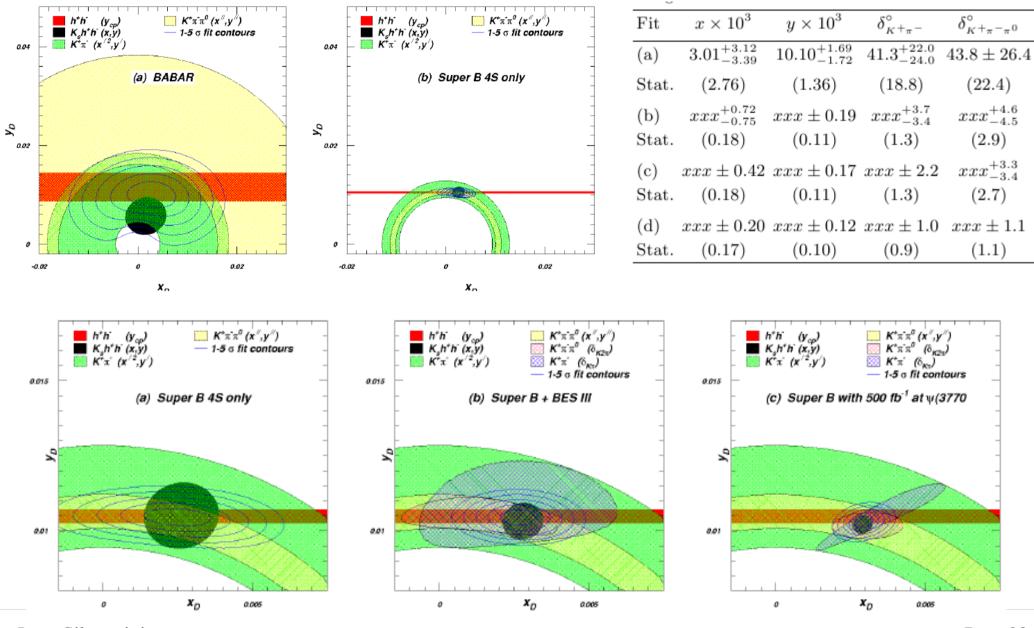


there are R-S models where effects in B(s) are confined to the mixing amplitudes

M. Blanke et al., 0906.5454 LHT model LHT MSSM MSSM ratio - LFV: $\tau \rightarrow \mu \gamma$ (dipole) (Higgs) $Br(\tau^- \to e^- e^+ e^-)$ $0.04...04 \sim 1 \cdot 10^{-2}$ $\sim 1 \cdot 10^{-2}$ vs $\tau \rightarrow \ell \ell \ell$ $Br(\tau \rightarrow e\gamma)$ $Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)$ $0.04...04 \sim 2 \cdot 10^{-3}$ 0.06...0.1- semileptonic $Br(\tau \rightarrow \mu \gamma)$ $Br(\tau^-\!\rightarrow\!e^-\mu^+\mu^-)$ $0.04...0.3 \sim 2 \cdot 10^{-3}$ 0.02...0.04 $Br(\tau \rightarrow e\gamma)$ asymmetries $Br(\tau^-\!\rightarrow\!\mu^-e^+e^-)$ $0.04...0.3 \sim 1 \cdot 10^{-2}$ $\sim 1 \cdot 10^{-2}$ $Br(\tau \rightarrow \mu \gamma)$ $Br(\tau^- \to e^- e^+ e^-)$ 0.8...2.00.3...0.5 ~ 5 $\overline{Br(\tau^- \rightarrow e^- \mu^+ \mu^-)}$ $S_{D \to K\phi}$ $Br(\tau^- \!\rightarrow\! \mu^- \mu^+ \mu^-)$ 0.7...1.6 ~ 0.2 5...10 $Br(\tau^- \rightarrow \mu^- e^+ e$ 0.04**Recently:** 0.02 $\frac{1}{10}$ asing and correlated -1.00.5**CPV** effects in D -0.02-0.04mixing I.I. Bigi et al., 0904.1545

Luca Silvestrini

Roma, 8/4/2011



Luca Silvestrini

Roma, 8/4/2011

Page 32

Charm mixing

Luca Silvestrini

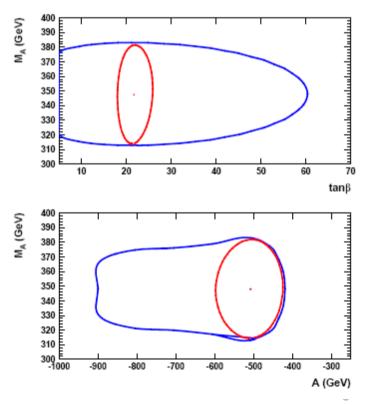

Roma, 8/4/2011

TABLE II: Golden modes in different New Physics scenarios. A "X" indicates the golden channel of a given scenario. An "O" marks modes which are not the "golden" one of a given scenario but can still display a measurable deviation from the Standard Model. The label CKM denotes golden modes which require the high-precision determination of the CKM parameters achievable at SuperB.

	H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed
	high $ an\!\beta$	\mathbf{FV}	FV (1-3)	FV (2-3)	Z-penguins	currents
$\mathcal{B}(B \to X_s \gamma)$		Х		О		О
$A_{CP}(B \to X_s \gamma)$				Х		О
$\mathcal{B}(B \to \tau \nu)$	X- CKM					
$\mathcal{B}(B \to X_s l^+ l^-)$				О	О	О
$\mathcal{B}(B \to K \nu \overline{\nu})$				Ο	Х	
$S(K_S\pi^0\gamma)$						Х
β			X- CKM			О

	SPS1a	SPS4	SPS5
$\mathcal{R}(B \to X_s \gamma)$	0.919 ± 0.038	0.248	0.848 ± 0.081
$\mathcal{R}(B \to \tau \nu)$	0.968 ± 0.007	0.436	0.997 ± 0.003
$\mathcal{R}(B \to X_s l^+ l^-)$	0.916 ± 0.004	0.917	0.995 ± 0.002
$\mathcal{R}(B \to K \nu \overline{\nu})$	0.967 ± 0.001	0.972	0.994 ± 0.001
$\mathcal{B}(B_d \to \mu^+ \mu^-)/10^{-10}$	1.631 ± 0.038	16.9	1.979 ± 0.012
$\mathcal{R}(\Delta m_s)$	1.050 ± 0.001	1.029	1.029 ± 0.001
$\mathcal{B}(B_s \to \mu^+ \mu^-)/10^{-9}$	2.824 ± 0.063	29.3	3.427 ± 0.018
$\mathcal{R}(K \to \pi^0 \nu \overline{\nu})$	0.973 ± 0.001	0.977	0.994 ± 0.001

Proceedings of Superb VI,

arXiv:0810.1312

Roma, 8/4/2011

Luca Silvestrini