Quantum Simulation of Nuclear Many Body Systems
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The nuclear many-body problem
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Physics of Hadrons
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o easier to deal with than the QCD lagrangian
E— @ describes low energy physics correctly
Bertsch, Dean, Nazarewicz (2007) @ non-perturbative — still very challenging
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The need for ab-initio many-body dynamics in NP

@ v scattering for supernovae @ cross sections for dark-matter
explosion and NS cooling discovery and neutrino physics

@ capture reactions for crust @ transport properties of neutron
heating and nucleosynthesis star matter for X-ray emission
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Inclusive cross section and the response function

@ cross section determined by the response function
. 2
Ro(w) = >_[(£101%0)| 8 (w — By + Eo)
f

/g \
g e excitation operator O specifies the vertex
@ 7///
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Inclusive cross section and the response function

@ cross section determined by the response function
. 2
Ro(w) = > [(£101%0)| 6 (w — By + Eo)
f

e excitation operator O specifies the vertex

Extremely challenging classically for strongly correlated quantum systems J
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@ quasi-elastic EM response of 12C
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Prospects for classical simulations of nuclear dynamics
Quantum MC + Laplace/STA

Machine Learning ideas could help
@ useful for quasi-elastic regime

@ not yet accurate enough to go
beyond A = 12 (sign-problem)
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Prospects for classical simulations of nuclear dynamics

Quantum MC + Laplace/STA

@ useful for quasi-elastic regime

Machine Learning ideas could help

@ not yet accurate enough to go
beyond A = 12 (sign-problem)

= Ahrens et al.
== LIT-CCSD

o useful for low energy regime
Bacea ot al. PRO(Z0W) | @ accuracy limited by inversion

40
Ca

0 "2“ e Self Consistent Green's Functions?
@[MeV]

o large open-shell nuclei

@ exclusive cross-sections

@ out of equilibrium
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system

Quantum System Quantum System
we have control over we want to simulate

@p
A

figure from E.Zohar
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system

Quantum System Quantum System
we have control over we want to simulate

Electrode

figure from E.Zohar
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system J

Quantum System Quantum System
we have control over we want to simulate

3
*./ &
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Black box model for a quantum computer

Box contains N qubits (2-level sys.)
together with a set of buttons J

@ initial state preparation p
@ projective measurement M

@ quantum operations Gy,

Blume-Kohout et al. (2013)
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Black box model for a quantum computer

Box contains N qubits (2-level sys.)
together with a set of buttons J

@ initial state preparation p
@ projective measurement M

@ quantum operations Gy,

Solovay—Kitaev Theorem

We can build a universal black box
with only a finite number of buttons
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Lloyd (1996) We can simulate time evolution of local Hamiltonians
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Black box model for a quantum computer

Box contains N qubits (2-level sys.)
together with a set of buttons J

@ initial state preparation p
@ projective measurement M

@ quantum operations Gy,

Solovay—Kitaev Theorem

We can build a universal black box
with only a finite number of buttons

Blume-Kohout et al. (2013)

Lloyd (1996) We can simulate time evolution of local Hamiltonians

@ discretize the physical problem
[W(0)) —[W(t)) = e~ (0))
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Black box model for a quantum computer

Box contains N qubits (2-level sys.)
together with a set of buttons J

@ initial state preparation p
@ projective measurement M

@ quantum operations Gy,

Solovay—Kitaev Theorem

We can build a universal black box
with only a finite number of buttons

Blume-Kohout et al. (2013)

Lloyd (1996) We can simulate time evolution of local Hamiltonians

@ discretize the physical problem (W(0)) —=[¥(t)) = eith|‘IJ(0>>

@ map physical states to bb states _ _
| «— time evolution

qubits — ——| U(t) button
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Black box model for a quantum computer

Box contains N qubits (2-level sys.)
together with a set of buttons J

@ initial state preparation p

@ projective measurement M

@ quantum operations Gy,

Solovay—Kitaev Theorem

We can build a universal black box
with only a finite number of buttons

Blume-Kohout et al. (2013)

Lloyd (1996) We can simulate time evolution of local Hamiltonians
@ discretize the physical problem (W(0)) —=[¥(t)) = eilHt|‘IJ(0>>
@ map physical states to bb states

© push correct button sequence
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First programmable quantum devices are here

ASCR Report on a
Quantum Computing
Testbed for Science

Quantum Computer

some figures from M.Savage
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Real time dynamics on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)
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Real time dynamics on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)

e bare results from QPU
= ideal result
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Real time dynamics

Probability of 3 nulceons on same site

on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)
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Towards exclusive scattering using quantum computing
@ response R(w) < probability for events at fixed w

@ exclusive x-sec — events with specific final states

IDEA: prepare the following state on QC
@) = >0 VRW) |w) @ |¢h)
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Towards exclusive scattering using quantum computing
@ response R(w) < probability for events at fixed w

@ exclusive x-sec — events with specific final states

IDEA: prepare the following state on QC
@) = >0 VRW) |w) @ |¢h)

@ measurement of first register returns w with probability R(w)
@ after measurement, the second register contains final states at w!

c
Osmje ray

Run 5390, Event 1100

Blume-Kohout et al. (2013)

AR & Carlson PRC(2019)

Alessandro Roggero Quantum Simulation of NP 9/15



Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times
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Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times
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Cost estimates for realistic response in medium mass nuclei
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Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times
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Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times
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o Still possible to optimize further (other encodings need ~ 500 qubits)
@ Insights for classical methods could come before we have a large QC!
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Nuclear dynamics with quantum (inspired) computing?

