A brief sketch of the nuclear research by LNS groups at LNS

Marco La Cognata

INFN-LNS Nuclear physics coordinator

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud

Nuclear Physics @ LNS

2019	2020	2021	2022/2023
ASFIN2	ASFIN2	ASFIN2	ASFIN2
JLAB12	JLAB12	JLAB12	JLAB12
NEWCHIM	NEWCHIM	CHIRONE	CHIRONE
NUMEN	NUMEN	NUMEN	NUMEN
n_TOF	n_TOF	n_TOF	n_TOF
	PANDORA	PANDORA	PANDORA
		+ EIC_NET (DOT.)	EIC_NET
AB12, EIC_NET	+ NUCL-EX (DOT.)		

CHIRONE, NUMEN_GR3 Linea 3 (NUCLEAR STRUCTURES AND REACTIONS DYNAMICS) NUCL-EX.DTZ

ASFIN, n_TOF PANDORA

JL

Linea 4 (ASTROPHYSICS AND INTERDISCIPLINARY RESEARCHES)

Nuclear Physics @ LNS

2019	2020	2021	2022/2023
ASFIN2	ASFIN2	ASFIN2	ASFIN2
JLAB12	JLAB12	JLAB12	JLAB12
NEWCHIM	NEWCHIM	CHIRONE	CHIRONE
NUMEN	NUMEN	NUMEN	NUMEN
n_TOF	n_TOF	n_TOF	n_TOF
	PANDORA	PANDORA	PANDORA
		+ EIC_NET (DOT.)	EIC_NET

+ NUCL-EX (DOT.)

To date, LNS hosts:

- → the largest nuclear physics community in Italy: ~90 researchers (60 FTE)
- \rightarrow the largest nuclear astrophysics community

→ the two most innovative nuclear physics experiments inside INFN: PANDORA and NUMEN

Nuclear Physics @ LNS

In this presentation I will focus on:

Linea 3 experiments:

CHIRONE \rightarrow investigation of nuclear structure and dynamics, from clustering to the nuclear equation of state

NUMEN \rightarrow main focus on the measurement of double charge-exchange reactions, for the assessment of nuclear matrix elements

Linea 4 experiments:

ASFIN2 → nuclear astrophysics with indirect methods and study of nuclear structure of light systems of astrophysical interest

n_TOF → *direct measurement of n-capture reactions*

PANDORA →

Nuclear physics midterm plan

The ongoing upgrades and the forthcoming facilities have called for new ideas and physics programs to be carried out

LNS session (4-5 April 2022): https://agenda.infn.it/event/28717/

Working group (Chair)	Торіс	Speaker
Nuclear Dynamics (S. Pirrone)	 Heavy Ion Collision – EOS Clustering Fission Dynamics 	E. De Filippo A. Di Pietro E. Vardaci
Nuclear Structure (C. Agodi)	 Nuclear Matrix Elements towards 0vββ: theoretical model developments Selective Study of nuclear structure response with high intensity beams and advanced spectrometry Collective modes in nuclei with stable and unstable beams 	A. Gargano F. Cappuzzello G. Cardella
Nuclear Astrophysics (R. Pizzone)	 Nuclear and atomics input for the quiescent stellar evolution The «explosive» universe : BBN and explosive nucleosynthesis s and r process 	A. Pidatella G. G. Rapisarda M. L. Sergi
Applications (S. Tudisco)	 Medical Applications Laser-Matter Interaction Plasma traps 	G. Petringa G. A. P. Cirrone D. Mascali

LINEA 3

CHIRONE

Study of the dependence of reaction mechanisms on isospin with innovative detections systems (CHIMERA, FARCOS, neutron detectors)

→ Research on nuclear matter under extreme considition (EOS for neutron stars, clustering in light nuclei)

CHImera R3B hOdoscopes Neutrons Experiment

FARCOS: Femtoscope Array for COrrelations and Spectroscopy

- High energy and angular resolution Low thresholds (<1 MeV/A)
- Large Dynamic range (20MeV to 2GeV)
- Flexibility, modularity, transportability
- GET
- 20 telescopes

Some highlights

EOS & SIMMETRY ENERGY

Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions, S. Huth et al. Nature 2022 https://www.nature.com/articles/s41586-022-04750-w

Combining HIC and astrophysical results in the same Bayesian analysis to constrain neutron matter EOS

 $R_{1.4} = 12.01^{+0.78}_{-0.77} \, km$ at 95% CI

Advancing HIC experimental constraint to higher densities $\approx 2 \rho_0$ is needed, a new experiment, ASY-EOS II (P.Russotto et al), is going to be asked (PAC-GSI 2022)

