Quantum Simulation of Nuclear Many Body Systems Alessandro Roggero

MONSTRE meeting - Milano 12 May, 2023

The nuclear many-body problem

 $\mathcal{L}_{QCD} = \sum_{f} \overline{\Psi}_{f} \left(i \gamma^{\mu} D_{\mu} - m_{f} \right) \Psi_{f} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$ • in principle can derive everything from here Effective theory for nuclear systems $H = \sum_{i} \frac{p_{i}^{2}}{2m} + \frac{1}{2} \sum_{i,j} V_{ij} + \frac{1}{6} \sum_{i,j,k} W_{ijk} + \cdots$

- easier to deal with than the QCD lagrangian
- describes low energy physics correctly
- $\bullet\,$ non-perturbative $\rightarrow\,$ still very challenging

Bertsch, Dean, Nazarewicz (2007)

Monte Carlo Calculations of the Ground State of Three- and Four-Body Nuclei (Received July 2, 1962)

Kalos, Phys. Rev (1962)

Structure of the Lightest Tin Isotopes (Received 21 September 2017)

Morris et al, PRL (2018)

Alessandro Roggero

The need for ab-initio many-body dynamics in NP

- ν scattering for supernovae explosion and NS cooling
- capture reactions for crust heating and nucleosynthesis

- cross sections for dark-matter discovery and neutrino physics
- transport properties of neutron star matter for X-ray emission

Alessandro Roggero

Quantum Simulation of NP

Inclusive cross section and the response function

 $\bullet\,$ excitation operator \hat{O} specifies the vertex

q,ω

Inclusive cross section and the response function

• cross section determined by the response function

$$R_O(\omega) = \sum_f \left| \langle f | \hat{O} | \Psi_0 \rangle \right|^2 \delta \left(\omega - E_f + E_0 \right)$$

• excitation operator \hat{O} specifies the vertex

Extremely challenging classically for strongly correlated quantum systems

Prospects for classical simulations of nuclear dynamics

Prospects for classical simulations of nuclear dynamics

Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate the behaviour of another quantum system

Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate the behaviour of another quantum system

Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate the behaviour of another quantum system

Box contains N qubits (2-level sys.) together with a set of buttons

- initial state preparation ρ
- projective measurement ${\cal M}$
- quantum operations G_k

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

discretize the physical problem

$$|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$$

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- ullet projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

- discretize the physical problem
- 2 map physical states to bb states

$$|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$$

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- ullet projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

- discretize the physical problem
- 2 map physical states to bb states
- opush correct button sequence

 $|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$

First programmable quantum devices are here

Real time dynamics on current generation devices

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Real time dynamics on current generation devices

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Alessandro Roggero

Real time dynamics on current generation devices

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Alessandro Roggero

Towards exclusive scattering using quantum computing

- $\bullet\,$ response $R(\omega) \Leftrightarrow$ probability for events at fixed ω
- $\bullet\,$ exclusive x-sec $\rightarrow\,$ events with specific final states

IDEA: prepare the following state on QC $|\Phi
angle = \sum_{\omega} \sqrt{R(\omega)} |\omega
angle \otimes |\psi_{\omega}
angle$

Towards exclusive scattering using quantum computing

 $\bullet~\mbox{exclusive x-sec} \rightarrow \mbox{events}$ with specific final states

- measurement of first register returns ω with probability $R(\omega)$
- after measurement, the second register contains final states at $\omega!$

AR & Carlson PRC(2019)

q.ω

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ≈ 4000 qubits and push the gate buttons $\approx 10^6 - 10^8$ times

• Still possible to optimize further (other encodings need ≈ 500 qubits)

• Insights for classical methods could come before we have a large QC!

Alessandro Roggero

Nuclear dynamics with quantum (inspired) computing?

We can prepare the following state

$$|\Phi_{\Delta}
angle = \sum_{\omega} \sqrt{R_{\Delta}(\omega)} |\omega
angle \otimes |\psi_{\omega}
angle$$

with R_{Δ} is an integral transform of the response with energy resolution Δ

AR & Carlson PRC(2019), AR PRA(2020)

• Gaussian approach uses the fact that Chebyshev polynomials can be evaluated efficiently on quantum computers (Berry, Childs, Low, Chuang, ...)