We can prepare the following state

1Ba) =) VERAW) |w) @ [th)

with R is an integral transform of the
response with energy resolution A

— Gaussian
— Fejer

AR & Carlson PRC(2019), AR PRA(2020)

@ Gaussian approach uses the fact that Chebyshev polynomials can be
evaluated efficiently on quantum computers (Berry, Childs, Low, Chuang, ... )
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Nuclear reactions in a semiclassical approach

Turro, Chistolini, Hashim, King, Livingston, Wendt, Dubois, Pederiva, Quaglioni, Santiago, Siddiqi (2023)
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Neutrino oscillations in astrophysical environments

@ energy deposition behind shock and in the wind proceeds through
charge-current reactions (large differences in ve —v,/;)
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Neutrino oscillations in astrophysical environments
@ energy deposition behind shock and in the wind proceeds through
charge-current reactions (large differences in ve —v,/;)
@ neutrino oscillation rates can get enhanced through elastic forward
scattering with external matter (MSW effect)

Ve,V Vr Ve,V Vt
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Neutrino oscillations in astrophysical environments
@ energy deposition behind shock and in the wind proceeds through
charge-current reactions (large differences in v. — v, /;)
@ neutrino oscillation rates can get enhanced through elastic forward
scattering with external matter (MSW effect) or neutrinos

Ve,V Vr Ve,V Vt

ve, k Ve, q

(A) (B)

ve, k

Vs q vy, k

Fuller, Qian, Pantaleone, Sigl, Raffelt, Sawyer, Carlson, Duan, ...
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Two-flavor approximation and the iso-spin Hamiltonian

Consider two active flavors (v,,v,) and encode flavor amplitudes for a
neutrino with momentum p; into an SU(2) iso-spin:

|@3) = cos(n)|ve) + sin(ns)|ve) = cos(mi)| 1) + sin(n)[ 1)

A system of IV interacting neutrinos is then described by the Hamiltonian

= Z —B o + )\Za + (1—cos(y;))d - &

z<]
@ vacuum oscillations: B = (sin(20m42.), 0, — cos(20,mix))
@ interaction with matter: A =V2GFpe
@ neutrino-neutrino interaction: ©=2Grp,
o dependence on momentum direction: cos(¢ij) = 7l - 2

ol 11251

for a full derivation, see e.g. Pehlivan et al. PRD(2011)
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Recent results of flavors dynamics with trapped ions

V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, PRD (2023)

N = 4 neutrinos, multiple time steps

# of steps k
4 5 6

# of steps k
4 5 6
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Summary & Conclusions

@ Advances in theory and computing are opening the way to ab-initio
calculation of equilibrium properties in the medium-mass region

@ New ideas are needed to study nuclear dynamics in large open-shell
nuclei, out-of-equilibrium processes and QCD at finite

@ Quantum Computing has the potential to bridge this gap and
increasingly better experimental test-beds are being built

@ Error mitigation techniques will be critical to make the best use of
these noisy near-term devices

o Early impact of QC on nuclear physics might come as insights into
classical many-body methods and the role of entanglement
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Real time correlators on current generation devices

@ First steps toward nuclear response: real-time correlators

R(w) = / dte™'O(t) with C(t) = (To|O(t)O(0)|To)

@ Can be done “easily” using one additional qubit (Somma et al. (2001))
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@ First steps toward nuclear response: real-time correlators

R(w) = / dte™'O(t) with C(t) = (To|O(t)O(0)|To)

@ Can be done “easily” using one additional qubit (Somma et al. (2001))
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Real time correlators on current generation devices

o First steps toward nuclear response: real-time correlators
R(w) = /dtei“’tC(t) with  C(t) = (Pp|O(t)O(0)|Ty)

@ Can be done “easily” using one additional qubit (Somma et al. (2001))
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Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)
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Real time correlators on current generation devices

@ First steps toward nuclear response: real-time correlators

R(w) = / dte™'O(t) with C(t) = (To|O(t)O(0)|To)

@ Can be done “easily” using one additional qubit (Somma et al. (2001))
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Quantum simulation of collective neutrino oscillations

H,,:Zwié-c?i—i-%ztfij&i-&j
i

1<j

o with only 2 flavors direct map to spin 1/2 degrees of freedom (qubits)
o only one- and two-body interactions = only O(N?) terms
@ all-to-all interactions are difficult with reduced connectivity

SWAP network o SWAP qubits every time we apply
time-evolution for neighboring terms
(1)
(2
(3) o NOTE: final order will be reversed
000600 Kivlichan et al. PRL (2018)

smaTotoE 8 ) B.Hall, AR, A.Baroni, J.Carlson PRD(2021), AR PRD(2021)
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@ in N steps we perform full evolution
using only (%) two qubit gates
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Accuracy in flavor evolution
How's the current (=Fall 2020) accuracy in predicting flavor evolution?
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Accuracy in flavor evolution

How's the current (=Fall 2020) accuracy in predicting flavor evolution?
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Accuracy in flavor evolution

How's the current (=Fall 2020) accuracy in predicting flavor evolution?
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Accuracy in flavor evolution

How's the current (=Fall 2020) accuracy in predicting flavor evolution?
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Recent progress in porting the scheme to trapped ions

V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, PRD (2023)

N = 4 neutrinos, one time step

Iy =
=} N

o
©
A

Inversion probability
o o
o o

o
[N)
h

o
=)

......... |dea|

| —— Trotter

i Vo HQS
V3 HQS

/.

(a)

......... |deal (b)
| —— Trotter
i Vi HQS
v, HQS
T
/T
AA
AN

Nad

0 8
Time step dt [u™!]

"16 24 32 40 0 8

e
Time step dt [u~']

Alessandro Roggero Quantum Simulation of NP

16 /15