Experiment Hoyle- γ

Measurement of the Hoyle state branching ratio of ^{12}C and study of the level 9.64 MeV $\alpha \text{+}^{12}C$ @ 64 MeV (PRC 2021)

Investigating γ -ray decay of excited ¹²C levels with a multifold coincidence analysis. The aim of this work was to explore the feasibility of measuring the γ -decay widths of the 9.64-MeV state important for nucleaosynthesis in explosive scenarios

- 1. The nuclear equation of state and its link to astrophysics
- 2. Dependence of the EOS and of the reaction mechanisms on the isospin
- 3. Investigation of cluster structure of light nuclei (rotational vibrational bands) and implications for astrophysics
- 4. In the activity carried out at GSI, additional activity focused on Coulomb dissociation, fission, short-range correlations

LINEA 3

Extraction from measured cross-sections of "data-driven" information on Nuclear Matrix Elements for all the systems candidate for 0vββ Use of nuclear reactions (Double Charge Exchange reactions) to stimulate in the laboratory the same nuclear transition occurring in 0νββ

Phase space

 $\left(T^{0\nu\beta\beta}_{\frac{1}{2}}(0^+ \to 0^+)\right)^{-1} = G_{0\nu\beta\beta} \left| M^{0\nu\beta\beta} \right|^2 \left| f(m_i, U_{ei}) \right|^2$

factor

K800 Superconducting Cyclotron

0vββ decay half-life

MAGNEX magnetic spectrometer

element

Nuclear matrix

NUMEN_GR3

contains the average

challenging perspective at LNS in nuclear science

ORIGINAL RESEARCH published: 07 May 2021 9/tspas.2021.659819

A Constrained Analysis of the ⁴⁰Ca(¹⁸O,¹⁸F)⁴⁰K Direct Charge Exchange Reaction Mechanism at 275 MeV

Nunab Itaco University of Cempania Luidi Varwitall, Italy Reviewed by

OPEN ACCESS

Edited by

Manuala Cavallaro

manuala.cavallaro@hs.hh.ft

Mangoni Daniala, National Institute of Nuckar Physics of Padova, Italy Plane Descouvement. Université libre de Bruxelles, Belgium Correspondence-

Manuela Cavallaro1*, Jessica I. Bellone1, Salvatore Calabrese1, Clementina AgodI1, Stefano Burrello², Francesco Cappuzzello^{1,2}, Diana Carbone¹, Maria Colonna¹ N. Deshmukh⁴, H. Lenske⁵, A. Spatafora^{1,2}, L. Acosta⁶, P. Amador-Valenzuela⁷, T. Borello-Lewin[®], G. A. Brischetto^{1,9}, D. Calvo⁹, V. Capirossi^{9,10}, E. Chávez⁶, I. Ciraldo^{1,9} M. Cutull^{1,3}, F. Delaunay¹¹, H. Djapo¹², C. Eke¹³, P. Finocchiaro¹, S. Firat¹⁴, M. Fisichella¹, A. Fotl¹⁵, M. A. Guazzelli¹⁶, A. Hacisalihogiu¹⁷, F. Iazzi^{9,10}, L. La Fauci^{1,3}, R. Linares¹⁹, J. Lubian¹⁸, N. H. Medina⁸, M. Moralles¹⁹, J. R. B. Oliveira⁸, A. Pakou²⁰, Luciano Pandola¹, H. Petrascu²¹, F. Pinna^{8,10}, G. Russo¹⁵, O. Sgouros¹, S. O. Solakci¹⁴, V. Soukeras¹, G. Soullotis²², D. Torresl¹, Salvatore Tudisco¹, A. Yildirin¹⁴ and V. A. B. Zagatto¹⁹ for the NUMEN collaboration

A multi-channel approach to nuclear reactions

Consistent study (experimental and theoretical) of all the reaction channels competing with the double charge exchange to obtain a reliable description of the reaction mechanism

and structure PHYSICAL REVIEW C 103, 054604 (2021)

Analysis of two-proton transfer in the ⁴⁰Ca(¹⁸O, ²⁰Ne) ³⁸Ar reaction at 270 MeV incident energy

J. L. Ferreira,¹ D. Carbone,² M. Cavallaro²,^{2,*} N. N. Deshmukh,^{2,3} C. Agodi,² G. A. Brischetto,^{2,4} S. Calabrese,²