Alessandro Roggero

Nuclear reactions in a semiclassical approach

Turro, Chistolini, Hashim, King, Livingston, Wendt, Dubois, Pederiva, Quaglioni, Santiago, Siddiqi (2023)

Neutrino oscillations in astrophysical environments

• energy deposition behind shock and in the wind proceeds through charge-current reactions (large differences in $\nu_e - \nu_{\mu/\tau}$)

Neutrino oscillations in astrophysical environments

- energy deposition behind shock and in the wind proceeds through charge-current reactions (large differences in $\nu_e \nu_{\mu/\tau}$)
- neutrino oscillation rates can get enhanced through elastic forward scattering with external matter (MSW effect)

Neutrino oscillations in astrophysical environments

- energy deposition behind shock and in the wind proceeds through charge-current reactions (large differences in $\nu_e \nu_{\mu/\tau}$)
- neutrino oscillation rates can get enhanced through elastic forward scattering with external matter (MSW effect) or neutrinos

Fuller, Qian, Pantaleone, Sigl, Raffelt, Sawyer, Carlson, Duan, ...

Two-flavor approximation and the iso-spin Hamiltonian

Consider two active flavors (ν_e, ν_x) and encode flavor amplitudes for a neutrino with momentum p_i into an SU(2) iso-spin:

 $|\Phi_i\rangle = \cos(\eta_i)|\nu_e\rangle + \sin(\eta_i)|\nu_x\rangle \equiv \cos(\eta_i)|\uparrow\rangle + \sin(\eta_i)|\downarrow\rangle$

A system of ${\cal N}$ interacting neutrinos is then described by the Hamiltonian

$$H = \sum_{i} \frac{\Delta m^2}{4E_i} \vec{B} \cdot \vec{\sigma}_i + \lambda \sum_{i} \sigma_i^z + \frac{\mu}{2N} \sum_{i < j} \left(1 - \cos(\phi_{ij}) \right) \vec{\sigma}_i \cdot \vec{\sigma}_j$$

• vacuum oscillations: • interaction with matter: • neutrino-neutrino interaction: • dependence on momentum direction: $\vec{B} = (\sin(2\theta_{mix}), 0, -\cos(2\theta_{mix}))$ $\lambda = \sqrt{2}G_F \rho_e$ $\mu = \sqrt{2}G_F \rho_\nu$ $\cos(\phi_{ij}) = \frac{\vec{p}_i}{\|\vec{x}_i\|} \cdot \frac{\vec{p}_j}{\|\vec{x}_i\|}$

for a full derivation, see e.g. Pehlivan et al. PRD(2011)

Recent results of flavors dynamics with trapped ions

V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, PRD (2023)

Last two points required: ≈ 350 two-qubit gates over 8 qubits

Alessandro Roggero

Quantum Simulation of NP

Summary & Conclusions

- Advances in theory and computing are opening the way to ab-initio calculation of equilibrium properties in the medium-mass region
- New ideas are needed to study nuclear dynamics in large open-shell nuclei, out-of-equilibrium processes and QCD at finite μ
- Quantum Computing has the potential to bridge this gap and increasingly better experimental test-beds are being built
- Error mitigation techniques will be critical to make the best use of these noisy near-term devices
- Early impact of QC on nuclear physics might come as insights into classical many-body methods and the role of entanglement

image from Chandra collab.

• First steps toward nuclear response: real-time correlators

$$R(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

• First steps toward nuclear response: real-time correlators

$$R(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

• First steps toward nuclear response: real-time correlators

$$R(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

• First steps toward nuclear response: real-time correlators

$$R(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

Quantum simulation of collective neutrino oscillations

$$H_{\nu} = \sum_{i} \omega_{i} \vec{B} \cdot \vec{\sigma}_{i} + \frac{\mu}{2N} \sum_{i < j} J_{ij} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}$$

- with only 2 flavors direct map to spin 1/2 degrees of freedom (qubits) • only one- and two-body interactions \Rightarrow only $\mathcal{O}(N^2)$ terms
- all-to-all interactions are difficult with reduced connectivity

- SWAP qubits every time we apply time-evolution for neighboring terms
- in N steps we perform full evolution using only $\binom{N}{2}$ two qubit gates
 - NOTE: final order will be reversed

Kivlichan et al. PRL (2018)

B.Hall, AR, A.Baroni, J.Carlson PRD(2021), AR PRD(2021)

Recent progress in porting the scheme to trapped ions

V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, PRD (2023)

