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COURSE OF DIMENSIONALITY
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NEURAL-NETWORK QUANTUM STATES

Originally introduced by Carleo and Troyer for spin systems, NQS are now widely and successfully
applied to study condensed-matter systems
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NUCLEAR PHYSICS APPLICATIONS

We applied NQS to solve the nuclear many-body problem and for nuclei and dilute neutron matter
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NUCLEAR PHYSICS APPLICATIONS

We applied NQS to solve the nuclear many-body problem and for nuclei and dilute neutron matter

X
o

sfecanncnannnnn] t NQS
=== AFDMC (unconstrained)
===+ AFDMC (constrained)
== \VVMC
= Hartree-Fock

I
©

&
o0

R
o

Energy per particle (MeV)
(@)
\]

o
ot

o
N

0 1000 2000 3000 4000
Optimization Steps

5 B. Fore, J. Kim, AL, arXiv:2212.04436 [nucl-th]




PATH FORWARD

We are already solving nuclei with
~40 nucleons using ~ 100 GPUs
with almost ideal scaling

Heavy nuclei and infinite
nuclear matter within reach with
leadership-class machines

Can tackle high-momentum
nuclear forces (short-range
correlations)

No issues with open shell or
exotic systems; just need to
specify A, Z, and the
Hamiltonian




REAL-TIME DYNAMICS

Real-time dynamics relies on the time-dependent variational principle
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_iHt 2 _ orecos (W (Prrot) e U (pe)) (U (Pe) ||V (Pttst))
D(|\P(Pt+6t)>7€ |\I/(Pt)) - (\/ (U(Prss) |V (Prose)) (U (Pe) ¥ (Prist)) )

Requiring stationary of this distance d_p B
yields the t-VMC equations > St dr gt

« Applications to fusion, fission: generalizes time-dependent Hartree-Fock including
correlations

* Lepton-nucleus scattering: JLAB, Dune, and T2K




REAL-TIME DYNAMICS

Neural quantum states have proven suitable ansatz to simulate the dynamics in 2d spin systems
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REAL-TIME DYNAMICS

Real-time dynamics relies on the time-dependent variational principle

_iHt 2 _ orecos (W (Prrot) e U (pe)) (U (Pe) ||V (Pttst)) 2
D(|\P(Pt+6t)>7€ |\I/(Pt)) - (\/ (U(Prss) |V (Prose)) (U (Pe) ¥ (Prist)) )

Requiring stationary of this distance N

e
yields the t-VMC equations AT gt

The TDVP equation defines a Hamiltonian dynamics on the variational manifold, which conserves
energy.

d (V(pe) | H|Y(pt))
dt  (¥(p:)|¥(pe))
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NEUTRINO-NUCLEUS SCATTERING

Goal: evaluate the real-time correlation function 1) Learn the ground state of the system

R(q,t) = (Yol JT(q)e™""" I (q)|To)

[Wy) = [¥o)

2) Learn the state obtained applying the
current to the ground state

Wy (Pi=0)) = J(q)|¥o)

3) Evolve the neural quantum state in real
time with t-VMC

[Ty (pe)) = e J(q)[Wo)

4) Evaluate the overlap with the initial state

R(a,t) ~ (v (pe=0)|¥(pt))
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