F. Cappuzzello,^{2,4} E. N. Cardozo,¹ I. Ciraldo,^{2,4} M. Cutuli,^{2,4} M. Fisichella,² A. Foti,⁴ L. La Fauci,^{2,4} O. Sgouros,²

V. Soukeras,² A. Spatafora,^{2,4} D. Torresi,² and J. Lubian¹

(NUMEN Collaboration)

⁴²Ca 40Ar ³⁸År

12

F. Cappuzzello, et al., EPJA (2015) H. Lenske, et al., PPNP (2019)

S. Calabrese et al. (to be submitted)

Systems and reactions studied in NUMEN Phase 2

¹²C – ¹²Be case at 2 beam energies
@ 15 AMeV
@ 22 AMeV

Last experiment performed at LNS after the COVID lockdown and before the shutdown of LNS facilities for the upgrade

The research activity includes:

→ Theoretical work focused, for instance, on the Majorana mechanism and its connection with $0\nu\beta\beta$

 \rightarrow R&D for the development of novel detectors, e.g. for high rates

Questions to theory

- 1. Using experimental data to refine the calculation of the nuclear matrix elements for neutrinoless double beta decay
- 2. Study the connection between the nuclear matrix elements for double chargeexchange reactions and the one for neutrinoless double beta decay
- 3. Evaluate the different contributions (as a function of energy) from the different operators to the nuclear matrix elements for double charge-exchange reactions
- 4. Assess the contribution from competing channels to the double chargeexchange reactions (background from multistep transfer, for instance

LINEA 4

- *Indirect methods allow to complement direct measurements* overcoming several experimental difficulties (Coulomb barrier penetration effects, electron screening effects, background effects...);
- **ASFIN is active in the field** of experimental nuclear astrophysics since 90's allowing to shed light on several astrophysical problems (BBN, stellar nucleosynthesis, explosive nucleosynthesis...)
- During the years, **ASFIN applied THM but also ANC e Thick Target Inverse Kinematic (TTIK)** methods for extracting nuclear reaction cross section of interest for astrophycis
- Indirect methods allow one to deduce the *bare-nucleus S(E)-factor* at ultra-low energies for astrophysical applications

Coefficient (ANC) approach

Annu. Rev. Nucl. Part. Sci. 2021. 71:345-76

ANNUAL REVIEWS

Annual Review of Nuclear and Particle Science The Trojan Horse Method: A Nuclear Physics Tool for Astrophysics

Aurora Tumino,^{1,2} Carlos A. Bertulani,³ Marco La Cognata,² Livio Lamia,^{2,4,5} Rosario Gianluca Pizzone,² Stefano Romano,^{2,4,5} and Stefan Typel^{6,7}

PHYSICAL REVIEW C 104, 015807 (2021)

Indirect determination of the astrophysical S factor for the ${}^{6}\text{Li}(\rho, \gamma) {}^{7}\text{Be}$ reaction using the asymptotic normalization coefficient method

G. G. Kiss,^{1,*} M. La Cognata,^{0,2,+} R. Yarmukhamedov,^{3,4} K. I. Tursunmakhatov,^{3,4} I. Wiedenhöver,⁵ L. T. Baby,⁵
 S. Cherubini,^{2,6} A. Cvetinović,² G. D'Agata,⁷ P. Figuera,² G. L. Guardo,^{2,6} M. Gulino,^{2,3} S. Hayakawa,⁹ I. Indelicato,^{2,6}
 L. Lamia,^{2,6,10} M. Lattuada,^{2,6} F. Mudò,^{2,6} S. Palmerini,^{11,12} R. G. Pizzone,² G. G. Rapisarda,^{2,6} S. Romano,^{2,6,10}
 M. L. Sergi,^{2,6} R. Spartà,^{2,6} C. Spitaleri,^{4,6} O. Trippella,^{11,12} A. Tumino,^{3,5} M. Anastasiou,⁵ S. A. Kuvin,⁵ N. Rijal,⁵
 B. Schmidt,⁵ S. B. Igamov,³ S. B. Sakuta,¹³ Zs. Fülöp,¹ G. Gyürky,¹ T. Szücs,¹ Z. Halász,¹ E. Somorjai,¹ Z. Hons,⁷
 J. Mrizek,⁷ R. E. Tribble,¹⁴ and A. M. Mukhamedzhanov¹⁴

Most important results 2021-2022

THE ASTROPHYSICAL JOURNAL LETTIES, 915:L13 (14pp), 2021 July 1 0 2021. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/2041-8213/ac061f

S. Hayakawa¹ O. M. La Cognata² O. L. Lamia^{2,3,4} O. H. Yamaguchi^{1,5} O. D. Kahl^{6,19} O. K. Abe¹, H. Shimizu¹, L. Yang^{1,20}, O. Beliuskina^{1,21}, S. M. Cha^{1,22}, K. Y. Chae⁷, S. Cherubini^{2,3}, P. Figuera², Z. Ge^{8,31}, M. Gulino^{2,9}, J. Hu¹⁰, A. Inoue¹¹, N. Iwasa^{1,20} O. Kim¹⁵, D. Kim^{15,22}, G. Kiss^{4,23}, S. Kubono^{1,5,4,10} O. H. La Commara^{1,4,15}, M. Lattaada^{1,23}, E. J. Lee⁷, J. Y. Moon¹⁶, S. Patrascandolo¹⁵, S. Y. Park^{13,24}, V. H. Phong^{8,25}, D. Pierroutsakou¹⁵, R. G. Pizzone² O. G. Rapisarda², S. Romano^{2,3,4}, C. Spitaleri^{2,5}, X. D. Tang¹⁰, O. Trippella^{11,15}, A. Tumino^{2,5}, and N. T. Zhang¹⁰

Road to indirect study of the ²⁶Al+n reaction channels via a devoted THM experiment running at TRIUMF (Vancouver, Canada).

channels via a devoted THM experiment running at TRIUMF (Vancouver, Canada). **Questions to theory**

- Connecting the "indirect" reaction cross section to the one of astrophysical interest → refining models to reduce data rejection during the data analysis, assess systematic errors
- 2. Modified R-matrix for narrow and broad resonances and comprehensive Rmatrix analysis (Bayesian approach)
- 3. For light nuclei structure studies, DWBA and/or coupled-channel analysis for transfer analisys, R-matrix for investigating clustering
- Investigation of fusion phenomenology (including, for instance, incomplete fusion et similia) with astrophysical implications (¹²C+¹²C, for instance). Hindrance?
- 5. Analysis of the astrophysical impact

LINEA 4

n_TOF: Neutron Time Of Flight

The experiment uses the high neutron flux produced at CERN for investigating neutron induced reactions of interest in many fields:

- → Applied physics (fission reactors, waste transmutation, material studies...)
- \rightarrow Nuclear astrophysics (s-process, fission recycling in the r-process...)
- → Basic science (fission, spectroscopy...)

LNS & n_TOF

Recent results

²³⁵U(n,f): 15MeV ÷ 1GeV

Extremely laborious data analysis, almost completed. Thanks to the measurement of the neutron flux at energies of hundreds of MeV, we will shortly provide the first experimental data of the 235U(n,f) cross section over 200MeV.

¹⁴⁰Ce(n,γ): s process

Data analysis completed. Resonances analyzed up to 65 keV. From preliminary calculations, however, a good agreement is found with the activation measurement at 30 keV, even if there are significant differences with low-energy nuclear libraries.

by 🔃 Simone Amaducci ^{1,2,*} 🖾 💿, Nicola Colonna ³, Luigi Cosentino ¹, Sergio Cristallo ^{4,5}, Paolo Finocchiaro ¹, Milan Krtička ⁶, Cristian Massimi ^{7,8}, Mario Mastromarco ⁹, Annamaria Mazzone ^{3,10}, Alberto Mengoni ¹¹, Stanislav Valenta ⁶. Oliver Aberle ⁹. Victor Alcavne ¹², Józef Andrzeiewski ¹³, Laurent Audouin ¹⁴, **and nTOF coll**.

Data analysis completed, MACS definitive, good agreement with the activation measurement at 30 keV. Important variations in the abundance of 140Ce and for all heavier elements predicted by the stellar models.

Questions to theory

- 1. Comprehensive R-matrix analysis of existing data
- 2. Astrophysical implications of the results

LINEA 4

PANDORA facility will consist of:

- 1) Superconducting Magnetic Plasma Trap: it contains a plasma made of multiply charged radioisotopes
- 2) HpGe Array: it consists of 14 detectors to measure the γ rays emitted after β -decays
- 3) Plasma Diagnostics System: it consists of RF, optical and X ray spectrometers allowing direct correlation of β-decay rate to plasma density and temperature

- **1) for the first time, β-decay measurements** in plasmas;
- 2) plasma opacity measurements in conditions similar to kilonovae ejecta;

3) an unprecedented setup for applications: it will

be the biggest B-minimum magnetic trap with potentiality as ion source; as testbench for magnetic fusion; as radiation source for Archeometry.

PANDORA_GR3: articoli WoS \rightarrow 12 / talks \rightarrow 9

Study of beta-decay properties of highly ionized atoms of astrophysical interest:

Investigation of the dependence of decay rate on plasma parameters (T_e , ρ_e , CSD)

Solenoids for

Hexapole for

Extraction

system

Build a magnetic trap for hot plasmas excited by e.m. waves

- **Plasma trap**
- **HPGE detector array**
- multidiagnostic system

An innovative multi-diagnostic system used to correlate plasma parameters to nuclear activity has been proposed. It is based on several detectors and non-invasive techniques (Optical Emission Spectroscopy, RF systems, InterferoPolarimetry, time- and space-resolved X-ray spectroscopy)

Network Analyze

Study of beta-decay properties of highly ionized atoms of astrophysical interest:

Make β-decay measurements in plasmas of astrophysical interest: many isotopes can change their lifetime of several order of magnitude when ionized!!

The effect is mainly driven by the opening of a new decay channel: the bound state beta decay

Direct implication on branching points in s-process nucleosynthesys chain competition of neutron capture vs β -decay

Takahashi et al. 1987, Phys Rev C 36, 1522.

Isotope	T _{1/2} (yr)	Eγ (keV)
¹⁷⁶ Lu	3.78x10 ¹⁰	88-400
¹³⁴ Cs	2.06	>600
⁹⁴ Nb	2.03x10 ⁴	>700
_		

COSMO-CHRONOMETER reproduction of ¹³⁴Ba, ¹³⁶Ba s-only isotope yields

Solving the puzzle about the contribution of s-processing to ⁹⁴Mo: β-decay or binary stars

Plasma modelling

First self-consistent calculation of a high power, high density plasma

A. Galatà et al., Front. Phys. DOI 10.3389/fphys.2022.947194

- 1000

Astrophysical Models

Investigations of s-process nucleosynthesis looking for:

- new cases of study
- Implications to (AGB) stars nucleosynthesis of the new estimations and measurements of halflives in plasma

Improvement in stellar physics models together with the study of isotopic ratios of s-process elements in presolar grain put important constraints to nuclear and stellar parameters in AGB star nucleosynthesys.

(Palmerini et al. Astrophys. Journ. 921:7 (2021)

^{134,135}Cs ST nuclear input doesn't fit solar constraints

- (n,γ) MACS are from KADONIS 1.0
- (n,γ) theoretical Hauser–Feshbach computations TALYS 2008 for unstable nuclei
- rates for weak interactions from Takahashi & Yokoi (1987)

^{134,135}Cs improved nuclear input

- New Temperature dependence of ¹³⁴Cs
- Similar effects would be induced by variations in the ¹³⁵Cs neutron-capture cross section

Ba nucleosynthesis

Reproduction of the ¹³⁴⁻¹³⁶Ba galactic production calls for new nuclear physics measurements of weak interactions in ionized plasmas in nuclei with N \approx 50 (^{84,85}Kr, ^{86,87,88}Sr, ⁹³Nb) and N \approx 82 (^{134,135}Cs)

OPACITY measurements in **PANDORA**

The collaboration started studying the properties of the electromagnetic counterparts of gravitational waves emitted during binary merger.

Radioactive decay of synthesized r-process nuclei power electromagnetic transient: *kilonovae* The kilonovae emission is reprocessed by atomic opacities to optical and infrared wavelengths.

Feasibility study:

- astrophysical modelling BNS ejecta
- nuclear network for nucleosynthesis yields
- population kinetics code for synthetic spectra

Such activity is fundamental for future opacity measurements

- Shed light on *r*-process-generated metallic species at specific time stages of KN diffusion
- Role played by the opacity on KN emission, as it delivers information on the post-merging plasma ejecta composition
 - Plasma density in PANDORA: 10¹⁰⁻¹³ cm⁻³
 - Plasma temperature in PANDORA: few eV
 - Time after merger: from 10^{-2} up to 1 days \rightarrow **blue-KN stage**

Questions to theory

- Understanding the properties of a confined plasma → for instance MHD calculations
- Understanding the beta decay of ions in a plasma to improve the TY 1987 theory → role of unbound electrons
- 3. Extensive nucleosynthesis calculations mostly focusing on the branch points
- 4. Simulations of kilonovae nucleosynthesis and of opacities to understand the physics of multimessenger astronomy

attention